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Abstract

Background: Several independent research groups have shown that alterations in human sperm methylation
profiles correlate with decreased fecundity and an increased risk of poor embryo development. Moving these initial
findings from the lab into a clinical setting where they can be used to measure male infertility though requires a
platform that is stable and robust against batch effects that can occur between sample runs. Operating parameters
must be established, performance characteristics determined, and guidelines set to ensure repeatability and accuracy.
The standard for technical validation of a lab developed test (LDT) in the USA comes from the Clinical Laboratory
Improvement Amendments (CLIA). However, CLIA was introduced in 1988, before the advent of genome-wide profiling
and associated computational analysis. This, coupled with its intentionally general nature, makes its interpretation for
epigenetic assays non-trivial.

Results: Here, we present an interpretation of the CLIA technical validation requirements for profiling DNA methylation
and calling aberrant methylation using the Illumina Infinium platform (e.g., the 450HM and MethylationEPIC). We
describe an experimental design to meet these requirements, the experimental results obtained, and the operating
parameters established.

Conclusions: The CLIA guidelines, although not intended for high-throughput assays, can be interpreted in a way
that is consistent with modern epigenetic assays. Based on such an interoperation, Illumina’s Infinium platform is
quite amenable to usage in a clinical setting for diagnostic work.

Keywords: DNA methylation, Epigenetics, Clinical Laboratory Improvement Amendments, CLIA,
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Background
Molecular diagnostics are shifting the way we evaluate
and treat human disease. The rapid drop in costs to
profile genomic information has resulted in the develop-
ment of numerous molecular laboratory-developed tests
(LDTs), particularly in cancer and reproductive health
[1–5]. These molecular LDTs form the foundation of “per-
sonalized medicine,” an approach where detailed molec-
ular information about an individual patient is collected
to provide a more accurate diagnosis and, subsequently,
targeted treatment [6–8].
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In reproductive health, male factors contribute to the
couple’s infertility in 50% of cases [9]. These male fac-
tors are primarily screened for through a semen analysis,
which measures sperm concentration, motility, and mor-
phology using light microscopy [10]. However, the semen
analysis is a poor predictor of male fertility except in
cases of extremely reduced sperm count [11, 12]. This
is likely because sperm are responsible for fertilization
and embryo development [13] issues that are molecular
in nature. Thus, a molecular assay for measuring sperm
quality would significantly improve our understanding of
men’s reproductive health and allow for more targeted
treatment of the infertile couple.
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Over the last two decades, numerous studies have estab-
lished that alterations in sperm DNA methylation (one
of a number of epigenetic markers that promises poten-
tial clinical utility) are associated with poor reproductive
outcomes [14–16]. Additionally, one study has shown
that it may be possible to use the sperm epigenetic pro-
file to predict the risk of poor fecundity and embryo
development [12]. This has lead to the development of
Episona’s fertility test. This test is a diagnostic assay for
assessing (1) male fertility potential and (2) embryo devel-
opment quality, two very important factors for success-
ful pregnancy. It accomplishes this by measuring levels
of DNA methylation at 485,000 locations (i.e., cytosine-
phosphate-guanine (CpGs)) across the genome and com-
paring those methylation levels to those of the average
fertile male (the average is taken from 156 semen samples
from men with normal semen parameters and a history of
at least 10 pregnancies). Methylation levels that are suffi-
ciently different from the normal range at a given locus are
reported as abnormal 1. We use Illumina’s 450K Human
Methylation array (referred to throughout as the 450HM);
however, the methodology used herein (but not the spe-
cific operating parameters obtained) is applicable to any
similar technology.
To translate these findings into an assay that can be used

clinically requires a technical validation of the platform.
Although some initial steps have been taken to allow for
the use of epigenetic information in the clinic [17–19],
epigenetics-based LDTs must undergo technical valida-
tion (irrespective of their clinical utility) to show accuracy,
precision, technical sensitivity, and technical specificity.
Generally, the regulatory framework for LDTs in the

USA is guided by the Clinical Laboratory Improvement
Amendments (CLIA). However, CLIA was not specifically
designed to handle molecular tests that involve a signifi-
cant computational component, and at the time of writ-
ing, the regulatory oversight of such LDTs is uncertain.
The determination of whether a genomics-based LDT
must conform to CLIA guidelines for technical validation
or not is being performed on a case-by-case basis. Given
the increase in prevalence for computationally complex
genomics-based LDTs, additional regulatory guidance will
likely be forthcoming at some point in the future. Irre-
spective of this though, at least for now, CLIA remains
the most applicable guidance to frame a discussion of
genomics-based LDT technical validation in the USA.
In this manuscript, we describe our interpretation of

the CLIA requirements as they apply to epigenetic assays.
In particular, we show a methodology for establishing
precision, technical sensitivity, and technical specificity
when employing Illumina’s Infinium-based assays for
DNAmethylation profiling that can be used beyondmen’s
reproductive health. We also determine reference inter-
vals and the reportable range of methylation values in

the specific case of sperm DNA methylation. To be clear,
our interest is in the technical characteristics of the test
and its underlying platform, not its clinical utility; clini-
cal Laboratory Improvements Amendment (CLIA) does
not consider clinical utility, and we will not explore it here
either.

