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Long non-coding RNAs: implications
in targeted diagnoses, prognosis, and
improved therapeutic strategies in human
non- and triple-negative breast cancer
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Abstract

Triple-negative breast cancer (TNBC) has been clinically difficult to manage because of tumor aggressiveness,
cellular and histological heterogeneity, and molecular mechanisms’ complexity. All this in turn leads us to evaluate
that tumor biological behavior is not yet fully understood. Additionally, the heterogeneity of tumor cells represents
a great biomedicine challenge in terms of the complex molecular—genetical-transcriptional and epigenetical—mechanisms,
which have not been fully elucidated on human solid tumors.
Recently, human breast cancer, but specifically TNBC is under basic and clinical-oncology research in the discovery of new
molecular biomarkers and/or therapeutic targets to improve treatment responses, as well as for seeking algorithms for
patient stratification, seeking a positive impact in clinical-oncology outcomes and life quality on breast cancer patients.
In this sense, important knowledge is emerging regarding several cancer molecular aberrations, including higher
genetic mutational rates, LOH, CNV, chromosomal, and epigenetic alterations, as well as transcriptome aberrations in
terms of the total gene-coding ribonucleic acids (RNAs), known as mRNAs, as well as non-coding RNA (ncRNA)
sequences. In this regard, novel investigation fields have included microRNAs (miRNAs), as well as long ncRNAs
(lncRNAs), which have been importantly related and are likely involved in the induction, promotion, progression, and/
or clinical therapeutic response trackers of TNBC. Based on this, in general terms according with the five functional
archetype classification, the lncRNAs may be involved in the regulation of several molecular mechanisms which include
genetic expression, epigenetic, transcriptional, and/or post-transcriptional mechanisms, which are nowadays not totally
understood.
Here, we have reviewed the main dis-regulated and functionally non- and well-characterized lncRNAs and their likely
involvement, from a molecular enrichment and mechanistic point of view, as tumor biomarkers for breast cancer and
its specific histological subtype, TNBC. In reference to the abovementioned, it has been described that some lncRNA
expression profiles correspond or are associated with the TNBC histological subtype, potentially granting their use for
TNBC malignant progression, diagnosis, tumor clinical stage, and likely therapy. Based on this, lncRNAs have been
proposed as potential biomarkers which might represent potential predictive tools in the differentiated breast carcinomas
versus TNBC malignant disease. Finally, elucidation of the specific or multi-functional archetypal of lncRNAs in breast
cancer and TNBC could be fundamental, as these molecular intermediary-regulator “lncRNAs” are widely involved in the
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genome expression, epigenome regulation, and transcriptional and post-transcriptional tumor biology, which in turn will
probably represent a new prospect in clinical and/or therapeutic molecular targets for the oncological management of
breast carcinomas in general and also for TNBC patients.

Keywords: Breast cancer, Triple negative, Biomarkers, lncRNA

Background
The most recent worldwide cancer statistics estimated a
total of 2.4 million new cases and 533,000 deaths due to
breast cancer (BC) in 2015, thus making it the fifth leading
cause of cancer years of life lost between 2005 and 2015
for both sexes. For women specifically, one in 14 will de-
velop BC between birth and 79 years of age, becoming the
leading cause of cancer death for women worldwide [1].
In 2017, 252,710 new breast malignant clinical cases and
40,610 BC deaths were expected to occur in the USA [2].
In addition to the known histopathological classifica-

tion (tumor cell differentiation status) and TNM (tumor
size, lymph node involvement, and metastasis) stage, BC
has also been classified on the basis of protein and gen-
etic expression status [3]. In this regard, Perou et al.
have defined at least five genetically distinct subtypes
with different molecular significance on inter-tumor
subtypes [4], but also by intra-tumor heterogeneity in
BC subtypes [5]. Based on the above, intra-tumor het-
erogeneity has been proposed as having striking mor-
phological, genetic, and behavioral variability explained
in part by the cancer stem cells population presence,
clonal evolution, and malignancy capacity [6, 7].
Additionally in BC, other molecular-genetic alterations
exist based on well-known non-coding RNAs (ncRNAs),
including micro-ncRNAs (microRNAs) and long-ncRNAs
(lncRNAs), both of which have been identified and histo-
pathologically associated to BCs, as triple-negative BC
(TNBC) [8, 9], but particularly some lncRNAs, in others
as LOC339535 also named LINK-A, have functionally
been associated to TNBC malignancy with poorer progno-
sis and progression-free survival in TNBC patients [10], as
well as for HOTAIR, which has been involved in promot-
ing or increasing malignancy in TNBC patients, compared
with non-TNBC patients, probably representing a new tar-
get therapy in TNBC [11].
TNBC as a heterogeneous group of breast tumors has

