Zhang et al. Clinical Epigenetics (2018) 10:47
https://doi.org/10.1186/513148-018-0486-z

Clinical Epigenetics

RESEARCH Open Access
@ CrossMark

H19 overexpression promotes
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Abstract

Background: The long non-coding RNA H19 plays a crucial role in solid tumor initiation and progression. However,
the potential role of H79 and its clinical significance in acute myeloid leukemia (AML) remain largely elusive.

Methods: H79 expression was detected by gPCR, and clinical significance in AML patients was further analyzed. The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data for AML were used as validation cohorts. The
roles of H19 in cell proliferation and apoptosis were determined by cell proliferation assay and flow cytometry analysis.

Results: H19 expression was significantly increased in AML patients but not associated with embedded miR-675
expression. Moreover, H19 overexpression was not dependent on the methylation pattern in H19 differentially
methylated region/imprinting control region. Strong association was observed between H19 overexpression and
patients’ characteristics including sex, higher white blood cells, older age, and intermediate karyotype, FLT3-ITD,
and DNMT3A mutations. In addition, H19 overexpression correlated with lower complete remission (CR) rate and
shorter overall survival, and further confirmed by multivariate analyses. Importantly, the prognostic effect of H19
expression was validated by TCGA and GEO data. In the follow-up of patients, H19 expression in CR phase was
lower than diagnosis time and returned at relapse time. Loss-of-function experiments showed that H19 exhibited
anti-proliferative and pro-apoptotic effects in leukemic cell HL60. Furthermore, H19 expression was positively
correlated with potential downstream gene /D2 in AML.
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Conclusions: Our findings revealed that methylation-independent H19 was a prognostic and predictive
biomarker in AML, and H19/ID2 played crucial roles in leukemogenesis with potential therapeutic target value.

Background

Acute myeloid leukemia (AML), the most common adult
leukemia, is an etiologically, clinically, cytogenetically,
and molecularly heterogeneous disease characterized by
uncontrolled proliferation and blocked apoptosis of imma-
ture myeloid progenitors [1]. Genetic abnormalities and
epigenetic alterations played crucial roles in the pathogen-
esis of AML [2]. Moreover, genetic abnormalities such as
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chromosome aberrations and gene mutations were also
seen as the most powerful prognostic information [3].
Despite recent advances in the anti-cancer or targeted
drugs, clinical outcome of AML remains unsatisfactory
[1]. Accordingly, progresses should be made in the mecha-
nisms of leukemogenesis and the identification of markers
that allow molecular-based stratification to risk-adapted
therapies to improve the clinical outcome of AML.
Recently, long non-coding RNAs (IncRNAs) have been
implicated in many human diseases especially in human
cancers, and increasing studies begin to unravel the
molecular mechanisms underlying IncRNA function in
these pathological processes and/or carcinogenesis [4].
The human HI9 gene encodes a 2.3-kb IncRNA with a
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crucial role in embryonal development and growth control
[5]. H19 and neighboring gene IGF2 (known as IGF2/H19
locus) are reciprocally imprinted, leading to differential
allelic expression of HI19 from the maternal allele and
IGF2 from the paternal allele [6]. Abnormal expression or
loss of imprinting of H19 has also been linked to diverse
human cancers including hematological malignancies [5].
Although H19 was originally seen as a tumor suppressor
in Wilms’ tumors, embryonic rhabdomyosarcoma, and
Beckwith-Wiedmann cancer predisposing syndrome,
recent studies displayed the evidences of the oncogenic
role of HI19 in several human cancers, such as breast
cancer, endometrial cancer, gastric cancer, and so on [5, 7].
Notably, Guo et al. reported that high expression of H19
was required for efficient tumorigenesis induced by
BCR-ABL oncogene [7]. In addition, loss of imprinting
(LOI) of IGF2/HI19 mainly caused by “differentially meth-
ylated region” or “imprinting control region” (DMR/ICR)
demethylation was shown as a frequent event in AML,
adult T cell leukemia/lymphoma, and chronic myeloid
leukemia (CML) [8-10]. However, the direct role and its
clinical significance in AML remain poorly determined.
Herein, we reported H19 as a prognostic and predictive
biomarker in AML, and HI9 played a crucial role in
leukemogenesis with potential therapeutic target value.