Results
Interpretation of CLIA for genome-wide sperm DNA
methylation levels
The Clinical Laboratory Improvements Amendment
(CLIA) is a regulatory instrument that applies to facilities
within the USA that perform laboratory tests on human
tissue intended for use in diagnosis, health assessment or
disease treatment. The Center for Medicare andMedicaid
Services (CMS) oversees CLIA and certifies laboratories
that are in compliance. The legislation is dated to 1988 and
so, not surprisingly, can be difficult to interpret in the con-
text of more modern laboratory tests. Before delving into
the experimental work we undertook for technical vali-
dation, we will explore the criteria set forth under CLIA
and explain our interpretation in the context of DNA
methylation and Illumina’s Infinium technology.

The analyte
The analyte is the substance whose presence is being iden-
tified or measured in the test. The original intention of
CLIA and similar legislation was in regulating tests that
measure an individual analyte in a sample. This can be
either quantitatively or simply for the presence or absence
of the analyte. A good example of a quantitive test is mea-
suring a blood-alcohol level, while a test for the presence
of a parasite would fall into the latter group.
Some personalized medicine tests can fit this mold rel-

atively easily if they probe for the presence or absence
of a relatively small number of features [8]. Panels of 10
or 20 single-nucleotide polymorphisms (SNPs) or gene-
variants, for example, can be treated as ten or twenty
independent tests for the presence of a specific nucleic
acid.
The analyte we are measuring is DNA methylation.

Illumina’s Infinium technology for profiling DNA methy-
lation interrogates hundreds of thousands of individual
CpG sites simultaneously [20]. Assuming the LDT may
potentially utilize all of this information (or even a sub-
stantial fraction), it is not practical to treat these as
independent measures that each require their own inde-
pendent technical validation within the CLIA framework.
We take the view that each measurement be treated as
interchangeable measures of the same thing: DNAmethy-
lation level (the fraction of cells in the sample which are
methylated at a given CpG, ranging from 0 to 1). We make
an exception to this in the case of reference ranges, which
we discuss more below.
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Although we use the 450HM platform to measure
methylation levels, the real purpose of the test is to call
aberrant methylation. At a given locus, we are interested
in whether the methylation level appears normal in a sam-
ple, or whether it falls outside what we would consider
normal bounds. Sometimes, it makes more sense to think
about the assay at this level. For example, when think-
ing about how repeatable the test is, it makes sense to
look at how much the set of aberrant methylation calls
changes between technical replicates—we are less inter-
ested in the (obviously related) variability of the under-
lying methylation levels. At other times, the methylation
levels themselves will clearly be the more sensible level
to consider. This happens for example when considering
reference ranges, i.e., determining what is “normal.”

Criteria for assessment
CLIA defines six criteria that must be established by a
laboratory for any LDT it performs (listed and briefly
described in Table 1). The purpose of the criteria are
not to lay down specific operating parameters for the
test, but rather to ensure that the laboratory itself
has undertaken the appropriate work to establish these
parameters. Importantly, while manufacturer guidelines
on instrumentation (or parameters established in other
laboratories or studies) can be relevant for determin-
ing laboratory-specific performance specifications, they
cannot be used as a replacement—analytical validation
is specific to the lab in question. Hence, the require-
ments of CLIA are really more of a framework that the
laboratory must work within to institute its own set of
performance parameters. As a result, the CLIA criteria
are broad and need to be interpreted in the context of
the specific test being developed. Within this section,
we put forward our interpretation for the specific case
of measuring sperm DNA methylation levels using the
Infinium technology and making aberrant methylation
calls.
The test we are describing measures DNA methylation

levels, but it also makes a determination on the presence
of an abnormal level, based on a normal reference range.
Rather than ardently forcing one or both of these two

measures on all of the criteria, we have selected the most
natural fit for each of the criteria.

Determinations to bemade and parameters to be established
Although CLIA specifies the criteria to be assessed, it
gives only general guidance on what the substance of the
assessment should be, or what should constitute the out-
come. Based on this, and our own judgement, we propose
three determinations to make: (1) to confirm that the
performance characteristics of the platform are suitable
for the intended application, (2) to establish acceptable
performance ranges that can be monitored periodically,
and (3) to determine operational parameters and inform
standard operating procedures. Throughout the following
sections evaluating the proposed criteria in Table 1, we
will focus on addressing each of these three points.
We will now proceed to explain the experimental design

to assess each criteria and present the results for technical
validation of the Illumina Infinium platform under CLIA.

