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Abstract

Background: Smoking has been reported to be associated with peripheral blood DNA methylation, but the causal
aspects of the association have rarely been investigated. We aimed to investigate the association and underlying
causation between smoking and blood methylation.

Methods: The methylation profile of DNA from the peripheral blood, collected as dried blood spots stored on
Guthrie cards, was measured for 479 Australian women including 66 monozygotic twin pairs, 66 dizygotic twin
pairs, and 215 sisters of twins from 130 twin families using the Infinium HumanMethylation450K BeadChip array.
Linear regression was used to estimate associations between methylation at ~ 410,000 cytosine-guanine dinucleotides
(CpGs) and smoking status. A regression-based methodology for twins, Inference about Causation through Examination
of Familial Confounding (ICE FALCON), was used to assess putative causation.

Results: At a 5% false discovery rate, 39 CpGs located at 27 loci, including previously reported AHRR, F2RL3, 2q37.1 and
6p21.33, were found to be differentially methylated across never, former and current smokers. For all 39 CpG sites,
current smokers had the lowest methylation level. Our study provides the first replication for two previously reported
CpG sites, cg06226150 (SLC2A4RG) and cg21733098 (12g24.32). From the ICE FALCON analysis with smoking status as
the predictor and methylation score as the outcome, a woman's methylation score was associated with her co-twin’s
smoking status, and the association attenuated towards the null conditioning on her own smoking status, consistent
with smoking status causing changes in methylation. To the contrary, using methylation score as the predictor and
smoking status as the outcome, a woman’s smoking status was not associated with her co-twin’s methylation score,
consistent with changes in methylation not causing smoking status.

Conclusions: For middle-aged women, peripheral blood DNA methylation at several genomic locations is
associated with smoking. Our study suggests that smoking has a causal effect on peripheral blood DNA
methylation, but not vice versa.
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Background

Epigenetics is a mechanism modifying gene expression
without changing underlying DNA sequence. DNA
methylation, a phenomenon that typically a methyl
group (-CH3) is added to a cytosine-guanine dinucleo-
tide (CpG) at which the cytosine is converted to a 5-
methylcytosine, has been proposed to play a role in the
aetiology of complex traits and diseases [1, 2].

At least 21 epigenome-wide association studies (EWASs)
have reported that methylation in the blood of adults at a
great many CpGs is associated with smoking status [3—23].
A recent, and the largest meta-analysis so far, reported
18,760 CpGs annotated to 7201 genes, which account for
approximately one third of the known human genes, were
differentially methylated between 2433 current smokers
and 6956 never smokers [11]. Associations for several loci,
such as AHRR, F2RL3, GPRIS5, GFI1, 2¢37.1 and 6p21.33,
have been consistently reported, and a systematic review
published in 2015 found that associations for 62 CpGs
had been reported at least three times [24]. Apart from
smoking status, other smoking exposures such as cu-
mulative smoking [3, 4, 8-12, 16-18, 20, 22] and years
since quitting [4, 9-12, 15, 16, 19, 20, 22] have also
been found to be associated with blood DNA methylation.

Most of the reported associations are from cross-
sectional designs; thus, the causal nature of the associ-
ation, i.e. whether DNA methylation has a causal effect
on smoking or vice versa, is unknown. There is also a
possibility that cross-sectional epigenetic associations
are due to familial confounding [25]. Studies have sug-
gested that smoking-related blood DNA methylation
mediates the effects of smoking on lung cancer [26, 27],
death [28], leukocyte telomere length [29], and subclin-
ical atherosclerosis [30]. These studies assume that
smoking has a causal effect on methylation without evi-
dence of causality. To the best of our knowledge, the
only causal evidence comes from a study using a two-
step Mendelian randomisation (MR) approach to investi-
gate the mediating role of methylation between smoking
and inflammation [31]. This study found that smoking
had a causal effect on methylation at CpGs located at
F2RL3 and GPRIS genes.

In this study, we aimed to investigate association
between smoking and blood DNA methylation, to repli-
cate associations previously reported and to investigate
putative causal nature of the association using regression
methods for related individuals.

Methods

Study sample

The sample comprised women from the Australian
Mammographic Density Twins and Sisters Study [32]. A
total of 479 women including 66 monozygotic twin
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pairs, 66 dizygotic twin pairs and 215 sisters from 130
families were selected [33].

Smoking data collection

A telephone-administered questionnaire was used to collect
participants’ self-reported information on smoking. Partici-
pants were asked the question ‘Have you ever smoked at
least one cigarette per day for 3 months or longer?” Partici-
pants who answered ‘No’ were classified as never smokers,
and the rest ever smokers. Ever smokers were further ques-
tioned for age at starting smoking, the average number of
cigarettes smoked per day, and age at stopping smoking, if
any. Ever smokers who had stopped smoking before the
interview were classified as former smokers, and the rest
current smokers.

