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Abstract

Background: Mislabeled, contaminated or poorly performing samples can threaten power in methylation microarray
analyses or even result in spurious associations. We describe a set of quality checks for the popular Illumina 450K and
EPIC microarrays to identify problematic samples and demonstrate their application in publicly available datasets.

Methods: Quality checks implemented here include 17 control metrics defined by the manufacturer, a sex check to
detect mislabeled sex-discordant samples, and both an identity check for fingerprinting sample donors and a
measure of sample contamination based on probes querying high-frequency SNPs. These checks were tested on 80
datasets comprising 8327 samples run on the 450K microarray from the GEO repository.

Results: Nine hundred forty samples were flagged by at least one control metric and 133 samples from 20 datasets
were assigned the wrong sex. In a dataset in which a subset of samples appear contaminated with a single source of
DNA, we demonstrate that our measure based on outliers among SNP probes was strongly correlated (> 0.95) with
another independent measure of contamination.

Conclusions: A more complete examination of samples that may be mislabeled, contaminated, or have poor
performance due to technical problems will improve downstream analyses and replication of findings. We
demonstrate that quality control problems are prevalent in a public repository of DNA methylation data. We advocate
for a more thorough quality control workflow in epigenome-wide association studies and provide a software package
to perform the checks described in this work. Reproducible code and supplementary material are available at https://
doi.org/10.5281/zenodo.1172730.

Keywords: DNA methylation, Epigenomics, Infinium, 450K, EPIC, Quality control, Contamination, Mislabeling,
Data cleaning

Background
The number of epigenome-wide association studies in
epigenetic epidemiology is growing rapidly, facilitated by
popular microarray platforms like the Infinium 450K and
EPIC chips, which offer broad coverage and precise quan-
tification of DNA methylation. Whereas the literature
about preprocessing and statistical analysis of microar-
ray data is extensive [1, 2], the need for upstream quality
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control (QC) to ensure robust and reproducible results
has received much less attention. Epigenome-wide asso-
ciation studies usually start with a quality control step,
often involving discarding individual probes or entire
samples with too many high detection p values (resulting
from a low signal-to-noise ratio of fluorescence intensi-
ties), probes with too few beads, or discarding subsets of
probes that are considered unreliable based on design fea-
tures (e.g., those being cross-reactive or close to SNPs).
However, there is a lot of heterogeneity in which checks
are undertaken and how criteria are applied, as seen
in the methods reported across a large consortium of

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-018-0504-1&domain=pdf
http://orcid.org/0000-0003-1448-2509
https://doi.org/10.5281/zenodo.1172730
https://doi.org/10.5281/zenodo.1172730
mailto: jonathan.heiss@mssm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Heiss and Just Clinical Epigenetics  (2018) 10:73 Page 2 of 9

birth cohort studies [3]. Furthermore, quality checks that
go beyond to catch other types of problematic samples
are not yet standard procedure. There are many reasons
microarray experiments might fail: starting with low-
quality DNA input, an incomplete bisulfite conversion, or
a failure of the other experimental steps in the Infinium
assay. These issues can result in distortedmethylation pat-
terns, which may be sometimes more or less apparent.
Another common source of errors is sample mislabeling,
especially in large multi-center studies where the chain
of custody of the sample collection process is long and
mistakes can happen at every step. Mislabeling creates
mismatches between epi- and phenotype, thereby obfus-
cating genuine associations or even producing spurious
ones. The prevalence of mislabeling was recently demon-
strated in 70 publicly available gene expression datasets
hosted in the Gene Expression Omnibus (GEO) reposi-
tory: Toker et al. used genes known to be differentially
expressed between sexes to infer the sex of the sample
donors and to compare it to the recorded metadata. They
found that 32 of the datasets contained discrepancies in
a subset of the samples [4]. Finally, sample contamination
with foreign DNAmay arise accidentally in the laboratory
or from complex sampling procedures (e.g., contamina-
tion of cord blood or placental tissue with maternal blood
[5]) and analytic methods are needed to identify and
quantify contamination.
Having found mislabeled and contaminated samples in

our own DNA methylation datasets, we developed a soft-
ware package for the R programming language named
ewastools aiming to facilitate quality control and sta-
tistical analysis of datasets generated from the Illumina
Infinium BeadChip platforms (both 450K and the newer
EPIC). In order to test the package functionality, we
decided to apply it to a range of datasets from the public
Gene Expression Omnibus (GEO) repository. The results
show that low-quality samples, mislabeling, and contami-
nation of samples are widespread issues. It is our hope that
the ewastools package will help researchers to extend
and improve the quality control workflow in epigenome-
wide association studies.