been characterized by the lack of expression of hormone
receptors, namely estrogen receptor alpha (ER-α) and
progesterone receptor (PR), with a low expression of re-
ceptor tyrosine kinase ErbB2 (also known as HER2/neu).
In TNBC, additional molecular-genetic features have
been identified including BRCA1/2 mutation frequency
(11.2–20.0%) [12–15], which may be higher in approxi-
mately 20–40%, according to the ethnic origin [16], fur-
thermore including additional molecular deficiencies, in

others as some frequent somatic mutations on TP53
(62%) and PIK3CA (10%) [12, 13].
In addition to the mutation status, TNBC tumors also

display alterations on the genetic copy number varia-
tions, genetic expression levels, and patterns, which have
been associated with basal-like tumors including a high
proportion of the basal histological BC subgroup
(70–80%) [17]. Besides TNBCs exhibiting poor survival
rates due to their highly aggressive and metastatic cap-
acities, they are associated with higher recurrence behav-
ior in local and distant lymph nodes and have higher
proliferative rates [18–20], probably explained in part by
the genetic-molecular aberrations.
Approximately, on average, 12 to 24% of women diag-

nosed with BC correspond to the TNBC subtype. TNBC
represents a subgroup of particular interest, since it gen-
erally affects young women and tends to have a poor re-
sponse to standard chemotherapy [21–23].
In TNBC, the US Food and Drug Administration

(FDA) and the European Medicines Agency (EMA) have
not yet approved a specific targeted agent for clinical
treatment in the adjuvant, neoadjuvant, or metastatic
settings. Currently, radiotherapy and a combination of
chemotherapeutic agents like anthracyclines, alkylating
agents, taxanes, or platinum salts are used for treating
TNBC patients [24]. Thus, efficient targeted therapeutic
regimens are urgently needed in TNBC for clinical
management, since currently these patients have low
rates of disease-free survival (DFS), overall survival
(OS), and 5-year survival, in addition to a low sur-
vival 12–18 months after distant recurrence [25, 26].
TNBC tumors have been characterized by high levels of

genetic instability, with a median of 1.7 (range 0.16–5.23)
mutations/Mb [27, 28], and feature complex patterns of
copy number gains and losses throughout the genome
[29]. Epigenetically TNBCs are characterized by extensive
hypomethylation, which leads to increased genome-wide
instability [30]. Recently, Mathe et al. have shown that the
changes in the epigenome, based on DNA methylation
levels, are associated with tumor progression in TNBC
[31–33].
Recent reports have shown that lncRNAs are involved

in almost all human biological processes including tran-
scriptional regulation or interference, telomere mainten-
ance, epigenetic mechanisms modulation, imprinting,
post-transcriptional and translational control, structural
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organization, cellular differentiation, embryo develop-
ment, and pathological dysfunctions as well as
non-malignant diseases, using redundant DNA, RNA,
and/or protein-binding mechanisms, according to par-
ticular cases [34–36]. As it occurs for other malignant
diseases, lncRNAs have been involved in the tumorigenic
promotion and progression processes leading to BC de-
velopment and prognosis [37].
Liu et al. proposed a TNBC classification based on

mRNA coding genes and lncRNA expression profiles. This
new classification could offer a more robust data matrix to
establish a molecular stratification bioinformatics-algorithm
that clarifies knowledge of molecular subtypes and
establishes subtype-specific targets [38]. Additionally,
genome-wide association studies on cancer have re-
vealed that more than 80% of cancer-associated
single-nucleotide polymorphisms occur in non-coding
genetic regions. This suggests that a significant fraction
of the genetic etiology of BC could be related to
lncRNA expression profile and functionality [39]. Also,
research involving genetic sequence control (promoters
vs. enhancers) is necessary, in order to explain why,
how, and where lncRNAs are expressed in human
homeostasis as well as during a pathologic process [40].
In recent years, therapeutic strategies for TNBC have

recorded a high number of failures in the development
of chemical agents, due to the fact that recently it has
been proposed to include molecular wide studies to
identify additional potential biomarkers, as well as
genetic-epigenetic targets, probably involved. In this re-
gard, epigenetic targeted pathways have widely been pro-
posed as pharmacological strategies, among these
histone deacetylase inhibitors (HDACis) alone and/or in
combination strategies have promising activity in
TNBC-targeted treatments. Therefore, future research
should be focusing on the personalized approach, which
will benefit more from each kind of epigenetic agents,
including panobinostat, vorinostat, and entinostat [41].
In addition, by identifying reliable treatment biomarkers,
such as lncRNAs, which are implicated in epigenetic
mechanisms through the recruitment of the chromatin
modification complexes, in other proteins based on the
polycomb repressor complex-2 (PRC2) and/or LSD1/
CoREST (REST co-repressor) REST complexes, involved
in the histone repressor (H3K27me3) versus activation
(H3K4me2/3) code, as it has been previously described
for the lncRNA HOTAIR, suggesting a scaffold function-
ality archetype [42], as lncRNAs have functionally been
classified by five archetypes (described in Fig. 1).
In brief, the present review summarizes the current

knowledge regarding lncRNA expression patterns and
probable functional association with their role in BC
biology and as expressed molecular biomarkers, poten-
tially involved as therapeutic targets. In this regard, we

aim to generate a systematic and deep understanding of
tumor biology of TNBC, so clinicians will, in the near
future, be able to offer tailored treatments in accord to
the lncRNA stratification and/or specific lncRNA ex-
pression patterns in potentially different patient sub-
groups in BC and TNBC.