Methods

Patients and treatment

A total of 161 AML patients [including 161 newly diag-
nosed patients, 54 patients who achieved complete
remission (CR) after induction therapy and 26 relapsed
patients] and 36 healthy donors were included in this
study approved by the Institutional Ethics Committee of
the Affiliated People’s Hospital of Jiangsu University. After
written informed consents were obtained, bone marrow
(BM) was collected from all participants and was extracted
for the BM mononuclear cells (BMMNCs). All the patients
received induction and consolidation chemotherapy as
reported in our previous literature [11].

Cytogenetic analysis and gene mutation detection
Karyotypes were analyzed at the newly diagnosis time
by conventional R-banding method according to the
previous literature [12]. Gene mutations (such as NPMI and
DNMT3A mutations) were detected by high-resolution
melting analysis (HRMA) and direct DNA sequencing (such
as CEBPA and FLT3-ITD mutations) as reported [13-21].

RNA isolation, reverse transcription, and RT-qPCR

Total RNA was isolated using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) and was transcriptionally reversed
into cDNA as reported previously [22]. HI9 expression
was detected by real-time quantitative PCR (RT-qPCR)
using the SYBR Premix Ex Taq II (TaKaRa, Tokyo, Japan)
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with the primers shown in Additional file 1: Table S1. The
RT-qPCR reaction was carried out at 95 °C for 30 s,
followed by 40 cycles at 95 °C for 5 s, 67 °C for 30's, 72 °C
for 30 s, and 87 °C for 30 s to collect fluorescence.
ABLI expression was detected by RT-qPCR using AceQ
qPCR SYBR Green Master Mix (Vazyme Biotech Co.,
Piscataway, NJ, USA) as reported [22]. Relative H19 level

was calculated using the following equation: N9 = (Eg;)
ACT HI9 (control — sample) (EABL) ACT ABL (control — sample) The

parameter efficiency (E) was derived from the formula

E=10C151P9) (the slope referred to CT versus cDNA
concentration plot).

DNA isolation, chemical modification, and RT-qMSP

Genomic DNA was isolated and modified using genomic
DNA purification kit (Gentra, Minneapolis, MN, USA) and
CpGenome™ DNA Modification Kit (Chemicon, Ternecula,
Canada), respectively. The level of HI9 DMR/ICR
methylation was detected by the unmethylation primers
(Additional file 1: Table S1) of real-time quantitative
methylation-specific PCR (U-RT-gMSP) with SYBR
Premix Ex Taq II (TaKaRa, Tokyo, Japan). U-RT-qMSP
conditions were 95 °C for 30 s and 40 cycles for 5 s at
95 °C, 30 s at 57 °C, 30 s at 72 °C, and 75 °C for 30 s. The
normalized ratio (Ny.z;9) was applied to assess the level
of HI19 unmethylation in samples. Ny, ;0 was calculated

using the following formula: N/ r70 = (B pr10) ACT U-HI9
(control — sample) |, E ACT ALU (control — sample)
- ( ALL[) .

Bisulfite sequencing PCR

Bisulfite sequencing PCR (BSP) reaction was carried out
using TaKaRa Taq™ Hot Start Version kit (Tokyo, Japan)
as reported [11]. The main conditions were 98 °C for 10 s,
55 °C for 30 s, and 72 °C for 30 s. Nine independent clones
per specimen were picked out and sequenced.

Cell line and cell culture

Human leukemic cell line HL60 (American Type Culture
Collection, Manassas, VA, USA) was cultured in RPMI
1640 medium (BOSTER, Wuhan, China) containing 10%
fetal calf serum (ExCell Bio, Shanghai, China) and grown
at 37 °C in 5% CO, humidified atmosphere.