Methods
Datasets
The search for DNA methylation datasets was limited
to the popular Gene Expression Omnibus repository. We
selected datasets meeting the following criteria: they had
to be submitted before January 2018; samples had to
be run on the Illumina Infinium HumanMethylation450
BeadChip (GEO Accession GPL13534); the sex of the
sample donors had to be provided in the metadata; and
raw data had to be provided in the form of .idat files.
Datasets containing only preprocessed data were not
included as they may no longer contain QC probes and

the lack of a standard format makes their analysis diffi-
cult to automate. While our ewastools package offers
the same functionality for the EPIC chip, our selection
was limited to the predecessor 450K chip as the two plat-
forms differ in the number of SNP probes which are
essential for the checks described below. Datasets meeting
these criteria were identified using the Entrez Program-
ming Utilities (http://eutils.ncbi.nlm.nih.gov/). From this
list we manually excluded datasets based on the descrip-
tion and metadata provided in GEO: we dropped datasets
involving samples from tumor tissue or cultivated cell
lines because tumor cells can show extensive epigenetic
mutations related to defects in the DNA methylation
maintenance apparatus [6], whereas for the latter it is
unclear to what degree methylation profiles reflect the
natural/in vivo state of the cell types rather than an
epigenome of manipulation [7]; we dropped placenta sam-
ples because they could either be of maternal or fetal
origin, as well as sperm samples as the cells are haploid;
we dropped FFPE (formalin-fixed, paraffin-embedded)
samples as their preparation follows a different proce-
dure than for fresh tissue samples and the DNA is often
of lower quality; lastly, we excluded datasets measuring
5-hydroxymethyl-cytosine. Eventually, a total of 80
datasets comprising 8327 samples remained, representing
a broad range of tissues and cell lines (peripheral blood,
cord blood, saliva, liver, muscle, cartilage, etc.).

Quantification of methylation levels
Treating DNA with sodium bisulfite converts cytosine to
thymine except for 5-methylcytosine, which is protected
by the added methyl-group. In combination with sub-
sequent whole-genome amplification, the proportion of
unmethylated to methylated DNA strands in the DNA
input is translated into differences in abundance of dis-
tinct PCR (polymerase chain reaction) products, which,
for the sake of simplicity, are here still referred to as
(un)methylated. The 450K chip employs 50 base pairs
long probes complimentary to the targeted loci. Unmethy-
lated and methylated strands are targeted by separate
probes or color channels. Their abundance is quanti-
fied by hybridization with the corresponding probes, a
subsequent single-base extension step with dye-linked
nucleotides and measurement of the resulting fluores-
cence intensity. Thus, two data points are available for
each CpG site i, the intensity for unmethylated andmethy-
lated strands, Ui and Mi, respectively. Here, intensities
were corrected for dye bias using RELIC [8], but not nor-
malized. The proportion of methylated strands was then
estimated as Mi

Mi+Ui
, commonly referred to as the β-value.

Quality checks
Four kinds of quality checks are implemented in the
ewastools package: an evaluation of control metrics

http://eutils.ncbi.nlm.nih.gov/
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monitoring the various experimental steps such as bisul-
fite conversion or staining; a sex check comparing the
actual sex of the sample donors to the records; an identity
check for fingerprinting sample donors; and detection of
contaminated samples using outliers among the 65 probes
querying high-frequency SNPs.
The first check, implemented by the function

control_metrics, evaluates 17 control metrics calcu-
lated from dedicated control probes placed on each assay.
A description of these metrics, together with default
thresholds to flag problematic samples, is provided in the
BeadArray Controls Reporter Software Guide available
from the Illumina support website. Similar functions
to evaluate the control probes visually are provided in
the minfi [9], RnBeads [10] and shinyMethyl [11]
R packages. Not all flagged samples necessarily failed nor
do these metrics indicate potential upstream issues, e.g.
whether the DNA quality was low to begin with. All 8327
samples were screened in this first check.
There are 65 probes placed on the 450K chip query-