DNA methylation data

DNA was extracted from dried blood spots stored on
Guthrie cards using a method previously described [34].
Methylation was measured using the Infinijum Human-
Methylation450K BeadChip array. Raw intensity data
were processed by Bioconductor minfi package [35],
which included normalisation of data using Illumina’s
reference factor-based normalisation methods (prepro-
cesslllumina) and subset-quantile within array normal-
isation (preprocessSWAN) [36] for type I and II probe
bias correction. An empirical Bayes batch-effects re-
moval method ComBat [37] was applied to minimise
technical variation across batches. Probes with missing
values (detection P value>0.01) in one or more sam-
ples, with documented SNPs at the target CpG, with
beadcount <3 in more than 5% samples, binding to
multiple locations [38] or binding to X chromosome,
and the 65 control probes were excluded, leaving
411,219 probes included in the analysis; see Li et al. [33]
for more details.

Epigenome-wide association analysis

We investigated the association using a linear mixed-
effects model in which the methylation M value, a logit
transformation of the percentage of methylation, as the
outcome and smoking status (never, former and current
smokers) as the predictor. The model was adjusted for
age and estimated cell-type proportions [39] as fixed ef-
fects and for family and zygosity as random effects, fitted
using the lmer() function from the R package /me4 [40].
The likelihood ratio test was used to make inference,
that is, a nested model without smoking status was fitted
and a P value was calculated based on that, twice the dif-
ference in the log likelihoods between the full and nested
models approximately follows the chi-squared distribu-
tion with two degrees of freedom. To account for mul-
tiple testing, associations with a false discovery rate
(FDR) [41] < 0.05 were considered statistically significant
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and the corresponding CpGs were referred to as ‘identi-
fied CpGs'.

For identified CpGs, we investigated their associations
with cumulative smoke exposure indicated by pack-years
for ever smokers and with years since quitting for
former smokers. Pack-years were calculated as the aver-
age number of cigarettes smoked per day divided by 20
and multiplied by the number of years smoked, and
were log-transformed to be approximately normal dis-
tributed. Years since quitting were calculated as age at
interview minus age at stopping smoking. The covariates
adjusted and statistical inference were the same as those
for smoking status, except that the model for pack-years
was additionally adjusted for smoking status (former and
current smokers) to investigate associations independent
of smoking status.

Replication of previously reported associations

After quality control, 18,671 CpGs reported from the
largest meta-analysis performed by Joehanes et al. [11]
were included in our study. For these CpGs, we investi-
gated their associations with smoking status in our
study. Given the sample size of our study and not to
miss any potential replication, associations with a
nominal P<0.05 and the same direction as that re-
ported by Joehanes et al. were considered to be repli-
cated, and the corresponding CpGs were referred to as
‘replicated CpGs’.

Familial confounding analysis
For the identified CpGs and replicated CpGs, we per-
formed between- and within-sibship analyses [25, 42] to
investigate if familial factors confound the associations.
Given that never and former smokers had similar
methylation levels for most of the CpGs, we combined
them into one group. The new smoking status was thus
analysed with current smokers as ‘1’ and the rest as ‘0".
In the analysis, the methylation M values, smoking ex-
posures and covariates were orthogonally transformed
within sibships to obtain sibship means and within-sibship
differences for these variables; see Stone et al. [42] for
more details about the transformation. The between-
sibship analyses investigated associations between sibship
means for methylation levels and those for smoking expo-
sures, and the within-sibship analyses investigated associa-
tions between within-sibship differences for methylation
levels and those for smoking exposures. Associations esti-
mated from the within-sibship analyses are independent
of familial confounding, as the confounding effects of fa-
milial factors shared by siblings, both known and un-
known, were cancelled out when using within-sibship
differences. Evidence for familial confounding can be ob-
tained by comparing between-sibship coefficient (5g) and
within-sibship coefficient (Svw). When Bg = Py and Py =0,
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i.e. the association disappears when familial factors are ad-
justed, the observation is consistent with the association
being due to familial confounding. When 5z ~ Sy # 0, i.e.
the association is similar regardless of whether familial
factors are adjusted, the observation is consistent with ab-
sence of evidence for familial confounding; see Carlin et
al. [43] for more details about the implications from com-

paring B and By

Causal inference analysis

We performed causal inference between smoking status
and methylation using Inference about Causation through
Examination of FAmilial. CONfounding (ICE FALCON),
a regression-based methodology for analysing twin data
[44-48]. By causal is meant, that if it were possible to vary
a predictor measure experimentally, the expected value of
the outcome measure would change.