Targeted therapy efficacy in the TNBC treatment:
probable lncRNAs involved
Due to the lack of knowledge on molecular targets,
chemotherapy is the only available systemic treatment
for TNBC and therefore adjuvant chemotherapy is rec-
ommended for TNBC operable tumors with stages I–III
[43, 44]. However, systemic therapy before surgery, neo-
adjuvant chemotherapy (NAC), is the most appropriate
approach for patients with locally advanced BC with the
objectives to improve surgical options (resectability and
breast conservation techniques), determine in vivo
tumor sensitivity to treatment, and improve long-term
survival outcomes with the pathological complete re-
sponse (pCR) as an informative biomarker of those pa-
rameters [45–48]. Even with what is deemed as a poor
overall survival, it is evident that subsets of TNBC pa-
tients respond better to standard care using chemother-
apy combinations, and when pCR after NAC is achieved;
excellent long-term survival is expected [49]. Neverthe-
less, a substantial proportion (30–40%) of patients with
early-stage TNBC develop metastatic disease [50].
In this sense, the triple-negative paradox on TNBC pa-

tients is mainly driven by a subgroup of cells on the bulk
tumor with residual disease after NAC [50]. For this rea-
son, the search for new biomarkers would allow the pre-
diction of a group of TNBC patients who would better
respond to standard chemotherapy, thus eliminating the
need to administer unnecessary, highly toxic, and costly
chemotherapy treatments in patients who might benefit
from more personalized treatments.
Researchers have proposed new targeted therapies

based on results from clinical trials in an attempt to im-
prove the outcome of TNBC patients. Retrospective ana-
lyses and previous trials have shown striking pCR rates
in patients with high BRCA1 mutation rates (between 72
and 90%) with a single neoadjuvant treatment using
DNA crosslinking platinum salts (e.g., cisplatinum) [51,
52]. For example, TNBC patients with positive BRCA
mutations treated with carboplatin have better response
rates compared to those treated with docetaxel mono-
therapy [53]. Other studies have evaluated poly
(ADP-Ribose) polymerase (PARP) inhibitors either alone
or in combination with cytotoxic treatment. However,
response to these schemes is limited to patients with
BRCA-mutated BC [54, 55].
Likewise, hyper-activation of the PI3K/AKT signaling

pathway is associated to oncogenic alterations in TNBC,
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occurring in approximately 10% of patients [56]. Activat-
ing PIK3CA mutations are the most frequent mutations
in TNBC. Other alterations in this pathway include loss of
tumor suppressor phosphatases inositol polyphosphate
4-phosphatase type II (INPP4B), loss of phosphatase and
tensin homolog (PTEN), AKT amplification, and AKT3
translocation [57–59]. In this regard, several studies have
demonstrated the benefits of using serine/threonine kin-
ase AKT inhibitors like ipatasertib in TNBC [37, 38, 60].
On the other hand, growth factor receptors are over-

expressed in TNBC, including epidermal growth factor
receptor (EGFR) and vascular endothelial growth factor
receptor (VEGFR) [61–66]. Multiple signaling pathways,
such as PI3K/AKT, mitogen-activated protein kinase
(MAPK), and Wnt/β-catenin are activated by EGFR and,
in turn, enhance proliferation, survival, invasion, and
metastasis of cancer cells [67]. Expression of EGFR is
frequently associated with TNBC and has been viewed
as a promising therapeutic target. Unfortunately, the
therapeutic efficacy of EGFR-targeting agents in BC has
been disappointing [68, 69]. A recent report showed that
combined treatment with lapatinib, a dual inhibitor of
EGFR and ErbB2/HER2, and imatinib, a c-ABL inhibitor,

resulted in synergistic growth inhibition in a panel of
EGFR/ErbB2-expressing BC cells, including the TNBC
cell line MDAMB-468 [70].
Recently, studies on fibroblast growth factor receptor