ing high-frequency SNPs (with 59 of these on the EPIC
chip; their probe identifiers start with “rs”). Just as for
CpG sites, a β-value is calculated for each SNP locus,
based on fluorescence intensities from two probes tar-
geting either the wild type or the common mutant
variant. These β-values usually fall into one of three dis-
junct clusters, corresponding to the heterozygous and
the two homozygous genotypes (AB, AA, or BB). The
specific combination of SNPs across these 65 probes
serves as a genetic fingerprint: fingerprints of samples
from the same donor match but differ between individu-
als – with the exception of monozygotic twins – thereby
enabling one to check for discrepancies with the meta-
data. Genotype calling is handled by call_genotypes.
This function pools β-values of all 65 SNP probes across
samples to train a mixture model with four compo-
nents: three Beta distributions, each representing one
genotype, and one uniform distribution representing out-
liers. Subsequently, posterior probabilities are computed
and forwarded to check_snp_agreement. Using the
posterior probabilities as soft classification, pairwise
agreement of fingerprints is assessed by counting the
number of SNP probes for which two samples possess
the same genotype, divided by the total number of SNP
probes after those classified as outliers were excluded
(consistent with the soft genotype calling, a SNP might
be partially classified as outlier and therefore be only
partially excluded). Mislabeling constitutes either as unex-
pected disagreement between samples that are supposed
to come from the same individual, or unexpected agree-
ment between samples supposed to come from different
individuals. A list of such instances, here termed con-
flicts, is returned by check_snp_agreement. This sec-
ond quality check was applied to a dataset comprised

of 150 pairs of monozygotic twins (in total 300 samples
and 10 technical replicates resulting in 47,895 pairwise
comparisons).
The total intensity Ti = Ui + Mi has been shown to

be sensitive to copy number aberrations [12]. By exploit-
ing the natural difference in allosomal copy number, this
can be used to detect sex-mismatches. There are 11,232
and 413 probes on the 450K chip targeting the X and
Y chromosome, respectively. The function check_sex
computes for each sample n the average total intensi-
ties of all probes targeting either chromosome, T̄X

n and
T̄Y
n, respectively. In order to account for differences in

post-amplification DNA concentration, T̄X
n and T̄Y

n are
normalized by the average total intensity across all auto-
somal probes which leads to more compact clusters in
visualizations. Thresholds to discriminate between both
sexes are determined by the Hodges-Lehmann estima-
tor (median of all pairwise male/female averages) for
T̄X
n and T̄Y

n separately. This robust approach was cho-
sen over other sex determination functions provided
in the minfi [9], RnBeads [10] and shinyMethyl
[11] packages exactly because of the potential of sex-
mismatches and allosomal outliers being present in the
dataset. All 8327 samples were screened in this third
check.
When exploring the data, one dataset in particular, here

referred to as dataset E, caught our attention. Plotting
T̄X
n against T̄Y

n, most samples—aside from a few misla-
beled ones—clustered as expected, but a subset of samples
from female donors were protruding from the cluster cen-
ter in the direction of the male cluster center (Fig. 3b):
such a pattern is indicative of sample contamination
and more specifically, it is compatible with the hypoth-
esis of the foreign DNA coming from a male source.
This does not imply that only female samples were
affected: in the case of a male/male DNA mix, both
allosomes would still show a methylation profile typi-
cal for males, only in the case of a female/male mix
would both allosomes show methylation profiles atypi-
cal for either males or females. With increasing degree
of contamination, such samples would be further away
from the female cluster center and closer to the male
cluster center.
In order to confirm this hypothesis, we turned again

to the 65 SNP probes. Normally, their β-values fall,
according to the underlying genotype, into one of three
disjunct clusters. In dataset E however, many β-values
fell in-between these three clusters (plotting their his-
togram would show three peaks no longer completely
disjunct), a pattern one would expect to see when
mixing two genotypes (the same way β-values of het-
erozygous AB individuals scatter around 0.5, as they
possess a 50:50 mixture of A and B alleles). We trans-
lated our hypothesis in a generative statistical model
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with the following likelihood function
∏N