As shown in Fig. 1, suppose there are two variables, X
and Y, measured for pairs of twins, and for example, let
X refer to smoking status and Y refer to methylation.
Assume that X and Y are positively associated within an
individual. Let S denote the unmeasured familial factors
that affect both twins, Sy represents those factors that
influence X values only, Sy those that influence Y values
only, and Sxy those that influence both X and Y values.
For the purpose of explanation, let ‘self’ refer to an indi-
vidual and ‘co-twin’ refer to the individual’s twin, but
recognise that these labels can be exchanged and both
twins within a pair are used in the analysis.

If there is a correlation between Y. and X.o twin, it
might be due to a familial confounder, Sxy (Fig. 1a). It
could also be due to X having a causal effect on Y within
an individual, provided Xer and Xco.twin are correlated
(Fig. 1b), or to Y having a casual effect on X, provided
Yserr and Yoo twin are correlated (Fig. 1c). Note that the
confounders specific to an individual, Csr and Ceo.pwins
do not of themselves result in a correlation between Y ¢
and Xco»twin'

Using the Generalised Estimating Equations (GEE), fit-
ted using the geeglm() function from R package geepack
[49], to take into account any correlation in Y between
twins within the same pair, three models are fitted:

Model 1: E(Yserf) = & + BsereXsels

Model 2: E(Yself) =a+ /))co»twiano»twin

Model 3: E( Yself) =a+ ﬁ,seleself + /)),co»twiano»twin

If the correlation between Y and Xco iwin is solely
due to familial confounders (Fig. 1a), the marginal asso-
ciation between Yi.r and Xger (Bserr in model 1) and the
marginal association between Yyr and Xeo-twin (Beo-twin
in model 2) must both be non-zero. Adjusting for X
however, the conditional association between Y..r and
Xeo-twin (B co-twin in model 3) is expected to attenuate
from Bco.-twin in model 2 towards the null. Similarly, adjust-
ing for X.o.twin (model 3), the conditional association
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Fig. 1 Some possible directed acyclic graphs for the cross-twin
cross-trait correlation. a The cross-twin cross-trait correlation is due
to familial confounding. b The cross-twin cross-trait correlation is
due to the causal effect of X on Y. ¢ The cross-twin cross-trait correlation
is due to the causal effect of Y on X

between Y;or and Xgor (5 sere in model 3) is expected to at-
tenuate from fg¢ in model 1 towards the null.

If the correlation between Y. and Xy tywin iS solely
due to a causal effect from X to Y (Fig. 1b), Y. and
Xeo-twin in model 2 will be associated through two path-
ways: the confounder Sy, and conditioning on the col-
lider Y o twin (GEE analysis in effect conditions on Y., tyin)-
Conditioning on Y., in induces a negative correlation
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between X, qvin and Ysor (note that we assume X and Y are
positively associated within an individual), so that S twin in
model 2 depends on the within-pair correlations in X (px)
and in Y (py): if px > py Beo-twin IS €xpected to be positive;
otherwise Scowin to be negative. Conditioning on X
(model 3), both pathways are blocked and the conditional
association (5’ cotwin in model 3) is expected to attenuate
towards the null.

If the correlation between Yir and Xy iwin is solely
due to a causal effect from Y to X (Fig. 1c), in model 2
the pathway through Sy is blocked due to X as a col-
lider, and the pathway through Sy is blocked due to that
GEE analysis in effect conditions on Y, twin, S0 there is
no marginal association between Y. and X o in and
Beo-twin Of model 2 is expected to be zero.

We studied methylation at the identified CpGs and
replicated CpGs, respectively. For each group of CpGs,
methylation was analysed as a weighted methylation
score, calculated as the sum of the products of methyla-
tion level and weight of each CpG. For a locus contain-
ing multiple CpGs, only the CpG with the smallest P
value was included in the methylation score. For the
identified CpGs, the methylation level was the standar-
dised M value and the weight was the log odds ratio for
smoking status. For the replicated CpGs, the methyla-
tion level was the Beta value, the scale used in the meta-
analysis, and the weight was the Z statistic reported by
Joehanes et al. [11]. Smoking status was analysed as a
binary variable with current smokers as ‘1’ and the rest
as ‘0. We first used smoking status to be X and methyla-
tion score to be Y and regressed methylation score on
smoking status. We then exchanged X and Y to regress
smoking status on methylation score and undertook the
same analyses. The data for 132 twin pairs were used.
We made statistical inference about the change in re-
gression coefficient using one-sided t test with a
standard error computed using nonparametric boot-
strap method. That is, twin pairs were randomly sam-
pled with replacement to generate 1000 new datasets
with the same sample size as the original dataset. ICE
FALCON was then applied to each dataset to calculate
the change in regression coefficient for that dataset
and standard error was then estimated by computing
the standard deviation.