SiRNA transfection

SiRNA-mediated knockdown of HI19 was used for loss-of-
function experiments. The siHI19-1 (sense strand: 5'-
CCCGUCCCUUCUGAAUUUATT-3’; antisense strand: 5’-
UAAAUUCAGAAGGGACGGGTT-3") and siH19-2 (sense
strand: 5'-UAAGUCAUUUGCACUGGUUTT-3’; antisense
strand: 5'-AACCAGUGCAAAUGACUUATT-3") [23] were
purchased from GenePharma (Shanghai, China). SiRNA
transfection was performed using the X-tremeGENE siRNA
Transfection Reagent (Roche, Basel, Switzerland) according
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to the manufacturer’s instructions. Cells were used for
experiments in 3 days after siRNA transfection.

Cell proliferation assays

Cells (1 x 10° cells/mL) for 2 mL per well were seeded in
a 6-well plate in RPMI 1640 medium containing 10%
fetal calf serum. After culturing for 0, 1, 2, and 3 days,
cells were counted in a counting board for three times.

Cell apoptosis assays

Cells (2 x 10° cells/mL) for 2 mL per well were seeded in
a 6-well plate in RPMI 1640 medium containing 0% fetal
calf serum. Annexin V-PE/7-AAD apoptosis detection
(BD Pharmingen, San Diego, CA, USA) was used and then
analyzed via flow cytometry (BD FACSCalibur, San Jose,
CA, USA). Each experiment was repeated three times.

TCGA and GEO datasets

H19 expression (RNA Seq V2 RSEM) and H19 methyla-
tion (HM27 and HM450) data from a cohort of 200
AML patients from The Cancer Genome Atlas (TCGA)
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[24] were downloaded via cBioPortal (http://www.cbio-
portal.org) [25, 26].

Two independent cohorts of 78 and 162 cytogenetically
normal AML (CN-AML) patients from Gene Expression
Omnibus (GEO) data (http://www.ncbi.nlm.nih.gov/geo/;
accession number GSE12417) were applied to analyze the
prognostic impact of H19 expression using the online web
tool Genomicscape (http://genomicscape.com/microarray/
survival.php) [27, 28].

Bioinformatics analyses

H1I9 function prediction based on text mining was per-
formed using the Coremine Medical online database
(http://www.coremine.com/medical/).

Statistical analyses

SPSS 20.0 software package and GraphPad Prism 5 were
applied to statistical analyses. Mann-Whitney’s U test was
performed to compare the differences of continuous vari-
ables, whereas the differences of categorical variables were
analyzed using the Pearson chi-square analysis/Fisher exact
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Fig. 1 H19 expression and methylation in AML. a H19 expression level detected by real-time quantitative PCR in controls and AML patients. b
H19 unmethylation level detected by real-time quantitative unmethylation-specific PCR in controls and AML patients. ¢, d H719 methylation density
detected by bisulfite sequencing in controls and AML patients, respectively. White cycle, unmethylated CpG dinucleotide; black cycle, methylated
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different regions using The Cancer Genome Atlas (TCGA) data. Left: H19 expression, value in log2(x + 1) transformation, x is the RSEM value. Middle:
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test. Spearman correlation test was conducted to evaluate
the correlation between continuous variables. The ROC
curve and area under the ROC curve (AUC) were carried
out to assess the discriminative capacity of H19 expression
between patients and controls. H19 expression for achieve-
ment of CR was evaluated via logistic regression models (uni-
variate and multivariate). Kaplan-Meier and Cox regression
(univariate and multivariate) analyses were used to analyze
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the impact of H19 expression on overall survival (OS) and
leukemia-free survival (LES). Statistical significance
was set at P < 0.05 and all tests were two sided.

Results

H19 expression was upregulated in AML

In order to determine the role of H19 in AML pathogenesis,
we first evaluated HI9 expression in AML patients and

Table 1 Comparison of clinical manifestations and laboratory features between H19°" and H19"9" AML patients