n=1
∏65

j=1 βnj ∼
N

(
(1 − γ ) · μknj + γn · cj, (1 − γn) · σknj

)
and parameters

n ∈ [1,N] (sample index), j ∈ [1, 65] (SNP probe index),
k ∈ {AA,AB, BB} (the three possible genotypes), knj
(genotype of sample n for probe j), βnj (methylation level
of sample n for SNP probe j), σk (standard deviation for
β-values from genotype k), cj (methylation level of SNP
probe j in foreign DNA), and γn (degree of contamina-
tion of sample n). The parameters were estimated using
the Metropolis algorithm implemented in the Julia pro-
gramming language (code is provided the supplement).
Comparing γn (degree of contamination) to T̄Y

n for female
samples allowed us to test if both agreed on ranking sam-
ples from least to most contaminated. This check was
applied only to dataset E.
Our precise quantification of sample contamination in

dataset E required the assumption that the foreign DNA
came from a single source, which may be an unusual sce-
nario. A simpler and more general test of sample contam-
ination that can be applied to any dataset is implemented
in the function snp_outliers. This function, again
using the output of call_genotypes, computesOn, the
average log odds from the 65 posterior probabilities from
the outlier component from the mixture model described
above. Thus, On captures how irregular the SNP β-values
of sample n are, i.e., how much they deviate from the ideal
trimodal distribution.On was compared to γn in dataset E
in order to confirm that it did indeed capture sample con-
tamination. Subsequently, all 8327 samples were screened
in this fourth check.

Results
Figure 1 shows the distribution of the “Bisulfite Con-
version II” control metric, used to monitor successful

bisulfite conversion, across the 80 datasets. Three hun-
dred seventy-seven samples from 17 datasets fell below
the default threshold specified by Illumina. Overall, 940
samples (11%) from 41 datasets (51%) were flagged by at
least one of the 17 metrics in control_metrics, leav-
ing 7387 samples that passed this first check. A summary
is provided in Table 1. Many of these problematic sam-
ples would be overlooked when filtering out only samples
with too many undetected probes or low overall fluo-
rescence intensity, two popular criteria. Out of the 940
flagged samples, 432 had >1% of probes with a detection
p value above 0.01 and 217 were flagged by the getQC
function from the minfi package, and 541 samples when
considering both criteria.
Figure 2 shows the result of the identity check in

the dataset comprising 150 monozygotic twins. Pairwise
agreement of SNP fingerprints between samples ranged
from 0.96 to 1.00 for the 187 twin pairs (number is
larger than 150 because of the technical replicates) and
from 0.22 to 0.66 for the 47,708 non-twin pairs, thereby
perfectly segregating both groups. For comparison, geno-
type calling by k-means clustering, as implemented in the
wateRmelon package [13], produced non-identical fin-
gerprints in 11 out of the 187 twin pairs, with one twin
pair showing as many as 9 discordant SNPs.
The function check_sex estimated that 133 of the

8327 samples had been assigned the wrong sex yield-
ing an error rate of 1.6%, with 13 cases being unclear,
as the inferred sex was discordant between T̄X

n and
T̄Y
n (Fig. 3a). Of the 80 datasets, 20 (25%) contained

these sex-mismatched samples. These were unevenly dis-
tributed: the three highest error rates per study were
55% (#mistakes 38/#total sample size 69), 45% (5/11),
and 34% (15/44). Excluding all samples that failed the
control_metrics check and might have technical
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Fig. 1 Distribution of a control metric monitoring bisulfite conversion. Samples below the manufacturer’s suggested threshold of 1 might be
incompletely converted, leading to inaccurate estimates of methylation levels
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Table 1 Summary of the number of samples flagged by each of
the 17 control metrics outlined in the BeadArray controls reporter
software guide. n.a.—not available

Metric Passed Flagged n.a.