Results

Characteristics of the sample

The mean (standard deviation [SD]) age for the 479
women was 56.4 (7.9) years. The women included
291 (60.8%) never smokers, 147 (30.7%) former
smokers and 41 (8.5%) current smokers. Ever smokers
had a median (interquartile range) of 7.0 (13.8) pack-
years. Former smokers had an average (SD) of 21.5
(11.4) years since quitting.
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Epigenome-wide analysis results

Methylation at 39 CpGs located at 27 loci was found to
be associated with smoking status (Table 1; Q-Q plot
and Manhattan plot in Fig. 2). Associations for 37 of the
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39 CpGs have been reported by at least two studies and
associations for two CpGs, cg06226150 (SLC2A4RG) and
€g21733098 (12924.32), have only been reported from
the meta-analysis performed by Joehanes et al. [11]. For

Table 1 39 CpGs at which methylation was found to be associated with smoking status with FDR < 0.05

CpG CHR Loci Methylation level, mean (standard deviation) P FDR
Never smokers Former smokers Current smokers

€g05575921 5 AHRR 0.82 (0.04) 0.79 (0.05) 0.69 (0.08) 2.69E-41 1.11E-35
€g05951221 2 2g37.1 048 (0.05) 44 (0.06) 0.38 (0.06) 1.01E-28 2.08E-23
cg01940273 2 2g37.1 0.69 (0.04) 0.66 (0.05) 0.60 (0.05) 1.03E-25 141E-20
€g03636183 19 F2RL3 0.72 (0.04) 0.70 (0.05) 0.64 (0.06) 2.86E-22 2.94E-17
€g06126421 6 6p21.33 0.79 (0.05) 0.76 (0.06) 0.72 (0.06) 1.228-17 1.00E-12
€g26703534 5 AHRR 0.68 (0.03) 0.69 (0.03) 0.64 (0.03) 444E-16 3.04E-11
€g21161138 5 AHRR 0.77 (0.03) 0.76 (0.04) 0.72 (0.05) 121814 7.11E-10
cg11660018 [ PRSS23 0.59 (0.04) 057 (0.04) 054 (0.04) 8.59E-12 442E-07
€g09935388 1 GFI 0.82 (0.05) 0.81 (0.05) 0.75 (0.07) 5.90E-11 2.70E-06
€g25648203 5 AHRR 0.84 (0.02) 083 (0.02) 0.81(0.03) 1.63E-10 6.71E-06
€g19859270 3 GPR15 093 (0.01) 093 (0.01) 0.92 (0.01) 2.77E-10 1.04E-05
€g03329539 2 2g37.1 047 (0.05) 0.46 (0.05) 042 (0.04) 5.04E-10 1.73E-05
€g24859433 6 6p21.33 0.88 (0.02) 0.88 (0.02) 0.86 (0.02) 6.02E-10 1.85E-05
cg14753356 6 6p21.33 047 (0.06) 045 (0.06) 043 (0.05) 6.28E-10 1.85E-05
cg07339236 20 ATP9A 7 (0.04) 0.16 (0.04) 0.13 (0.03) 3.68E-09 1.01E-04
€g04885881 1 1p36.22 048 (0.05) 047 (0.05) 0.44 (0.05) 4.46E-09 1.15E-04
€g2391689%6 5 AHRR 0.29 (0.07) 0.27 (0.06) 0.23 (0.06) 1.01E-08 243E-04
€g14817490 5 AHRR 0.30 (0.04) 0.03 (0.04) 0.26 (0.04) 1.37E-08 3.14E-04
cg11902777 5 AHRR 0.08 (0.02) 0.08 (0.02) 0.06 (0.02) 4.01E-08 8.55E-04
€g21611682 [ LRP5 1(0.03) 0.60 (0.03) 058 (0.03) 4.16E-08 8.55E-04
€g01692968 9 9g31.1 41 (0.05) 0.39 (0.05) 0.38 (0.05) 5.57E-08 1.09E-03
€g08709672 1 AVPR1B 0.60 (0.03) 0.59 (0.03) 0.57 (0.03) 6.54E-08 1.22E-03
€g07826859 7 MYO1G 0.66 (0.04) 065 (0.04) 063 (0.03) 1.14E-07 2.04E-03
€g25189904 1 GNG12 0.53 (0.06) 0.51 (0.07) 047 (0.07) 1.36E-07 2.33E-03
cg17287155 5 AHRR 0.86 (0.03) 0.85 (0.03) 0.84 (0.03) 2.19E-07 3.61E-03
€g06226150 20 SLC2A4RG 0.28 (0.03) 028 (0.02) 0.26 (0.02) 2.85E-07 4.51E-03
€g23161492 15 ANPEP 0.30 (0.05) 0.29 (0.05) 0.26 (0.05) 6.19E-07 943E-03
€g09022230 7 TNRC18 0.76 (0.04) 0.75 (0.04) 0.73 (0.04) 6.57E-07 9.65E-03
€g19572487 17 RARA 0.63 (0.05) 061 (0.05) 0.60 (0.06) 7.54E-07 1.07E-02
€g03991871 5 AHRR 0.89 (0.03) 0.89 (0.03) 0.86 (0.04) 9.13E-07 1.25E-02
€g14580211 5 C5orf62 0.76 (0.04) 0.75 (0.04) 0.73 (0.04) 1.12E-06 1.48E-02
cg15187398 19 MOBKL2A 0.53 (0.05) 0.51 (0.05) 049 (0.04) 1.25E-06 1.60E-02
cg10750182 10 C100rf105 0.62 (0.03) 0.62 (0.03) 0.60 (0.03) 2.03E-06 2.53E-02
€g25949550 7 CNTNAP2 3(0.02) 0.13 (0.02) 0.12 (0.02) 2.64E-06 3.19E-02
€g05284742 14 [TPK1 0.78 (0.03) 0.77 (0.03) 0.76 (0.04) 2.76E-06 3.24E-02
€g23931381 19 ARRDC2 0.89 (0.02) 0.88 (0.02) 0.87 (0.02) 2.98E-06 340E-02
€g26271591 2 NFE2L2 046 (0.06) 045 (0.06) 041 (0.06) 4.40E-06 4.72E-02
€g03646329 13 LPAR6 0.82 (0.04) 0.81 (0.05) 0.79 (0.05) 447E-06 4.72E-02
€g21733098 12 1202432 0.76 (0.06) 0.75 (0.07) 0.72 (0.06) 447E-06 4.72E-02
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Fig. 2 Q-Q plot (@) and Manhattan plot (b) for the results from the
epigenome-wide association analysis between DNA methylation and
smoking status