Linearity and reportable range
When quantifying the presence of an analyte, the quan-
tification must map linearly to the actual amount present
in the sample. For particularly high or low levels, this
may not be possible for certain analytes or measures. The
range within which linearity is achieved is the reportable
range. Values that fall outside this range must be reported
as either higher than the maximum of the range or less
than the minimum. The purpose of experiments here is to
determine what this range is for the Infinium probes in the
context of sperm DNA methylation levels.
Previous studies have shown that the Infinium tech-

nology, specifically the 450HM, is highly correlated with
gold-standard methods such as pyrosequencing [21] and
whole-genome bisulfite sequencing [20], with a strong lin-
ear relationship between gold-standard methylation levels
and those reported by the assay. These studies did not
establish specific thresholds for a reportable range how-
ever. Recall also that even if a method had been previously
specified and thresholds determined, these experiments
would need to be repeated and laboratory-specific ranges
determined.

Table 1 CMS CLIA criteria for analytical validation of an LDT

Criteria Description

Accuracy Comparison of the test results to a gold-standard to determine how well it matches
quantification or detection of the analyte.

Precision Repeatability of the assay.

Analytical sensitivity How well the test can detect low levels of the analyte.

Analytical specificity How well the test detects the desired analyte and not other closely related contaminants

Reportable range Upper and lower limit of levels that can reliably be reported; values outside the reportable
range must be reported as either greater than the upper limit or less than the lower limit.

Reference interval What is considered a “normal” outcome for the test.
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Our approach here was to collect whole-genome bisul-
fite sequencing (WGBS) and 450HM array methylation
data from eight samples. Methylation values from these
samples were then used to calculate the range where
there is a linear relationship between methylation values
from WGBS and 450HM array data using a previously
described [22] linear regression procedure (details in the
“Methods” section). In this approach, a series of sam-
ples with known values for the analyte are analyzed and
the measured values are plotted on the y axis versus the
known values on the x axis. The best straight line fit to
the linear portion of the data is then used to find the
reportable range of the test.
Heat maps of the methylation values from the WGBS

and 450HM for each CpG site in the eight samples can
be seen in Fig. 1. The linear models fitted to the data
can also be seen on the figure. The low and high cut-
offs for the linear range of the relationship between
WGBS and 450HM array data is shown in Table 2. To
get the overall reference range, we use the largest over-
lapping range for all the samples. This results in a lin-
ear reportable range of [0.052,1] for 450HM methylation
values.
While methylation levels below 0.052 cannot be exactly

quantified, they can be bounded to be less than the linear
range. This is sufficient for our needs, as we can still com-
pute worst-case similarity to a reference level. It is worth
noting that the low-methylation reference ranges we use
are such that in almost all cases only values above the
range can be considered aberrant (see Fig. 2a), so this has
almost no practical impact for our application.
In terms of suitability for our purpose, we have no spe-

cific threshold that we require, but from a qualitative

perspective, this is quite acceptable: close to 95% of the
possible range is available to us. We can use this data
to set operating parameters for the methylation levels we
will report, but since we do not routinely run WGBS
data, we cannot use this to set performance-monitoring
parameters.
Although only eight samples were used in this analy-

sis, population statistics collected from a larger group (156
samples; analysis presented in the following section) indi-
cates that methylation levels across biological replicates
have fairly low variance (see for example Fig. 2b, distri-
bution of interquartile ranges). This in turn indicates that
additional samples will behave in a similar fashion to these
eight.

Reference interval
The reference interval for a test refers to the expected
“normal” range. This needs to be interpreted in the par-
ticular application. For our use, we interpret this as the
empirical 95% confidence interval (i.e., an upper and lower
limit which contains 95% of the values) on methylation
levels at each CpG as measured from 156 methylomes
profiled from known-fertile sperm donors (we also com-
pute the maximum and minimum values, as well as the
median, first, and third quartiles; however, it is the 95%
confidence interval that we consider to define “normal”).
The reference interval is one criteria where it is clearly
necessary to consider each probe independently. Since
the 450HM platform profiles approximately 480,000 CpG
loci, we have approximately 480,000 such reference inter-
vals. The upper and lower thresholds for a subset of these
(at loci where sperm DNA methylation exhibits a cor-
relation with fertility status—previously determined) are

Fig. 1 Linearity and reportable range. Heat map of methylation level for eight samples comparing methylation level reported from WGBS (y- xis)
with methylation level reported from 450K Human Methylation array (x axis) at loci with at least 30X coverage in the WGBS
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Table 2 Linearity and reportable range