Restoration 8326 0 1

Staining green 7885 10 432

Staining red 7764 14 549

Extension green 8324 3 0

Extension red 8326 1 0

Hybridization high/medium 8326 1 0

Hybridization medium/low 8327 0 0

Target removal 1 8327 0 0

Target removal 2 8327 0 0

Bisulfite conversion I green 8317 10 0

Bisulfite conversion I red 8208 119 0

Bisulfite conversion II 7950 377 0

Specificity I green 8323 4 0

Specificity I red 8279 48 0

Specificity II 8326 1 0

Non-polymorphic green 7677 558 92

Non-polymorphic red 7917 318 92

Any of the above 7387 940 –

errors in measurement did not change sex-mismatched
error rates substantially: out of the 7387 samples, 122
(1.7%) had been assigned the wrong sex with 10 unclear
cases. Comparing with the predictions provided from
minfi, there were, apart from the 13 unclear cases men-
tioned above, 66 female (according to metadata) sam-
ples from six datasets that were correctly classified by
ewastools but misclassified by minfi.
Estimating the degree of contamination γn for each sam-

ple in dataset E, we found that γn and T̄Y
n were strongly

correlated among females (Pearson’s correlation coeffi-
cient 0.953, 95% bootstrapped CI 0.934,0.965; Fig. 4a),
confirming that both metrics agreed on ranking samples

Twins

Unrelated

0.00 0.25 0.50 0.75 1.00

Agreement score

Fig. 2 Pairwise agreement scores of genetic fingerprints in a dataset
of monozygotic twins. There is a perfect segregation between twin
and non-twin pairs

from least to most contaminated. Correlation was weaker
for T̄X

n (− 0.828, 95% CI − 0.898,− 0.748), suggesting that
T̄Y
n was the more sensitive metric of contamination in

this situation. Males were not included in the calcula-
tion of these correlation coefficients because contamina-
tion would not affect T̄Y

n nor T̄X
n if our hypothesis of

contamination coming from a single male source were
correct. Even though γn was non-zero for most sam-
ples, we assume that only a subset of the samples were
indeed contaminated, as those with the largest γn tended
to be allocated next to each other on the 450K chips
(not shown). γn and On for the same set of samples were
strongly correlated as well (Pearson’s correlation coeffi-
cient 0.958, 95% bootstrapped CI 0.948,0.966), even when
including males (0.954, 95% CI 0.944,0.961; Fig. 4b), sug-
gesting that in this dataset On, the average log odds of
SNP probes being outliers, was a proxy for sample con-
tamination not contingent on the sex of the sample donor
or source of contamination (with the exception of con-
taminating DNA coming from another tissue of the same
donor).
While the importance of a metric monitoring critical

laboratory steps such as bisulfite conversion is obvious,
the relevance of Illumina provided default thresholds
for other metrics is less clear. Figure 5 shows the dis-
tribution of On among all samples that were flagged
by the control_metrics checks versus the remain-
der that passed. We use On here as a measure of poor
technical performance, rather than a measure of sam-
ple contamination, as the former would also contribute
to a deviation of the SNP probes from the ideal tri-
modal distribution. Flagged samples had in general higher
values of On, indicating that such samples are indeed
of concern.

Discussion
The topic of 450K data quality has been addressed before.
Among the issues being discussed are cross-reactive
probes and probes possibly affected by nearby SNPs
[14, 15], high detection p values and batch effects [16].
While these publications focus on probes with low fluo-
rescence intensities or that are in general unreliable, or
issues that affect ensembles of samples, our work is in
contrast mainly concerned with the identification of indi-
vidual problematic samples resulting from failed exper-
iments, mislabeling or contamination. Due to the often
small effect sizes, epigenome-wide association studies are
sensitive to such samples as they often present as out-
liers. Robust regression methods mitigate the impact of
spurious outliers but are computationally intensive due
to the high dimension of the data while least squares or
maximum likelihood estimation remain popular choices.
Finding and removing problematic samples during qual-
ity control is therefore an important first step of every
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Fig. 3 Average fluorescence intensities of probes targeting the X chromosome (x-axis) or targeting the Y chromosome (y-axis), each normalized
versus the average fluorescence of autosomal probe intensities per sample. Dotted lines represent the Hodges-Lehmann estimators separating the
male and female cluster centers. Samples that are discordant for sex relative to their metadata annotation are considered mislabeled and shown in
red. Samples falling in the lower left or upper right quadrant are considered “unclear”. a All 8327 samples from all 80 datasets. b A single dataset
(dataset E) with a spread in the female cluster indicating varying degrees of contamination with male DNA