all 39 CpGs, current smokers had the lowest methylation
level (Table 1). The 27 loci included several consistently
reported loci, such as AHRR (9 CpGs), 2¢37.1 (3 CpGs),
6p21.33 (3 CpGs), and F2RL3 (1 CpG).

Of the 39 CpGs and at a 5% FDR, methylation at 18
CpGs was negatively associated with pack-years and at
20 CpGs was positively associated with years since quit-
ting. Methylation at 15 CpGs was associated with pack-
years and years since quitting both (Table 2).

Replication for previously reported associations

For the associations for 18,671 CpGs reported by
Joehanes et al. [11], 1882 were replicated with a nom-
inal P<0.05 and in the same direction, and the 133
most significant associations also had a FDR<0.05.
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Of the 1882 replications, 1154 were for the novel CpGs re-
ported by Joehanes et al. (Additional file 1: Table S1).

Between- and within-sibship analyses results

For the 39 identified CpGs, no evidence for a difference
between Sy and Syw was found for any CpG (Table 3; all
P values >0.05 from the ffg and Byw comparison). The
same results were found from the analyses of pack-years
and years since quitting (Table 3).

For the 1882 replicated CpGs, no evidence for a
difference between fg and Svw was found for any CpG
(Additional file 2: Table S2; the smallest P value =
1.3x1072 and the smallest FDR=0.99 from the fj
and By comparison).

ICE FALCON analysis results

Within twin pairs, the correlation in smoking status was
0.11 (95% confidence interval (CI) - 0.06, 0.27), smaller
than the correlations in methylation scores for the repli-
cated CpGs and for the identified CpGs, which were
0.37 (95% CI 0.23, 0.50) and 0.22 (95% CI 0.05, 0.37),
respectively.

The ICE FALCON results for methylation at the repli-
cated CpGs are shown in Table 4. From the analysis in
which smoking status was the predictor and methylation
score the outcome, a women’s methylation score was as-
sociated with her own smoking status (model 1; Sger=
74.6, 95% CI 55.3, 93.9), and negatively associated with
her co-twin’s smoking status (model 2; o twin = — 30.8,
95% CI -57.7, —4.0). Conditioning on her co-twin’s
smoking status (model 3), B’s¢ remained unchanged
(P=0.41) compared with s in model 1, while condi-
tioning on her own smoking status (model 3), Bco-twin
in model 2 attenuated by 123.3% (95% CI 49.6%,
185.2%; P =0.002) to be B’ co-twin Of 2.5 (95% CI - 16.3,
21.3). From the analysis in which methylation score was
the predictor and smoking status the outcome, a
woman’s smoking status was associated with her own
methylation score (model 1; Sser= 4.1, 95% CI 2.7, 5.4),
but not with her co-twin’s methylation score (model 2;
Beo-twin = 0.4, 95% CI - 1.0, 1.8). In model 3, ' and
B’ co-twin remained unchanged (both P >0.1) compared
with Sgerr in model 1 and Beo-twin in model 2, respect-
ively. These results were consistent with that smoking
has a causal effect on the overall methylation level at
these CpGs, but not in the opposite direction. Similar
results were found and a similar causality was inferred
for smoking status and the overall methylation level at
the identified CpGs (Table 4).