(FGFR) have shown that 9% of TNBC with FGFR1 (4%)
and FGFR2 amplifıcations, treated with FGFR blockers
like lucitanib (FGFR1-amplifıcation) and JNJ-42756493
(FGFR translocation or FGFR activating mutation), pro-
vide clinical benefits [51, 71–73]. Approximately 10 to
15% of TNBC express the androgen receptor (AR), and
several studies have reported pathological response ben-
efits when targeting this receptor. Bicalutamide, enzalu-
tamide, and orteronel are all oral non-steroidal anti-AR,
on that the most recent clinical trials for TNBC are
shown in Table 1 [72, 74–76].
As previously described, TNBC is a heterogeneous

disease, and even though a high number of targeted
therapies have been clinically tested, this has not yet
translated into a substantial clinical benefit for TNBC
patients. Hence, it is necessary to identify highly sensible
biomarkers for a better stratification and treatment of
these patients. Recently, long non-coding RNAs
(lncRNAs) have been reported to drive many important

I. Decoy II. Signal

III. Guide
IV. Scaffold

RISC

miRNA

lncRNA miRNA 
Degradation

Traslation 
Repression 

Degradation 

V. Sponge

Suppression
H3K27me3

Activation

Promote chromatin
modification

H3K27me3
H3K9me3

Act on chromatin
structure

H3K27me3
H3K4me3

Fig. 1 Proposed five functional archetypes for the lncRNA mechanisms. 1. Decoys: lncRNAs can titrate away transcription factors and other
proteins away from chromatin, or titrate the protein factors into nuclear subdomains. 2. Signals: lncRNAs expression can faithfully reflect the
combinatorial actions of transcription factors (colored ovals) or signaling pathways to indicate gene regulation by space and time. 3. Guides:
lncRNAs may recruit chromatin-modifying enzymes to gene-promoter targets, either in Cis (near the genetic region of the lncRNA transcription)
or in Trans into distant target genes. 4. Scaffolds: lncRNAs may bring together multiple proteins to conform ribonucleoprotein complexes. The
lncRNA-RNP may act on chromatin as illustrated to affect histone code modifications. In other instances, the lncRNA scaffold is structural and
stabilizes nuclear structures or signaling complexes 5. Sponge: lncRNAs that by complementarity of bases succeed in matching or sequestering
sequences of small non-coding RNAs, such as miRNAs, are controlling bioavailability of miRNAs, vs. lncRNAs themselves, with the functional
biological repercussions at cellular or physiological level. RNA-induced silencing complex RISC
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cancer phenotypes through their interactions with other
cellular macromolecules [77, 78]. To date, it has been
strongly proposed that a deeper functional understand-
ing of lncRNAs will provide novel insights into the mo-
lecular mechanism of cancer. As such, lncRNAs are
likely to serve as the basis for many clinical applications
in oncology [79], like potential biomarkers for diagnosis
or therapy targets for clinical treatment of TNBC, as we
discuss next.

lncRNAs: molecular mechanisms and potential
therapeutic functionality
Protein-coding gene sequences represent a minority (less
than 2%) of the human genome sequences; in contrast,
the majority are represented by protein non-coding gen-
ome sequences, such as non-coding RNAs (ncRNAs)
[80]. The ncRNAs can be divided into two categories:
house-keeping ncRNAs (tRNA, rRNA, etc.) and regula-
tory ncRNAs (miRNA, lncRNA, piRNA, etc.) [81].
LncRNAs are regulatory ncRNAs with at least 200 nu-
cleotides long (nt) that do not encode any protein [82].
Based on the genomic location sites of the lncRNA

transcripts and their neighboring relation with the
protein-coding genes, lncRNAs can be divided into five
categories: (1) sense lncRNAs, which overlap one or
more exons of transcripts on the same strand; (2) anti-
sense lncRNAs, which overlap one or more exons of an-
other transcript on the opposite strand; (3) bidirectional
lncRNAs, which are located on the opposite strand from
the neighboring exon whose transcription orientation
has been identified at less than 1000 base pairs; (4) in-
tronic lncRNAs, which are structurally located within
another intron of another transcript; and (5) intergenic
lncRNAs, which interact within the genomic interval
between two genes [83]. In addition, many known
lncRNAs have been identified intracellularly either
within the cytosol and/or between the nuclear and cyto-
plasm compartments [84]. According to recent studies,
the human transcriptome contains up to 16,000
lncRNAs, frequently spliced and polyadenylated, whose
non-coding genes are mainly transcribed by the RNA
polymerase II [85].
Raised evidence supports that lncRNAs have potential,

diverse, and deep functional roles at the nucleus level,
which include acting as a positive (activation) mechan-
ism of the transcriptional regulation, as well as their in-
volvement in the inactivation of epigenetic mechanisms
(Eg., X-chromosome inactivation), heterochromatin con-
formation, telomere maintenance, and pluripotency cap-
acity modulation and also have been seen to be involved
in cancer development [86–88].
It has become increasingly important to link clinical

correlation studies and experimental evidences, which
has suggested that lncRNAs contribute to tumor