Sample 1 2 3 4 5 6 7 8

High cut-off 1 1 1 1 1 1 1 1

Low cut-off 0.051 0.034 0.043 0.038 0.052 0.044 0.035 0.028

Adjusted R-squared 0.96 0.96 0.97 0.96 0.96 0.96 0.94 0.94

The high and low cut-off values for the linear range of each sample analyzed

shown in Fig. 2a. Note that these loci are biased towards
hypo-methylated regions.
Because we use the defined reference intervals to deter-

mine aberrant methylation, it is worth considering their
properties more closely. Generally, the ranges are fairly
tight, with the mode of the interquartile range distribu-
tion at approximately 0.03 (Fig. 2b), and 78% of the 95%
confidence intervals less than 0.1. As a consequence, the
distribution of methylation levels at individual CpGs is
strongly unimodal, which can be seen by splitting all pro-
filed CpGs into two groups, hypo- and hyper-methylated,
by mean methylation level and plotting the distribution of
methylation levels within each group (Fig. 2c).
We have established a conservative threshold for calling

aberrant methylation on a per-CpG basis in an individual
sperm methylome: either 0.2 above the upper 95% confi-
dence interval threshold or 0.2 below the lower one. This
allows methylation differences from the reference inter-
val to be detected at 99.7% of loci profiled (in 0.3% of
loci, the reference range is too large to allow differences
to be detected). In 94.1% of cases where a methylation
difference can be detected, the unimodal nature of the
distributions ensures that a change in only one direction
(hypo-methylated relative to reference interval or hyper-
methylated relative to reference interval) is possible.
The 450HM technology was originally designed to aid

in cancer studies [23], where both the tissue and the
methylomes of the constituent cells are much more het-
erogeneous [24]. In our case, we are dealing with a purified
cell type, with a much more sharply defined methylome.

As a consequence, the criteria for aberrant methylation
used here, while stringent, is nevertheless functional.

Analytical sensitivity
The analytical sensitivity of a test refers to the limits at
which the test can reliably detect or quantify the ana-
lyte. In the context of DNA methylation, we interpret this
as the lower limit of DNA concentration for which reli-
able DNA methylation levels can be retrieved using the
Infinium technology. Since the sample volume loaded is
fixed at 15 μl, concentrations are trivially convertible to
amounts of DNA. Our goal is to set concentration thresh-
olds for the samples to be run on the platform, below
which samples will not be processed. We will also extrap-
olate from this minimum sperm cell-count thresholds to
be applied on raw samples.
Our approach is to process samples with varying con-

centration of DNA using the 450HM array and evaluate
the success. The starting DNA sample is diluted into 8 val-
ues close to the limit of detection (LOD) for 6 biological
samples (a total of 48 measurements). The LOD estimate
was determined based on previously analyzed samples. To
avoid potential technical confounds due to sample place-
ment on the 450HM chip, or chip-level batch effects, we
stratified these samples over four chips in different physi-
cal arrays. Figure 3a shows the stratification of the samples
on the 450HM chips.
We then determine the number of probes that were

unable to detect DNA levels above background (detection
p value greater than 0.01; details in Methods section), and

Fig. 2 Reference range. a Reference interval for the methylation levels of 6690 CpG sites which have significant difference in methylation levels
between fertile and infertile groups. Red and blue dots show the low and high limit for the 95% confidence interval respectively. b Distribution of
the interquartile range for the methylation values of all CpGs in the 450HM array data for the known-fertile samples. c Density of methylation levels
for hypo-methylated (blue) and hyper-methylated (red) loci in the fertile reference range exhibit unimodal distributions
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Fig. 3 Analytical sensitivity experimental design and results. a Sample layout on 450HM chips. This experiment is looking at analytical sensitivity to
various DNA concentrations. There are six different, color-coded samples (A, B, C, D, E, and F). Each sample contains eight different concentrations
centered around the estimated limit of detection (LoD). Assuming the estimated LoD from previously collected data is 10 ng/μl, the concentrations
will be blank (0 ng/μl), 0.005 ng/μl, 0.01 ng/μl, 0.05 ng/μl, 0.1 ng/μl, 0.5 ng/μl, 1 ng/μl, and 10 ng/μl (standard concentration). b The percentage of
failed samples at varying DNA concentrations. c The percentage of failed probes per sample at varying DNA concentrations

the number of samples considered failed (more than 5%
failed probes).
The number of failed samples and the percentage of

failed samples at each DNA concentration can be seen in
Table 3 and Fig. 3b. The boxplot of the percentage of failed
probes per sample for each concentration can be seen in
Fig. 3c. Based on these results, we conservatively estab-
lish the DNA-concentration threshold for the fertility test
at 0.5 ng/μl. This corresponds to 7.5 ng total DNA, post
bisulfite conversion. Assuming a 90% loss from bisulfite
conversion, this corresponds to approximately 75 ng of
input DNA. With an expected 3pg of DNA per haploid
sperm cell, this is around 25,000 cells. Again, conserva-
tively, we establish our lower limit of sperm cell-count for
samples at 1 million.