Discussion

We performed an EWAS of smoking for a sample of
middle-aged women and found 39 CpGs at which
methylation was associated with smoking status. Our
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Table 2 Associations of methylation at the 39 identified CpGs with pack-years and years since quitting

CpG Pack-years Years since quitting
Estimate (SE) P value FDR Estimate (SE) P value FDR

€g05575921 — 1068 (2.18) 1.11E-06 1.44E-05 1.63 (0.30) 1.11E-35 7.35E-08
€g05951221 —-10.32 (1.70) 3.04E-09 1.19€-07 1.66 (0.25) 2.08E-23 1.55E-10
cg01940273 —899 (1.58) 1.93E-08 3.76E-07 147 (0.23) 141E-20 1.15E-09
cg03636183 —4.65 (1.70) 5.35E-03 1.90E-02 0.98 (0.24) 2.94E-17 5.87E-05
cg06126421 —5.92 (2.20) 6.15E-03 2.00E-02 131 (032) 1.00E-12 3.36E-05
€g26703534 0.28 (0.98) 8.02E-01 8.02E-01 -03(0.15) 3.04E-11 344E-02
cg21161138 —4.30 (1.62) 6.89E-03 2.07E-02 0.65 (0.24) 711E-10 5.32E-03
cg11660018 —374(1.13) 7.82E-04 4.36E-03 083 (0.17) 442E-07 5.86E-07
€g09935388 —6.87 (240) 3.06E-03 1.19E-02 0(0.35) 2.70E-06 1.63E-03
€g25648203 —2.25(1.28) 7.19E-02 1.27E-01 0.37 (0.19) 6.71E-06 4.18E-02
€g19859270 —2.69 (1.39) 4.65E-02 9.55E-02 0.58 (0.21) 1.04E-05 441E-03
€g03329539 —6.27 (1.35) 3.59E-06 3.50E-05 0.83 (0.21) 1.73E-05 5.13E-05
€g24859433 —145(1.21) 2.04E-01 2.65E-01 041 (0.18) 1.85E-05 1.78E-02
cg14753356 —264(1.12) 1.63E-02 3.74E-02 0.38 (0.18) 1.85E-05 2.28E-02
cg07339236 —2.71(1.93) 1.51E-01 2.26E-01 0.89 (0.30) 1.01E-04 2.21E-03
€g04885881 6 (1.29) 7.80E-02 1.32E-01 0.28 (0.20) 1.15E-04 1.18E-01
€g23916896 —432(247) 6.61E-02 1.23E-01 047 (0.37) 243E-04 1.84E-01
€g14817490 —331(1.35) 1.26E-02 3.28E-02 035 (0.21) 3.14E-04 1.02E-01
cg11902777 9 (2.15) 6.99E-04 4.36E-03 0.65 (0.32) 8.55E-04 4.06E-02
€g21611682 —2.04 (0.80) 9.75E-03 2.72E-02 0.27 (0.12) 8.55E-04 2.25E-02
cg01692968 —237(142) 8.83E-02 1.43E-01 0.72 (0.21) 1.09E-03 5.77E-04
cg08709672 —1.05 (0.80) 1.75E-01 243E-01 0.29 (0.12) 1.22E-03 1.91E-02
cg07826859 —1.75(0.97) 6.23E-02 1.21E-01 7 (0.15) 2.04E-03 248E-01
€g25189904 —7.02 (2.23) 1.38E-03 6.72E-03 0.74 (0.34) 2.33E-03 2.45E-02
cg17287155 —1.67(1.27) 1.74E-01 243E-01 0.31(0.18) 361E-03 7.50E-02
€g06226150 —1.37(0.88) 1.12E-01 1.74E-01 0.21 (0.14) 4.51E-03 1.24E-01
€g23161492 —541(1.57) 5.18E-04 4.04E-03 0.68 (0.24) 943E-03 3.95E-03
€g09022230 0.73 (1.23) 542E-01 6.21E-01 5(0.19) 9.65E-03 4.52E-01
€g19572487 9 (1.44) 2.96E-03 1.19E-02 0.60 (0.20) 1.07E-02 2.64E-03
€g03991871 —559 (2.37) 1.63E-02 3.74E-02 040 (0.36) 1.25E-02 248E-01
€g14580211 —043 (1.40) 746E-01 7.86E-01 043 (0.21) 1.48E-02 3.25E-02
cg15187398 —1.28 (1.31) 3.10E-01 3.90E-01 5(0.20) 1.60E-02 4.27E-01
cg10750182 —0.64 (0.67) 3.20E-01 3.90E-01 0.15 (0.10) 2.53E-02 1.05E-01
€g25949550 —2.80 (1.25) 2.24E-02 4.86E-02 0.59 (0.20) 3.19E-02 2.178-03
€g05284742 —049 (1.13) 6.58E-01 7.13E-01 0.21 (0.16) 3.24E-02 1.81E-01
€g23931381 0.71 (1.50) 6.03E-01 6.72E-01 0.20 (0.23) 3.40E-02 4.26E-01
€g26271591 —044 (1.74) 7.87E-01 8.02E-01 0.34 (0.26) 4.72E-02 1.77E-01
cg03646329 —247 (1.98) 1.99E-01 2.65E-01 0.63 (0.30) 4.72E-02 3.08E-02
€g21733098 —1.78 (249) 4.55E-01 5.38E-01 —0.03(0.38) 4.728-02 9.23E-01