promoting, progression, and metastasis for different ma-
lignant diseases through several cellular processes,
ranging from transcriptional (cis/trans) and post-tran-
scriptional regulation mechanisms in cell cycle distribu-
tion control and cell differentiation to epigenetic
modification mechanisms [89–92]. LncRNAs modulate
gene transcription by rearranging chromatin via
chromosomal looping and by affecting the binding of
transcription factors. LncRNAs also affect miRNA func-
tions by controlling pre-mRNA splicing or as miRNA
sponges. Recently, accumulating evidence indicates that
there is aberrant expression of lncRNAs in many cancer
types [93]. An increasing number of studies have dem-
onstrated that a number of lncRNAs are not transcrip-
tional noise, but have important functions, such as
regulating gene expression at various molecular levels,
including RNA, miRNA, DNA, and proteins, playing im-
portant roles in RNA translation and cytoplasmic pro-
tein trafficking [94]. Few studies like Yang et al. have
focused on how lncRNA genes themselves are regulated
by different transcripts activating regulatory regions of
lncRNAs [95].
Other studies have indicated that altered expression

levels of lncRNAs are associated with human diseases,
including BC. Examples include the lncRNAs H19,
HOTAIR (HOX transcript antisense RNA), and UCA1
(urothelial cancer associated 1, non-protein coding),
which silence tumor suppressor genes. Likewise,
lincRNA-p21 mediates global gene repression in the p53
response, while GAS5 plays a tumor suppressor role
[96–100]. Another specific example is CYTOR (cytoskel-
eton regulator RNA), which plays a role in BC, regulat-
ing genes involved in the EGFR/mammalian target of
the rapamycin pathway and is required for cell prolifera-
tion, cell migration, and cytoskeleton organization [101].
Other lncRNAs have been associated with drug resist-
ance to standard BC treatment. Examples include
ARA-lncRNA (adriamycin resistance associated), which
provided novel insights into adriamycin resistance.
Breast cancer antiestrogen resistance 4 (BCAR4) is
related to tamoxifen resistance and could also sensitize
BC cells to lapatinib. Lastly, CCAT2 (colon cancer-asso-
ciated transcript 2) may be downregulated by chemo-
therapy with 5-FU, blocking different pathways involved
with cell migration [102–105]. Other potential targeted
lncRNA for breast cancer treatment include SPRY4-IT1
and PANDAR [8, 100]. However, recent studies have re-
vealed that the dysregulation of lncRNAs that are known
to be associated with human disease is often due to the
aberrant expression of transcription factor inducers that
could initiate oncogenic mechanisms by feedback com-
plexes [8].
Recently, Lv et al. found lncRNAs as ANRIL,

HIF1A-AS2, and UCA1 expression was significantly
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increased in plasma of patients with TNBC [106], suggest-
ing their use as TNBC-specific diagnostic biomarkers and/
or molecular prognostic predictors [106, 107].

LncRNAs in TNBC: biology and their potential
therapeutic for clinical oncology
Non-coding sequences have a crucial participation for
genetic expression regulation or modulation of several
genes implicated in BC. However, it remains to be de-
scribed a total pattern or profile expression of the long
non-coding RNAs for the TNBC subgroup that could be
implicated in the invasiveness malignity of these tumors.
First at all, Shen et al. identified 1758 lncRNAs and

1254 mRNAs with significant expression differences in
TNBC vs. normal adjacent tissue based in microarray
analysis [108]; subsequently, Yang et al. and other re-
searcher groups have been working on the identification
and validation of the differential expression of lncRNAs
by RNA massive sequencing methods (RNA-seq) [9, 79],
as well as, more recently single-cell RNA sequencing
(scRNASeq) that allows the quantification of transcript
expression profiles for individual cells in a cellular popu-
lation of solid tumor [107, 109]. Following, on 2015,

Chen et al. discovered and validated a set of novel aber-
rant lncRNA profile expressed in TNBC, suggesting that
deregulated lncRNA pattern may play a role in the de-
velopmental and progression of TNBC (Table 2).
An interesting study has suggested a lncRNA

candidate named LINC00993, which is both consider-
ably deregulated in TNBC and associated with the ER
and ANKRD30A gene expression [110]. ANKRD30A
(also known as NY-BR-1 or B726P) encodes a
DNA-binding transcription factor previously detected in
well-differentiated ER-positive and HER2-negative BC
tumors [111]. Also, ANKRD30A has been identified as a
BC antigen in disseminated tumor cells (DTCs), and is
currently one of the most used DTC biomarkers, and a
potential target for BC immunotherapy, so the corre-
lated expression between lncRNA LINC00993 and
ANKRD30A gene has supported strong evidence that
ANKRD30A gene expression may be epigenetic-target of
the lncRNA LINC00993; however, more studies are
needed in this regard [112–114]. Some lncRNAs have
been proposed as competitive endogenous RNA
(ceRNA) for short non-coding RNA (miRNAs).
LincRNA-RoR (regulator of reprogramming) is

Table 2 Main lncRNAs associated with triple-negative breast cancer

Author lncRNA Alteration in TNBC Function/characteristics

Augoff et al.
2012 [127]

LOC554202 Upregulated MIR31 host gene, regulates proliferation and migration in breast cancer cells
and promotes hypermethylation of miR31 in TNBC

Chen et al.
2015 [110]

LINC00993 Upregulated Associated with the expression of the estrogen receptor and the expression
levels of ANKRD30A

TCONS_l2_00002973 Upregulated Associated with the expression of the estrogen receptor.