Precision
Simply put, precision refers to repeatability. Here, we are
not concerned about whether the results of the test are
accurate or not, but simply whether they are repeatable.
Recall that CLIA does not set specific thresholds for pre-
cision nor specify how it should be measured, it is up
to the laboratory to determine what is appropriate for
the intended application, confirm that the technologies
involved meet these requirements, and then continue to
monitor precision. Since the test is concerned primarily
with reporting on the presence of aberrant methylation at

Table 3 Analytical sensitivity

Concentration (ng/ul) 0 0.005 0.01 0.05 0.1 0.5 1 10

Number of failed samples 5 6 5 2 0 0 0 0

Number of passed samples 1 0 1 4 6 6 6 6

The number of failed samples at each DNA concentration

a set of CpGs, the most logical measure of repeatability
is how similar the normal/abnormal calls are when run-
ning a sample multiple times. Before considering what is
acceptable, let us first define our measure of similarity.
Consider a single CpG. Given nj technical replicates for
sample j, the methylation level at this single CpG may be
considered aberrant in all, some, or none of the replicates.
Intuitively, “all” or “none” are good outcomes, while a
50/50 split of aberrant and normal calls is the worst. The
number of replicates we call aberrantly methylated at a
given CpG will depend on how stringent we are with our
threshold, t. Recall that a methylation level is considered
aberrant if it is more than t units distant from the normal
95% confidence interval. Let us then define the similarity
of calls at CpG i for technical replicates of sample j, given
threshold t as

Sijt = max(xijt , nj − xijt)/nj, (1)

where xijt is simply the count of technical replicates for
sample j called aberrantly methylated at CpG i given
threshold t. The value Sijt will range between 1 (perfect
agreement) and 0.5 (the threshold perfectly bisects the
methylation calls). We can average across all CpGs to get
an overall value for a given sample at a given threshold as
follows:

Sjt =
∑

i Sijt
m

, (2)

where m is the number of CpGs profiled. This is the
empirical probability that another technical replicate for
this sample will give an aberrant/normal methylation call
at any given CpG that is consistent with the previous calls.
We have six samples for profiling precision and have

arranged technical replicates of these samples across three
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separate runs with six total chips. Samples are stratified
across runs, chips, and positions to limit the impact of
batch effects; the experimental design is shown schemat-
ically in Fig. 4, while Fig. 5a shows how Sjt varies as a
function of the threshold t in each of the samples, as
well as averaged across all samples. One outlier sample
is clearly visible. We investigated this sample for obvious
technical failure, but found none. The lower similarity is
caused by two technical replicates that are outliers to the
other four—see Fig. 5b, which shows the Euclidean dis-
tance between technical replicates for this sample. We
have included this sample in our calculations as we feel
it legitimately reflects possible technical variability. At a
threshold of 0.2, the mean Sjt from all samples shows a
value above 0.997 (highlighted in Fig. 5a). Put another way,
we can expect a new normal/abnormal methylation call
to be inconsistent with previous replicates on average less
than 0.3% of the time, or about 1 in 333 calls.
We have two additional samples that we have run over

a longer period of time both for further validation of our
above observations and to assess whether inter-run vari-
ability over long periods is more noticeable. The first of
these samples was run 14 times on separate days evenly
spaced over 26 weeks, while the second was run 18 times
over 34 weeks following the same schedule. We called
the presence or absence of aberrant methylation in these
replicates as previously described at 6690 candidate loci.
Given any two replicates from the same sample, we can
compute the dissimilarity in aberrant methylation calls as
the number of loci called in one or the other replicate,
but not both (i.e., the cardinality of the set difference). We
show these values for all pairwise combinations in Fig. 5c.
At a rate of 1 difference per 333 calls as calculated above,
we expect less than 20 differences on average, which is

borne out by the figure. Also noticeable is the presence
of one outlier replicate for each sample that does not sat-
isfy the expected rate, again relatively consistent with our
observations on the previous six samples assayed.
The main utility of the precision analysis is in setting

acceptable performance guidelines for proficiency testing
(PT), which is a regular re-testing of previous samples
to ensure consistency of results. We will consider an
individual replicate to have passed PT if the number of dif-
ferences in aberrant methylation calls does not exceed the
0.3% rate established above by more than 20%. An accept-
able proficiency testing outcome will be 80% or better
samples meeting this requirement.