Patient's parameters Low (n=82) High (n=79) P value
Sex, male/female 44/38 54/25 0.075
Median age, years (range) 51.5(10-87) 61 (17-93) 0.009
Median WBC, x 10%/L (range) 7.7 (1.0-1854) 31.1 (0.3-528.0) 0.004
Median hemoglobin, g/L (range) 75 (40-133) 785 (32-144) 0.144
Median platelets, x 10%/L (range) 42 (5-447) 33 (3-399) 0.262
Median BM blasts, % (range) 44 (3.0-94.5) 43 (1-99) 0339
Karyotype classification 0.010
Favorable 29 (35%) 14 (18%)
Intermediate 37 (45%) 55 (70%)
Poor 12 (15%) 9 (11%)
No data 4 (5%) 1 (1%)
Karyotype 0.048
Normal 28 (34%) 42 (54%)
18;21) 7 (9%) 5 (6%)
1(16;16) 0 (0%) 1 (1%)
t(15;17) 22 (27%) 8 (10%)
19,22) 0 (0%) 1 (1%)
+8 3 (4%) 4 (5%)
—5/50— 1 (1%) 2 (3%)
—7/79- 1(1%) 0 (0%)
Complex 10 (12%) 6 (8%)
Others 6 (7%) 9 (11%)
No data 4 (5%) 1 (1%)
Gene mutation
CEBPA (+/-) 10/66 7/61 0617
NPMT (+/-) 6/70 11/57 0.195
FLT3-ITD (+/-) 6/70 13/55 0.053
c-KIT (+/-) 4/72 1/67 0.370
N/K-RAS (+/-) 4/72 8/60 0.228
IDH1/2 (+/-) 2/74 6/62 0.149
DNMT3A (+/-) 2/74 9/59 0.025
U2AFT (+/-) 3/73 3/65 1.000
SRSF2 (+/-) 3/75 4/66 0.708
SETBPT (+/-) 1/77 1/69 1.000
CR (+/-) 40/35 22/52 0.005

AML acute myeloid leukemia, WBC white blood cells, CR complete remission
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controls by RT-qPCR. As presented in Fig. 1a, HI19 expres-
sion was significantly upregulated in AML patients (median
0.107) than controls (median 0.014) (P = 0.003). Since nzicro-
RNA-675 (miR-675) is embedded within the first exon of
H19, we further assess the association of H19 with miR-675
in AML. Previously, our study reported miR-675 expression
was significantly downregulated in AML patients [29].
Herein, we further found that there was no significant
correlation between H19 and miR-675 expression in AML
(R=0.032, P=0.750, n=101).

H19 overexpression was not dependent on H19 methylation
in AML
Since HI19 is an imprinted gene and controlled by the
methylation pattern in DMR/ICR, we hypothesized that
HI9 overexpression was mediated by H19 DMR/ICR
hypomethylation in AML. However, RT-qMSP showed
that its DMR/ICR methylation level in AML patients
(median 0.086) was similar to controls (median 0.109)
(P=0.699, Fig. 1b). The same result was also confirmed by
BSP analysis (Fig. 1¢, d). Moreover, no significant association
was observed between HI9 DMR/ICR methylation and
expression in AML (R = - 0.074, P=0.521, n =77, Fig. 1e).
In order to verify our results, we further implemented an
independent assessment of H19 methylation and expression
in AML from TCGA database. As expected, no significant
negative correlation was observed between HI19 methyla-
tion and expression in AML (R =0.070, P=0.362, n =170
and R = - 0.029, P=0.711, n = 170, respectively, Fig. 1f).

H19 overexpression correlated with clinical characteristics
and genetic events in AML

ROC curve analysis revealed that the sensitivity and the
specificity were 49.1 and 80.6% (sensitivity + specificity — 1
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was the highest value) when H19 expression was at the
value of 0.121 (Additional file 2: Figure S1). By the cutoff
value, we classified the whole-cohort AML patients into
two groups (high and low) in order to further analyze the
clinical significance of H19 expression in AML. High HI19
expression was found to be associated with sex (P = 0.075),
higher white blood cells (P = 0.009), and older age (P =
0.004, Table 1). Moreover, significant differences were
observed among both karyotype and karyotypic classifi-
cations (P =0.048 and 0.010, respectively). H19 overexpres-
sion had the highest frequency in intermediate karyotype
[70% (55/79), P=0.002] and much lower in favorable
karyotype [18% (14/79), P =0.013] especially in t(15;17)
[6% (5/79), P =0.008].

We further assessed the association of HI19 expression
with gene mutations in AML. A total of 12 common
gene mutations were screened in 144 AML patients.
Patients with high HI9 expression harbored higher
incidence of FLT3-ITD and DNMT3A mutations than
those with low HI9 expression (P=0.053 and 0.025,
respectively, Table 1). No significant differences were
observed in other gene mutations among the two groups
(P> 0.05, Table 1).