TCONS_l2_00003939 Upregulated Associated with the expression of the estrogen receptor.

TCONS_l2_00002974 Upregulated Associated with the expression of the estrogen receptor.

Eades et al.
2015 [118]

lincRNA-RoR Upregulated Prevents the core TFs from miRNA-mediated suppression in self-renewing
human SC

Wang et al.
2015 [119]

HOTAIR Upregulated Regulates chromatin state. It is required for gene silencing of the HOXD locus
by PRC2, highly expressed in metastatic breast cancers. High levels of expression
in primary breast tumors are a significant predictor of subsequent metastasis
and death

MALAT1 Upregulated Alternative splicing, nuclear organization, epigenetic modulating of gene expression,
and a number of evidences indicate that MALAT1 also closely relate to various
pathological processes, ranging from diabetes complications to cancer. It regulates
the expression of metastasis-associated genes, with proliferation, motility, and
apoptosis evasion

Lin et al.
2016 [10]

LINK-A (also known as
LOC339535 and NR_015407)

Upregulated Is an RNA of binding to kinases that phosphorylate HIF 1 alpha in different sites to
the canonical ones in human cancer

RMST Downregulated Tumor suppressor

Yang et al.
2016 [79]

LINC01234 Up/downregulated Oncogene/tumor suppressor

Koduru et al.
2017 [9]

lnc-DNAJC16 Upregulated Belonging to the DnaJ heat shock protein family, functions in protein translation,
translocation and degradation

lnc-PURA Upregulated It is a sequence-specific, multi-functional single-stranded-DNA/RNA-binding protein
and RNA-binding protein which can act as a transcriptional activator and repressor

lncRNA, long non-coding RNA; ANKRD30A, Ankyrin repeat domain 30A; TFs, transcription factors; miRNA, microRNA; PRC2, polycomb repressive complex 2; HIF-1α,
hypoxia-inducible factor 1 alpha; lincRNA-RoR, long intergenic non-protein coding RNA, regulator of reprogramming; HOTAIR, HOX transcript antisense RNA; MALAT1,
metastasis-associated lung adenocarcinoma transcript 1; LINK-A, long intergenic noncoding RNA for kinase activation; RMST, rhabdomyosarcoma 2-associated transcript
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upregulated in pluripotent cells (shown in Fig. 2a) [115],
where it functions as ceRNA for miR-145, thereby pro-
tecting pluripotency factors from miR-mediated silen-
cing, leading to loss of mature miR-145 expression
[116]. Recently, Eades et al. found that in TNBC, loss of
miR-145 promotes tumor cell invasion. This is mediated
through ARF6 overexpression, a protein implicated in
tumor invasion through disturbance of cell-cell adhesion
by endocytose E-cadherin. In this case, lincRNA-RoR
generates a competitive inhibition of miR-145, which al-
ters ARF6 expression. The authors also reported an
overexpression of lincRNA-RoR in lymph node positive
tumors of TNBC patients and reported the first ceRNA
network in human cancer (shown in Fig. 2a) [117, 118].
The expression of other lncRNAs, like HOTAIR, has

been shown to enhance the growth and metastasis in
xenograft mammary tumors [97]. Wang et al. showed
that HOTAIR expression is closely correlated with pri-
mary TNBC tumor tissues and demonstrated that
HOTAIR expression is transcriptionally repressed by the
combined treatment of lapatinib plus imatinib, the first
inhibiting EGFR and ErbB2/HER2, and the second a

c-ABL inhibitor through β-catenin-binding sites LEF1/
TCF4 [119]. In another study, Jin et al. showed that
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) lncRNA exerts its oncogenic activity by
interacting with miR-1. MALAT1 was found upregulated
in TNBC tissues and is associated to tumor growth and
metastasis, as well as poor overall survival. Downregula-
tion of MALAT1 increased the expression of
microRNA-1 (miR-1), while overexpression of miR-1 de-
creased MALAT1 expression. In this sense, MALAT1
exerted its function through the miR-1/slug axis and
therefore MALAT1 may be a target for TNBC therapy
(shown in Fig. 2b) [120]. Recently, Lin et al. showed that
the long intergenic non-coding RNA for kinase activa-
tion (LINK-A) is critical for growth factor-induced nor-
moxic signaling pathway by recruiting breast tumor
kinase (BRK) activated together with leucine-rich repeat
kinase 2 (LRRK2). The latter phosphorylates
hypoxia-inducible factor 1-alpha (HIF1α) at Tyr565 and
Ser797. The phosphorylation at Tyr565 inhibits hydrox-
ylation at the adjacent Pro564, which prevents HIF1α
degradation under normoxic conditions. Ser797

miR-145

lincRNA-RoR

mRNA  ARF6

miR-145

a lincRNA-RoR as miRNA inhibitor  

E-cadherin
ARF6

miR-1

b competitive endogenous RNAs (ceRNA)