Analytical specificity
This criteria is concerned with whether the assay is spe-
cific to the substance that it intends to measure, or
whether the presence of other substances causes erro-
neous results. Given that we ship samples at ambient
temperature for several days, the most likely contaminant
in our case is probably bacterial DNA. Hence, we will
profile the impact of E. coli DNA contamination.
We prepared 8 samples with enough starting material

to be divided into 6 replicates each (for a total of 48 sam-
ples). For each sample, we add contaminating E. coli DNA
(after the somatic cell lysis and wash step but before the
bisulfite conversion step), at varying percentages to its six
replicates: 0%, 10%, 20%, 30%, 40%, and 50% of the total
cell count for the sample. These samples are arranged on
four 450HM chips as per Fig. 6a, stratified to ameliorate
any potential confound from sample placement.
To check the impact of contamination, we follow pro-

cedures used in the analytical sensitivity section to detect
failed samples. The boxplot for the percentage of failed

Fig. 4 Precision experimental design. The stratification of the samples analyzed for precision on different chips and varying positions on chips



Abbasi et al. Clinical Epigenetics  (2018) 10:119 Page 8 of 12

Fig. 5 Precision results. a Empirical probability that a new replicate will give an aberrant methylation call consistent with existing replicates at
different thresholds (of difference from fertile 95% confidence interval) for aberrant methylation calls. Dashed line shows the threshold used, which
corresponds to an average probability of 0.997. b Euclidean distance between technical replicates of outlier sample from panel A. c Heatmap of the
number of loci with different aberrant methylation status between technical replicates for two samples. Upper triangular matrix shows one sample
and lower triangular matrix shows the other. Each row/column represents one technical replicate, and the cell at the intersection of a row/column is
the number of differences between the sets of aberrantly methylated loci in the two replicates. The diagonal is the replicate compared with itself.
Marginal cells (colored white) give the number of aberrantly methylated loci called in the corresponding replicate

probes per sample for different contamination levels is
shown in Additional file 1: Figure S1. We can see that the
percentage of failed probes per sample remains under the
5% threshold for sample rejection for all the contamina-
tion levels of 40% or less. Two samples with contamination
level of 50% havemore than 5% of failed probes per sample
and are labeled as failed.

These results suggest that either all the non-failed sam-
ples correctly detect the sample DNA, or their failure is
not detected by looking at background control probes.
Figure 6b shows that the number of aberrantly methy-
lated loci generally increases as the level of bacterial
contamination in the sample increases. This suggests that
there are erroneous methylation level calls that are not

Fig. 6 Analytical specificity. a The stratification of samples with different contamination levels on the 450HM array. There are eight different,
color-coded samples labeled A through H. Each initial sample is divided into six replicates, which are contaminated with six different levels of
bacterial cells; for example, A1 = no bacterial contamination, A2 = 10% of cells in sample are bacterial in origin, A3 = 20% of cells, A4 = 30% of cells,
A5 = 40% of cells, and A6 = 50% of cells. b The number of aberrantly methylated loci per sample for different concentrations of bacterial cells (E. coli
DNA) in the sample. c Scatter plot of the measure of probe intensity vs. the number of aberrantly methylated loci (failed probes are removed before
calling aberrant methylation) per sample, stratified by the amount of bacterial contamination in the sample
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detected by comparing to the control probes for back-
ground luminescence. This is due to the fact that there is
an overall decrease in probe intensities, including back-
ground control probes, related to the increase in bacterial
contamination (see Additional file 2: Figure S2).
To detect this kind of failure, we look at the median

probe intensity of a sample to see whether it differs from
what is expected from a normal run. We define probe
intensity as [25]:

MUj = log2
√
Mj × Uj, (3)

whereMj andUj are themedianmethylated and unmethy-
lated probe intensity values of sample j. We then need
to define a threshold for probe intensity to detect failed
samples.
Figure 6c shows high correlation between probe inten-

sity and the number of aberrantly methylated loci for the
replicates. This is used to choose a threshold for probe
intensity by defining a normal range for the number of
aberrantly methylated loci. We use replicates with no
bacterial contamination to do this and define the 99% con-
fidence interval of the number of aberrant calls for these
replicates as the normal range and label any sample out-
side this range as failed. The threshold is chosen as the
probe intensity that linearly separates and maximizes the
margin between the two groups of failed and non-failed
samples. From our experiment, this threshold is calcu-
lated as MUj = 9.96 (blue line in Fig. 6c). Samples with
probe intensity lower than the threshold are labeled as
failed. Note that this separates the two groups with perfect
accuracy in our data.
The scatter plot in Fig. 6c shows the relation between

probe intensity and the number of aberrantly methylated
loci called per replicate, where we split replicates into
groups based on the amount of bacterial contamination
introduced. We can see that replicates with high levels of
bacterial contamination often had hundreds of aberrant
calls and probe intensities lower than the threshold for
failed samples. These replicates are detected and filtered
out as failed samples. We also observed that the num-
ber of aberrant calls for non-failed samples with probe
intensities higher than the threshold was low and close to
numbers we expect from control samples with no bacte-
rial contamination. Moreover, we observed no significant
correlation between the number of aberrant methylation
calls for non-failed samples and the amount of bacterial
contamination (p value = 0.52).