Regression coefficients were reported as being multiplied by 100, as well as for standard errors

study confirmed the associations for several previously ¢g06226150 (SLC2A4RG) and cg21733098 (12¢24.32),
consistently reported loci including AHRR, F2RL3, reported by the largest meta-analysis [11] so far. In
2q37.1, and 6p21.33, and for two novel CpGs, addition, we replicated the associations for 1882 CpGs



Li et al. Clinical Epigenetics (2018) 10:18

Table 3 Associations of methylation at the 39 identified CpGs with smoking status, pack-years and years since quitting from the
between- and within-sibship analyses
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CpG Smoking status Pack-years Years since quitting
Between-sibship ~ Within-sibship ~ P* Between-sibship ~ Within-sibship ~ P* Between-sibship ~ Within-sibship ~ P*
coefficient (SE) coefficient (SE) coefficient (SE) coefficient (SE) coefficient (SE) coefficient (SE)

€g05575921 -087(0.12) —0.93 (0.08) 065 —14.53 (4.65) —6.58 (3.76) 0.18  153(057) 1.76 (0.52) 0.77
€g05951221  —0.59 (0.10) —047 (0.07) 032 —13.28 (4.08) —6.74 (2.87) 0.19  1.75(043) 1.56 (041) 0.75
cg01940273  —0.60 (0.10) —047 (0.06) 026 -804 (3.30) —-6.32(2.88) 069 136 (035) 1.77 (041) 044
cg03636183  —0.56 (0.09) —041 (0.06) 0.18 =263 (4.55) —2.93 (2.90) 096 057 (0.50) 1.18 (041) 0.34
cg06126421  —034(0.14) —048 (0.08) 037 —1331(651) —5.02 (3.69) 027 159 (068) 1.62 (0.52) 0.98
€g26703534  —0.21 (0.06) —0.30 (0.04) 017 —234(207) 274 (162) 005 —033(0.28) —041 (0.24) 0.84
€g21161138  —0.36 (0.09) —0.37 (0.06) 091  —437(4.08) —3.20(241) 081 046 (047) 1(0.36) 045
cg11660018  —0.26 (0.08) —0.20 (0.04) 046  —550(249) 051 (211) 007 101 (0.28) 0.88 (0.29) 0.75
€g09935388  —0.58 (0.14) —-053(0.10) 077  —229(539) —544 (4.01) 064 071 (0.68) 1.32 (0.59) 0.50
€g25648203 6 (0.08) —0.31 (0.05) 010 —6.26 (2.96) 5(2.12) 0.15 077 (0.36) 0.27 (0.30) 0.29
€g19859270  —0.28 (0.08) —0.22 (0.05) 051  —4.06 (349 0 (263) 057 070 (0.34) 039 (0.39) 0.54
€g03329539  —0.31 (0.08) —-0.28 (0.06) 079 —434(326) —6.70 (245) 056 078 (0.35) 0.95 (0.35) 0.73
€g24859433 5(0.07) —0.24 (0.05) 025 —3.51(281) -0.74 (212) 043 071 (0.30) 047 (0.32) 0.59
cg14753356 3(007) —-0.16 (0.04) 073 —021(3306) —343(1.78) 040 061 (0.34) 033 (0.27) 052
cg07339236 —029 (0.11) —-032(0.07) 083 —148(444) —0.56 (3.24) 087 088 (048) 062 (048) 0.70
€g04885881 —0.26 (0.08) —0.24 (0.05) 080 —068 (2.88) 0.24 (2.12) 080 045 (032) 0.26 (0.32) 0.67
€g23916896  —040 (0.15) —049 (0.10) 060 —952(534) 879 (431) 001 072 (062) -0.13(067) 035
€g14817490 8 (0.09) —0.28 (0.05) 032 —-265(372) —245 (2.15) 096 030 (042) 0.55 (0.30) 0.63
cg11902777  —040 (0.14) —044 (0.09) 080 —14.37 (4.30) —235(3.70) 003 122(054) 0.70 (0.56) 0.50
€g21611682 5 (0.05) —-0.16 (0.03) 088 —163(1.75) —1.82 (1498) 093  034(022) 042 (022) 0.80