MALAT1

RISC

Slug
LRRK2

BLK

HB-EGF

BLK

HIF1

HIF1

Tyr565

Pro564 OH

c LINK-A as RNP component 

VEGF
NOS

Endothelin
IGF-2 HIF1

p300

Proteasome

HB-EGF HB-EGF

Fig. 2 A molecular mechanism model for lncRNAs involved in the tumorigenesis of human TNBC. a lincRNA-RoR as a miR-145 inhibitor (oncogene
miRNA). b MALAT1 as a competitive endogenous RNA of miR-1 (tumor suppressor miRNA). c LINK-A as a component of ribonucleoprotein complexes,
example shows the regulations of HIF1α pathway. ARF6 ADP-ribosylation factor 6, UTR 3′ untranslated region 3, RISC RNA-induced silencing complex,
HB-EGF heparin-binding EGF-like growth factor, EGFR epidermal growth factor receptor, GPNMB transmembrane glycoprotein NMB, BLK B lymphocyte
kinase, LRRK2 leucine-rich repeat kinase 2, HIF1α hypoxia-inducible factor 1-alpha, vascular endothelial growth factor VEGF, iNOS inducible nitric oxide
synthase, IGF-2 insulin-like growth factor 2, RNP ribonucleoprotein
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phosphorylation facilitates HIF1α-p300 interaction,
leading to activation of HIF1α target genes upon
heparin-binding EGF-like growth factor (HB-EGF)
stimulation. Importantly, both LINK-A expression and
activation of the LINK-A-mediated normoxic HIF1α sig-
naling pathway could serve as a therapeutic strategy in
TNBC (shown in Fig. 2c) [121]. Downregulation of
lncRNAs has also been shown to be associated with
worse clinical outcomes. Such is the case of rhabdomyo-
sarcoma 2-associated transcript (RMST), which func-
tions as an oncogene and whose expression has been
correlated to a lower overall survival [79].

Potential lncRNAs as probable epigenetic biomarkers
in TNBC
Nuclear lncRNAs may act as an epigenetic regulator or a
guide by recruiting chromatin modification factors to
cytogenetic locus, but particularly at gene regulatory/
promoter sequences (shown in Fig. 1). As scaffold arche-
type, nuclear lncRNAs bring together multiple proteins
to conform ribonucleoprotein (RNP) complexes. Such
lncRNA-RNP complexes can either affect histone modi-
fications or stabilize signaling complexes or nuclear
structures [9], as decoy, signaling, and/or guide func-
tional archetypes, as well (Fig. 1).
Recently, Rahman et al. have identified lncRNA

lnc00673 (ERRLR01) as a marker of overall survival (OS)
in BC patients. Specifically, ERRLR01 levels were

elevated in TNBC as compared with BC ERα-positive
patients. LncRNA ERRLR01 expression levels were also
inversely correlated with BC survival for all BC patients,
suggesting that ERRLR01 is modulated by hormone sig-
naling in BC [122]. Following this observation, Bamodu
et al. showed that metastatic BC cell lines exhibited in-
creased expression levels of lysine-specific demethylase
5B protein (KDM5B) and lncRNA MALAT1, suggesting
a functional association. However KDM5B silencing in
TNBC cells has been correlated with the upregulation of
hsa-miR-448 and led to suppression of MALAT1 expres-
sion with a decreased migration, invasion, and clono-
genic capacity in vitro, as well as poorer overall survival
in vivo (shown in Fig. 3 a) [123]. On the other hand,
some miRNAs (microRNAs) that control gene expres-
sion by post-transcriptional regulation have been shown
to be transcribed as part of host genes. For example,
miR-31 is a tumor suppressor-miRNA which is tran-
scribed from the first intron of a host gene LOC554202,
on human chromosome 9 [124]. On the other hand,
some short non-coding RNA mediate oncogenic pro-
cesses, such as miR-31, which regulates a group of
pro-metastatic target genes, including WAVE3, RhoA,
Radexin, and several integrin subunits that regulate key
steps in the invasion metastasis cascade [125, 126].
Augoff et al. in 2012 identified a major CpG island up-
stream of the miR-31 locus, which also spans the first
exon of LOC554202, suggesting an epigenetic regulation
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WAVE3
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Radixin 