Accuracy
Of all the criteria, accuracy is probably the most intu-
itive. Here, the goal is to determine either how well the
test reproduces known values from reference samples or

how closely it compares to a gold-standardmethod. In this
case, it makesmost sense to consider themethylation level
estimates from the 450HM directly.
We will use whole-genome bisulfite sequencing [26]

as our reference gold-standard method for methylation
level. We have eight samples where both WGBS and
450HM assays were run (the same samples that were
used for profiling linearity and reportable range). CpG
loci for comparison were selected to meet the follow-
ing criteria: (1) coverage by the 450HM platform and
(2) WGBS coverage greater than 30 but less than 100
reads (see the “Methods” section for justification). Corre-
lation between WGBS and 450HM on a per-sample basis
is visualized using heat-maps and quantified using Pear-
son’s product-moment correlation between the methyla-
tion values for WGBS and 450HM array data. Figure 1
shows the heat-maps comparing methylation levels mea-
sured via WGBS and 450HM in all eight samples. The
correlation for each of the eight samples can be seen in
Table 4. The mean correlation of the eight samples was
0.98 (sd = 0.01).
Since we will not routinely be running WGBS data, the

comparison does not inform our standard operating pro-
cedures, nor parameters for performancemonitoring. The
main utility is determining whether the 450HM produces
estimates of methylation level that are sufficiently accu-
rate for our purpose. Again, we have no specific threshold
for necessary accuracy, so our evaluation will be a qual-
itative one: methylation levels reported from the 450HM
show very high similarity toWGBS levels, which we assess
to be sufficient.

Discussion
Our goal in this paper has been to provide a technical val-
idation for an epigenetic LDT aimed at identifying aber-
rant methylation in sperm based on Illumina’s Infinium
technology (specifically the 450HM in this instance) for
profiling human methylation levels. To this end, we
have used the CLIA regulatory requirements as a guid-
ing framework, adopting its six criteria for assessment:
reportable range, reference interval, analytical sensitiv-
ity, precision, analytical specificity, and accuracy. Within
each of these, we have aimed to evaluate the platform’s
suitability for the test, establish operating parameters and
determine key indicators of performance for continued
monitoring. Figure 7 gives a summary of the criteria
assessed and the determinations made in each case.

Table 4 Accuracy

Sample number 1 2 3 4 5 6 7 8

Correlation 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97

Pearson’s correlation for each of the eight samples tested for 450HM accuracy
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Fig. 7 Summary of criteria. This matrix summarizes the findings of this study in each of the experiment groups in terms of the platform’s suitability
for the intended use, the selection of operational parameters and the identification of criteria for continued performance monitoring

We have established that the 450HM produces high-
fidelity measurements of methylation levels in human
sperm samples by comparing it to the widely accepted
gold-standardmethod of whole-genome bisulfite sequenc-
ing. The correlation between the two methods is very
high, with an average Pearson correlation of 0.98
(sd = 0.01), and consistently high correlation across mul-
tiple replicates with distinct biological properties. The
450HM platform produces reliably linear quantification
of methylation levels between 0.052 and 1; this is the
reportable range to be used in the fertility test.
Using multiple DNA concentrations, we have estab-

lished that the 450HM assay reliably quantifies methyla-
tion levels at DNA concentrations of 0.5 ng/μl or above;
this defines the threshold of DNA concentration to pro-
cess a sample for the fertility test and by extension mini-
mum total DNA and sperm cell counts.
We have demonstrated that the assay is highly repro-

ducible.When using a 0.2 difference from reference range,
the empirical probability that an additional replicate will
produce a consistent aberrant methylation call at any
given CpG is 0.997. This rate was confirmed with a long-
running experiment testing technical replicates from two
samples every two weeks over a period of more than
6 months.
By examining the impact of bacterial contamination,

which is likely the most common contaminant to be
faced when processing samples for the fertility test, we
have demonstrated that our quality control procedures
are capable of detecting samples with excessive bacterial
contamination as failed.
Finally, we have given a summary of the reference inter-

val compiled for the expected normal methylation levels
at each of the CpG loci profiled by the 450HM platform.