epigenome-wide association study. We conducted a sur-
vey of publicly available DNA methylation datasets to see
whether they suffer from the same quality issues that have
been reported for gene expression datasets. Assuming
that all samples included in datasets uploaded to the GEO
repository were used in associated analyses, our results
indicate that the current practice of quality control fails to
detect many problematic samples that have the potential
to severely bias findings.
Eleven percent of samples were flagged by at least one

of the 17 control metrics defined by the microarray man-
ufacturer. This does not mean that every flagged sample
features inaccurate methylation levels and it is unclear
how Illumina’s default thresholds were set and whether
the resulting dichotomization is appropriate for flagging
samples in all conditions. However, samples flagged by
one or more criteria in control_metrics had substan-
tially more outliers among the normally well-behaved SNP
probes, an indication of low data quality, and therefore
these samples require closer attention. In the specific case
of monitoring bisulfite conversion, Zhou et al. suggested
a more robust alternative to using the dedicated control
probes [17].

As demonstrated on the example of monozygotic twins,
the check_snp_agreement function does—at least in
the absence of other issues—perfectly predict whether
two samples come from the same person or not. The
function is robust against SNP outliers, due to the soft
classification scheme, whereas hard classification of geno-
types as produced by k-means clustering or the use of
fixed cutpoints in the β-value distribution can result
in unexpected genotype mismatches. It is worth point-
ing out that the genetic fingerprint is the only way to
detect mislabeling if a sample swap did not result in
any apparent epitype/phenotype mismatch (e.g., two sam-
ples from the same sex). Mislabeling results in conflicts
(unexpected disagreement between samples that are sup-
posed to come from the same individual or unexpected
agreement between samples that are supposed to come
from different individuals), but it might be necessary to
build upon further evidence in order to resolve conflicts
and reassign the correct identities or even to narrow down
which of the samples in conflict are the mislabeled ones.
Furthermore, the utility of check_snp_agreement is
limited for datasets that feature only a single sample
per person.
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Fig. 4 Evidence of contamination in dataset E. a γn , the estimated
degree of contamination, and T̄ Yn are strongly correlated among
females with a Pearson’s correlation coefficient r = 0.953. b γn and
On , the average log odds of SNP probes being outliers, are strongly
correlated as well (r = 0.954), including both males and females

In contrast, check_sex can be applied regardless of
the number of samples available for each person. In our
survey 1.6% of samples coming from 25% of the datasets
were assigned the wrong sex. The actual rate of mis-
labeled samples is likely higher because sample swaps
between donors of the same sex would have gone unde-
tected. Assuming a balanced sex ratio and random mis-
labeling, only half of the potential mistakes would be
captured by this test alone. If applicable, more compre-
hensive checks testing for correct tissue types and other

6619

1

14

48

4

377

8

10

484

119

n = 301

Passed

Specificity II

Staining Red

Specificity I Red

Specificity I Green

Bisulfite Conversion II

Staining Green

Bisulfite Conversion I Green

Non−polymorphic Green

Bisulfite Conversion I Red

Non−polymorphic Red
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Fig. 5 Boxplots of On (average log odds of being an outlier across the
65 SNP probes) as a measure of low technical performance for
samples flagged by any of the 17 Illumina control metrics and
samples passing all of them. Metrics are ordered by median On with
the number of samples in each non-exclusive category indicated on
the right. Flagged samples have in general higher values of On than
samples that passed all checks, indicating that flagged samples are
more likely to have poor performance characteristics

features should be conducted. Regarding the few unclear
cases in which the sex of the sample donors could not
conclusively be inferred, we suspect that most of these
samples suffer from other, possibly upstream issues and
should be excluded. A few, however, might represent chro-
mosomal disorders, e.g. Klinefelter syndrome, which has
an reported incidence around 1 per 576 [18]. Because
of their XXY genotype, individuals with Klinefelter syn-
drome, who are phenotypically male, would in Fig. 3 be
located in the center of the upper right quadrant (for T̄X

n
on par with females, for T̄Y

n on par with males).
Some samples showed evidence of contamination, espe-

cially those belonging to dataset E: we constructed two
measures of sample contamination based on two sub-
sets of probes, using either the average total intensi-
ties of probes targeting the Y chromosome