H19 overexpression correlated with poor chemotherapy
response and OS in AML

Follow-up data was available for 149 AML patients
including 121 non-APL-AML patients and 64 CN-AML
patients. As shown in Table 1, whole-cohort AML patients
with high H19 expression had a significantly lower CR rate
than those with low HI9 expression (P=0.005). The
similar results also existed among non-APL-AML and
CN-AML patients (P=0.012 and 0.036, respectively).
Moreover, multivariate analysis revealed that high HI19

Table 2 Univariate and multivariate analyses of prognostic factors for complete remission in whole-cohort and non-APL-AML

patients

Univariate analysis Multivariate analysis

Odds ratio (95% Cl) P value Odds ratio (95% Cl) P value
Whole-cohort AML
Age 0.119 (0.054-0.262) <0.001 0.162 (0.069-0.379) <0.001
WBC 0.269 (0.126-0.575) 0.001 0.505 (0.204-1.253) 0.140
Karyotype classifications 0.214 (0.112-0.408) <0.001 0.269 (0.139-0.519) <0.001
H19 expression 0.370 (0.189-0.726) 0.004 0416 (0.185-0.935) 0.034
Non-APL AML
Age 0.164 (0.069-0.392) <0.001 0.199 (0.079-0.502) 0.001
WBC 0.353 (0.153-0.819) 0.015 0.522 (0.198-1.378) 0.189
Karyotype classifications 0.316 (0.145-0.691) 0.004 0.297 (0.129-0.687) 0.005
H19 expression 0361 (0.164-0.791) 0011 0306 (0.123-0.762) 0.0M

Variables were composed of age (<60 vs. > 60 years), WBC (=30 x 10° vs. < 30 x 10%/L), karyotype classifications (favorable vs. intermediate vs. poor), and H19
expression (low vs. high). The multivariate analysis included variables with P < 0.100 in univariate analysis for complete remission
AML acute myeloid leukemia, APL acute promyelocytic leukemia, WBC white blood cells, C/ confidence interval
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Table 3 Univariate and multivariate analyses of prognostic factors for overall survival in non-APL-AML patients

Univariate analysis

Multivariate analysis

Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value
Age 2.294 (1.528-3.446) <0.001 1.651 (1.067-2.555) 0.024
WBC 1.856 (1.247-2.764) 0.002 1447 (0.943-2.220) 0.091
Karyotype classifications 1.756 (1.314-2.346) < 0.001 1.858 (1.320-2.616) <0.001
H19 expression 1.486 (0.997-2.216) 0.052 1.554 (0.977-2472) 0.063
CEBPA mutation 0.793 (0410-1.533) 0491
NPMT mutation 1.142 (0.606-2.152) 0.681
FLT3-ITD mutation 1.005 (0.532-1.898) 0.987
c-KIT mutation 1.043 (0.255-4.263) 0.953
N/K-RAS mutation 1.070 (0.533-2.149) 0.849
IDH1/2 mutation 4.246 (1.964-9.179) < 0.001 3.781 (1.593-8.978) 0.003
DNMT3A mutation 1.256 (0.630-2.506) 0518
U2AFT mutation 2.756 (1.177-6.455) 0.020 2499 (1.050-5.950) 0.038
SRSF2 mutation 2.005 (0.914-4.399) 0.083 1.590 (0.673-3.758) 0.291
SETBPT mutation 0.497 (0.069-3.583) 0488