Conclusions
Although discussion is ongoing in terms of appropri-
ate oversight and regulation of high-throughput clinical

genomic and epigenetic diagnostic testing, CLIA remains
probably the best regulatory guidance available. Although
not specifically designed to deal with such testing, CLIA’s
general nature allows (with some effort) an interpre-
tation that is sensible in light of newer technologies.
While regulatory bodies continue to grapple with appro-
priate oversight, it is important for the community to
establish its own standards to both inform this process
and maintain quality of service. Additionally, and more
specifically, our evaluation of Illumina’s infinitum-based
technology for epigenetic profiling shows that it is rela-
tively stable and suitable for clinical epigenetic work, as
long as appropriate quality control procedures are estab-
lished and followed. The assay requires approximately
1 week for sample processing at-scale, including data anal-
ysis, and so is well within the range of many clinical
tests.

Methods
Whole-genome bisulfite sequencing data-processing
WGBS data are used as a gold-standard for methylation
values [26]. WGBS is based on the treatment of the DNA
with sodium bisulfite which changes the unmethylated
cytosine molecules into uracil molecules. Whole-genome
sequencing is then used to determine the sequence of
the treated DNA [27]. The WGBS data was processed
using the following steps. The FastQ format reads were
trimmed using the trimgalore [28] package and mapped
to hg19 using Walt [29]. Bisulfite conversion rate was
estimated using chrM and BGI’s control virus. Here, the
bsrate function form the methpipe package was used to
estimate the bisulfite conversion rate [30]. Afterwards,
the duplicate-remover [30] function was used to remove
duplicates and methylation levels were obtained on a
per-site basis using methcount [30]. In the final step,
information from symmetric CpGs were merged and
CpG sites were filtered using the symmetric-cpgs [30]
function.
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450HM data-processing
The 450HM array data are collected using Ilumina’s
450HM beadchip array technology [20] and translated
into methylation beta values using the minfi package in
R [31]. The minfi package also allows us to perform
subset-quantile within array normalization (SWAN) [32]
to normalize themethylation beta values between the type
1 and type 2 probes. The resulting beta values are used as
the 450HM array estimates of methylation level.
Determination of failed probes and samples is also

performed using minfi. The package compares the total
combined methylated and unmethylated DNA signal at
each CpG site to the background-signal levels of the con-
trol probes on each array. The intensity of background
probes is assumed to follow a normal distribution. A
detection p value is computed for each locus based on this
background distribution. Probes with a detection p value
greater than 0.01 are considered to be failed probes. Sam-
ples with more than 5% failed probes are considered to
be failed samples. These thresholds are consistent with
previous studies [33].

Subsetting of loci for 450HM versus WGBS comparison
The human genome has approximately 27 million CpG
sites that can be methylated. WGBS data theoretically
informs the methylation level at all of these. Due to the
way methylation levels are inferred from WGBS data
though (the fraction of reads covering a locus reporting
methylation), loci with low coverage (few next-generation
sequencing reads) have low resolution [20]. For exam-
ple, with three reads covering a given CpG, the possible
methylation levels reported are 0, 0.33, 0.66, and 1.0.
To avoid poor correlations from this discretization, we
do not use those loci with less than 30 reads covering
them in this comparison [34]. Similarly, methylation levels
derived from loci with very many more WGBS reads than
expected have an increased risk of suffering from techni-
cal artifacts associated with the assay. Hence, we also do
not use loci with more than 100 reads covering them in
this comparison. These thresholds on average remove 83%
of the common CpG sites between WGBS and 450HM
array methylation data for a given sample. After filter-
ing using the above thresholds, each pairwise comparison
between WGBS and 450HM is based on an average of
82,011 loci.

Linear model fitting for reportable range
To calculate the reportable range for each sample, we fit a
linear model to the data [22]. The model has the following
form:

yi = a + bxi + e, (4)

where yi is the WGBS methylation value and xi is the
450HMmethylation value for CpG site i. The intercept of

the model is a, and the coefficient (which represents the
slope of the fitted line) is b. Using the coefficient and inter-
cept of the linear model, the low and high cut-off values
for the linear reportable range for each sample are calcu-
lated by finding xi when yi = 0 and yi = 1, respectively,
bounded by 0 and 1. More formally:

Rlow = (xi|yi = 0) = max(0,−a/b) (5)
Rhigh = (xi|yi = 1) = min(1, 1 − a/b) (6)

Endnote
1 These abnormalities are filtered for clinical relevancy,

but since this filtering is not impacted by the technical
stability of the underlying laboratory procedure for mea-
suring DNA methylation levels, we will omit details of it
here.

Additional files

Additional file 1: Figure S1. The percentage of failed probes per sample
for different concentrations of bacterial cells (E. coli DNA) in the sample.
(TIF 938 kb)

Additional file 2: Figure S2. The probe intensity per sample for different
concentrations of bacterial cells (E. coli DNA) in the sample. (A) Control
probes in the red channel, (B) control probes in the green channel, (C) all
probes in the red channel, and (D) all probes in the green channel.
(TIF 3587 kb)
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