Invasive TNBC

Fig. 3 Epigenetic implications of lncRNAs in the development of TNBC. a MALAT1 regulated by KDM5B and has-miR-448. b LOC554202 as a host
gene of miR-31 (tumor suppressor miRNA), WAVE3 (WAS protein family member 3) KDM5B (lysine-specific demethylase 5B also known as histone
demethylase JARID1B), H3K4me3 (trimethylation of lysine 4 on the histone H3 protein subunit), H3K4me1 (monomethylation of lysine 4 on the
histone H3 protein subunit), hsa-miR-448 (also known miRNA448), BRCA1/2 (breast cancer 1/2), pRB (retinoblastoma protein), CAV 1 (caveolin 1)
HOXA5 (Homeobox protein Hox-A5), SFN (Stratifin), CH3 (methyl group), and RhoA (Ras homolog gene family, member A)
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by methylation of both miR31 and the host gene in basal
TNBC compared to luminal BC cell lines (shown in
Fig. 3 b) [127].

Perspectives: lncRNAs as potential therapeutic
targets
As we have shown, lncRNAs play several roles in TNBC,
but their biological participation is not yet fully under-
stood. Some important advances have been reached,
such as the study by Wang et al. which describes differ-
ent expression patterns of lncRNAs in TNBC vs.
non-cancer tissue. We believe that this opens new ideas
for functional studies on lncRNAs that have not yet been
totally defined as modulators of mRNA coding genes
[119]. The lack of complete patterns impedes the devel-
opment of new TNBC molecular targets, as well as,
new-targeted drugs, which could specifically target func-
tional lncRNAs.
However, it would be a fascinating and novel thera-

peutic strategy. On that recently, Xia et al. designed one
oligonucleotide with some chemical modifications which
improve its half-life in serum, this molecule antagonizes
the function of one tumorigenic lncRNA named ASBEL
[128]; in this regard, they have proposed it as a new field
of research of potential therapeutic tools for the treat-
ment of TNBC, also named gene therapy.
Notably, lncRNAs could be detected in human bodily

fluids, acting as biomarkers. Chen et al. provided useful
information for exploring potential therapeutic targets
for TNBC [110]. Recently, studies have demonstrated
that lncRNA expression could be regulated by conven-
tional chemotherapy agents like tyrosine kinase recep-
tors (TKRs) and non-TKRs by targeting multiple genes
at the same time through unknown mechanisms [120].
More studies that strongly focus on molecular mecha-
nisms are needed in order to improve our understanding
of how these FDA-approved chemotherapeutic agents
for malignant neoplasms exert regulatory action through
epigenetic mechanisms on TNBC.
We also know the existence of lncRNA domains upon

chromatin structure, where it plays a critical role in the
development and/or progression of TNBC disease. Shen
et al. explained that chromosome 1 and 10 are the major
domains of dysregulation of lncRNAs and mRNA ex-
pression, both regulated by lncRNAs through an un-
known mechanism [108]. Our research group suggests
co-localization of lncRNAs that dictates oncogenic deci-
sions during the development of aggressive TNBC. Sev-
eral lncRNAs are implicated on hormonal resistance
therapy [100]. While some platforms like Oncotype and
MammaPrint help medical staff to better identify which
patients will respond to standard chemotherapy and
have a better prognosis, here, we take into consideration
co-expressed mRNAs/lncRNAs that could identify

TNBC patients that could benefit from personalized
pharmacological treatments. LncRNAs as biomarkers
and their associated genetic-epigenetic and transcrip-
tional mechanisms in co-expression patterns of mRNA
coding genes open new insights for gene expression
control, and epigenetic events that could explain patho-
physiology and/or pharmacological actions for clinical
diagnosis, treatment response, and prognosis of TNBC
patients.

Conclusions
Perhaps we are approaching an era of personalized ther-
apies for TNBC patients, as was initially idealized by
Lehmann et al. who elucidated the TNBC heterogeneity
[54, 129, 130]. These therapies, probably will aim to re-
duce the risk of recurrence and disease progression, as
main TNBC tumors feature, as well as to develop more
targeted and reduced toxic therapies for the six specific
subtypes, previously described [130]. Theoretically, per-
sonalized treatments should improve stratification and
timing of health care by utilizing biological information
and biomarkers on the level of molecular disease path-
ways, genetics, proteomics, and metabolomics [131]. In
this regard, it is imperative that we improve our under-
standing of biological processes such as epigenetic
changes that occur by lncRNAs [132], considering
lncRNA archetypes (shown in Fig. 1) for TNBC to reach
that point, as a probable personalized epigenetic therapy.
Efforts have been made in genomics to personalize the
TNBC treatments that are currently oncological under
use. This review has presented additional evidence that
lncRNAs may work as diagnostic biomarkers and thera-
peutic targets in solid tumors, including BC and TNBC.
However, their relative expression levels in various sub-
types of human BC [133], particularly the TNBC sub-
type, remain to be determined [134].
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