Variables were composed of age (< 60 vs. > 60 years), WBC (> 30 x 10° vs. < 30 x 10%/L), karyotype classifications (favorable vs. intermediate vs. poor), H19 expression
(low vs. high), and gene mutations (mutant vs. wild-type). The multivariate analysis included variables with P < 0.100 in univariate analysis for overall survival
AML acute myeloid leukemia, APL acute promyelocytic leukemia, WBC white blood cells, C/ confidence interval
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expression taken as a dichotomous variable was an
independent prognostic predictor for poor CR rate
among both whole-cohort and non-APL-AML patients
(P=0.034 and 0.011, respectively, Table 2) but not
CN-AML patients (data not shown).
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Kaplan-Meier analysis revealed that whole-cohort
AML patients with HI9 overexpression had a signifi-
cantly shorter OS than those without HI19 overexpres-
sion (P=0.020, Fig. 2a). Among non-APL-AML and
CN-AML, patients with high H19 expression were
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also associated with shorter OS (P =0.041 and 0.018,
Fig. 2b, ¢, respectively). However, there was no significant
association between HI9 expression and LFS among
either AML sub-groups (all P> 0.05, Fig. 2d—f, respectively).
Since H19 expression closely correlated with several well-
established prognostic factors such as age, WBC, karyotypic
classifications, and gene mutations, we further con-
ducted a Cox regression model adjusting for prognosis-
related factors. Multivariate analysis revealed that high
H19 expression might act as an independent prognostic
biomarker for poor OS in non-APL-AML patients (HR =
1.554, P=0.063, Table 3) but not whole-cohort AML
(HR =1.355, P=0.169) or CN-AML patients (HR = 1.393,
P=0.313).

The prognostic value of H19 expression validated by
TCGA and GEO data

In order to validate the prognostic value of H19 expres-
sion in AML, we searched and analyzed an independent
assessment in AML patients from TCGA databases. By
the median level of HI9 expression set as the cut-off
value, patients with higher H19 expression showed a
significantly shorter OS among both whole-cohort
AML (P =0.062, Fig. 3a) and non-APL-AML (P = 0.004,
Fig. 3b). Nevertheless, no significant difference was
observed between the two groups for OS among CN-AML
(P =0.147, Fig. 3c).

Moreover, the published data from two cohorts of
CN-AML patients available in GEO databases were set
as the independent validation cohort. Through the
online tool GenomicScape, high HI9 expression was
significantly correlated with shorter OS among both two
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cohorts (P =0.002, 0.014, <0.001, and 0.067, respectively,
Fig. 3d—g).

H19 expression was a predictive biomarker in the
surveillance of AML

To identify whether H19 expression could act as a potential
biomarker in the surveillance of AML, we next assessed
H19 expression in AML patients of different clinical stages
including 54 patients who achieved CR after induction
therapy and 26 relapsed patients. Our data indicated that
H1I9 expression in CR phase was lower to diagnosis time
and was returned to primary level when in relapse time
(Fig. 4a). Moreover, the dynamic changes of H19 expression
in seven paired patients with available follow-up data were
also shown in Fig. 4b.

H19 exhibited pro-proliferative and anti-apoptotic effects
in leukemia cells

We first identified the potential biological role of HI9 in
leukemia by bioinformatics analysis on the basis of Core-
mine Medical mining. As shown in Fig. 5a, the associations
of H19 with proliferation, division, differentiation, apoptotic
process, and hemopoiesis were comprehensively analyzed.
Next, we performed in vitro experiments to validate the
leukemia-promoting effects of H19 in AML. Since all the
leukemic cells showed an increased HI9 expression, we
conducted loss-of-function assays in HI9 relatively high-
expressed cells (Fig. 5b, c). As a result, knockdown of H19
in HL60 cells by two different siRNAs resulted in a sig-
nificantly reduced proliferation and elevated apoptosis
(Fig. 5d—g). In addition, similar results were also observed
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in K562 cells and had been published in our previous
study [30].

H19 expression positively correlated with potential
downstream gene ID2 in AML

As is well-known, IncRNAs function directly or indirectly
through the protein-encoding gene. A previous study
showed that HI9 was positively associated with ID2
expression in bladder cancer [31]. Moreover, ID2

overexpression was a frequent event and predicted poor
chemotherapy response and adverse prognosis in AML
[32]. Herein, we also found knockdown of HI9 also in-
duced decreased ID2 expression in HL60 cells (P =0.006,
Fig. 6a). Moreover, significant positive association was also
observed between H19 expression and /D2 transcript level
in clinical AML patients (R =0.262, P=0.002, n =135,
Fig. 6b). All these suggested that /D2 might be a potential
downstream gene of H19 in AML.
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Discussion