(
T̄Y
n

)
or the

β-values of the 65 SNP probes (γn). The fact that both
measures exhibited very high agreement, even though
they were based on independent evidence and completely
different principles, lends credence to our hypothesis of
a single contamination source. In contrast, a strong cor-
relation between γn and On (the average log odds of
being an outlier across all 65 SNP probes) was to be
expected, as both are derived from the same data. On
is not a perfect proxy of contamination, and deviations
from the trimodal distribution of β-values might also be
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caused by other issues, as evident when comparing sam-
ples passing and failing the control_metrics check.
This does however not diminish the value of On as an
overall sample quality indicator. This metric is easy to
compute using our mixture modeling approach and can
be applied regardless of the sex of the sample donors.
Unlike a recently proposed metric of contamination of
cord blood with maternal blood based on methylation
probes [5], our measure snp_outliers is not depen-
dent on the tissue type of the sample and contaminat-
ing DNA. Because the proportion of the 65 SNP probes
expected to differ in a contaminated sample is a func-
tion of both the relative proportion of contamination
and the number of SNPs for which the contaminating
sample differs in genotype, it was not possible to deter-
mine a single cutoff for On above which samples should
be classified as contaminated and excluded from fur-
ther analysis. Judging by Fig. 4b however, we inter-
pret that removing samples with an average log2 odds
of − 4 represents a reasonable choice. Other authors
have suggested to use the SNP probes as quality indi-
cator before: Pidsley et al. proposed a metric quanti-
fying the standard deviation of SNP probes in order
to benchmark normalization methods for 450K datasets
[13], but did not evaluate the quality of individual
samples.
There are some limitations of our work. We did

not check the associated publications for whether the
authors of the original studies mentioned flagging or
exclusion from downstream analyses of any samples
from their datasets uploaded to the GEO repository.
We advocate the inclusion of a simple tag in the meta-
data on GEO to indicate samples excluded in qual-
ity control steps, although no such indication was
seen in the metadata of the studies we reviewed. Fur-
thermore, our analysis is demonstrated exclusively on
the Illumina Infinium HumanMethylation450 BeadChip,
although the functions in our ewastools package work
equally well on the newer Illumina Infinium Methyla-
tionEPIC BeadChip (commonly called 850K chip) for
which far fewer datasets are currently available on
GEO. While we excluded certain types of tissues in
order to get a handle on the heterogeneity of datasets,
this does not mean that these QC checks cannot be
applied to those tissues, such as checking maternal con-
tamination of fetal placenta. The selection of datasets
was also restricted to those for which raw data were
available, as this was needed to automate our QC test-
ing, and this subset may not be representative of the
entirety of > 1000 Illumina 450K methylation datasets
on GEO. Nonetheless, we feel that our results indi-
cate the need for additional QC checks as data quality
issues appear prevalent in publicly available methylation
datasets.

Conclusion
Beyond the obvious measurement of methylation, a
multitude of information can be inferred from high-
dimensional DNA methylation data, information that
can be checked for agreement with recorded covari-
ates. This includes the use of principal component
analysis to create lower-dimensional representations for
discriminating between tissue types; comparing chrono-
logical and epigenetic age [19]; the estimation of cell
proportions for blood samples, which can be as pre-
cise as actual blood cell counts [20]; or any other
checks that might apply to the specific dataset at hand.
We demonstrated in this work the high prevalence
of failed and mislabeled samples in DNA methylation
datasets and recommend that epigenome-wide associa-
tion studies should start with comprehensive quality con-
trol. With ewastools, we provide a software package
for the popular R programming language to conduct the
quality checks described here. Existing R scripts do not
have to be changed in order to incorporate these tests into
existing analytic workflows. In addition, we recommend
that researchers seeking to make their DNA methylation
data available should also upload raw data in the form
of .idat files. Taken together these steps will improve the
reproducibility of epigenome-wide association studies.
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