Oncogenic role of IncRNA HI9 has been demonstrated
in diverse human solid tumors, and H19 expression was
significantly upregulated in these cancer patients [5]. In
this study, we first quantified HI9 expression in
BMMNCs of AML patients and showed that H19 over-
expression was a frequent event in AML. We next per-
formed functional experiments in vitro to investigate the
potential role of H19 in AML. Loss-of-function of H19 by
siRNA in human HL60 cells exhibited anti-proliferative
and pro-apoptotic effects in accordance with previous lit-
eratures showing the role of H19 in solid tumors [5]. In
addition, a recent study showed the functional involve-
ment of HI19 in BCR-ABL-mediated leukemogenesis [7].
Taken together, all these data implicated that H19 might
also act as a proto-oncogene during leukemogenesis.
However, Tessema et al. showed H19/IGF2 was frequently
downregulated in AML, CML, and chronic myelomono-
cytic leukemia (CMML) [33]. One explanation for the
differing results may be attributed to the limited cases
of AML, CML, and CMML in the previous study.

As is well known, IncRNAs function often through
promoting the strength of specific enhancer-promoter
looping and thus contributing to gene activation, regulating
protein activities, sequestering microRNAs, and serving
as precursors of small RNAs during the pathological
processes [4]. In addition to HI9, it can be dissected
into two major functions: one is a reservoir of miR-675
that suppresses its targets, and the other is a modulator
of micro-RNAs or proteins via their binding [5]. How-
ever, our study showed that miR-675 expression was
significantly downregulated in AML patients [29] and was
not correlated with H19 expression, which indicated that
the function of H19 during leukemogenesis was not medi-
ated by miR-675. Notably, our study further confirmed
H19 expression was positively associated with /D2 expres-
sion in AML. Coincidentally, a recent study reported H19
regulated ID2 expression through competitive binding

to hsa-miR-19a/b in AML [34]. All these suggested that
the function of H19 may be mediated by ID2 during
leukemogenesis.

DNA methylation, one of the most common epigenetic
modifications, has been related to various regulatory pro-
cesses, such as transcriptional regulation, LOI, chromatin
structure, and genome integrity [35]. Strong evidence has
proved that aberrant H19 DMR/ICR methylation by
controlling CTCF6 binding sites led to LOI of IGF2/H19
and finally resulted in abnormal expression of IGF2/H19
in diverse human cancers [36—38]. Moreover, our previous
study showed that H19 DMR/ICR demethylation resulted
in upregulation of HI19 expression in leukemic cell line
K562 [39]. Herein, we also investigated the pattern of H19
DMR/ICR methylation in AML patients and determined
the association with H19 expression. However, our data
found that H19 DMR/ICR methylation level was similar
to controls and was not associated with HI19 expression.
These results suggested that H19 overexpression in AML
was not dependent on H19 DMR/ICR methylation. There-
fore, other mechanisms were involved in the regulation of
H1I9 expression in AML, and further studies were urged
to identify the underlying mechanism.

Clinical significance of H19 expression was increasingly
investigated in solid tumors. A recent meta-analysis
showed that HI19 expression might be a novel molecular
marker for predicting prognosis and could also be a pre-
dictive factor of clinicopathological features in various can-
cers [40]. Herein, we found that HI19 overexpression was
also associated with age, WBC, karyotypic classifications,
and several common gene mutations in AML patients.
Moreover, HI9 overexpression also acted as an inde-
pendent prognostic biomarker for OS in non-APL-AML
patients, and the similar results were also confirmed by
TCGA and GEO data. In addition, we further identified
that H19 expression was changed in response to chemo-
therapy in AML. Significantly, H19 expression in relapsed
AML patients was markedly higher than AML patients
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who achieved CR and newly diagnosed AML patients,
which implicated that H19 also played a role in AML
recurrence. All these results indicated that H19 was a
potential therapeutic target in AML and using H19-based
targeted therapy could improve the clinical outcome for
AML patients.

Conclusions

Our findings revealed that methylation-independent H19
is a prognostic and predictive biomarker in AML, and
H1I19/ID2 played crucial roles in leukemogenesis with po-
tential therapeutic target value.
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