901692968 1(0.09) —0.16 (0.06) 061 —460(3.02) 0.19 (2.32) 021 076 (0.39) 1(034) 0.63
cg08709672  —0.07 (0.06) —0.17 (0.03) 012 1.06(228) —1.11 (1.30) 041 0.8 (0.26) 0.56 (0.19) 0.13
€g07826859 6 (0.06) —0.20 (0.04) 052 —202(259) —1.05 (1.69) 075 0.09 (0.26) 1(0.24) 037
€g25189904  —046 (0.11) —0.29 (0.09) 021 —11.29 (440) —0.82 (4.21) 009 020 (057) 1.09 (0.61) 0.29
cg17287155  —0.23 (0.08) —0.19 (0.05) 065 —1.78(287) 263 (2.03) 021 049 (03) —-0.16 (0.32) 0.14
€g06226150 9 (0.05) -0.13(0.04) 036 —255(249) —2.00 (1.44) 085 —0.14 (0.26) 036 (022) 0.14
€g23161492  —028 (0.11) —0.24 (0.06) 074 —868(448) —4.66 (244) 043 055(057) 1(037) 0.68
€g09022230 2 (0.08) —0.25 (0.05) 0.17 591 (2471) —344(192) 000 —-0.13(0.34) 0.73 (0.29) 0.06
€g19572487 4(0.07) —0.20 (0.06) 054 —814(3.10) 6 (2.16) 0.10  0.75(037) 069 (0.33) 091
€g03991871  —0.39 (0.16) —-0.38(0.08) 098 —586(557) —-098 (4.13) 048  0.10(063) 0.29 (063) 0.83
€g14580211 5(0.09) —0.24 (0.05) 033 —-340(354) 0.79 (241) 033 1.00(037) 046 (0.33) 0.27
cg15187398 8 (0.08) —-0.18 (0.05) 096 —281(3.07) 155 (2.24) 025 023(039) 0.15 (0.35) 0.87
cg10750182  —0.08 (0.04) —0.11(0.03) 053 —-079(1.75) 047 (1.18) 055 007 (0.19) 023 (0.17) 055
€g25949550 3(0.07) —0.20 (0.05) 039 —1.05247) 0.12 (2.36) 0.73 044 (0.30) 1(0.34) 041
€g05284742 6 (0.06) —0.14 (0.05) 086 353(2.19) —1.18 (1.94) 0.11 020 (0.30) 030 (0.28) 0.81
€g23931381  —0.08 (0.08) —0.20 (0.06) 025 1.09 (3.58) 1.77 (2.65) 088 —0.16(043) 046 (0.37) 0.27
€g26271591 6 (0.10) —-0.32(0.07) 019 =411 (456) 0.95 (3.10) 036 041 (046) 0.52 (0.45) 0.87
cg03646329  —0.29 (0.13) —-0.27 (0.08) 090 —1007 (5.29) -122(322) 0.15 080 (0.64) 0.66 (0.46) 0.86
€g21733098  —0.37(0.16) —0.31 (0.09) 076  —4.20 (647) 2.68 (4.37) 038 0.19(0.70) —-0.14 (0.67) 0.74

Regression coefficients from the analyses for pack-years and years since quitting were reported as being multiplied by 100, as well as for standard errors
*P-value from comparing the between-sibship coefficient with the within-sibship coefficient
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Table 4 Results from the ICE FALCON analyses
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CpGs Coefficient  Model 1 Model 2 Model 3 Change
Estimate (SE) P Estimate (SE) P Estimate (SE) P Estimate (SE) P
CpGs reported by Joehanes et al.
Smoking as the predictor Bset 7461 (987) 40E-14 - - 7545 (929) 44E-16 084 (3.60) 4.1E-01
Beo-twin - - —30.84 (13.69) 24E-02 250 (9.57) 79E-01 —3334(11.60) 2.1E-03
Methylation score as the predictor Seers 4.07 (0.70) 75E-09 - - 445 (0.81) 36E-08 0.39(047) 2.1E-01
Beo-twin - - 041 (0.72) 57E-01 —100(0.82) 22E-01 —142(1.15  1.1E-01
CpGs identified from our study
Smoking as the predictor Bsetr 2770 (365) 34E-14 - - 2689 (3.79)  12E-12 —-0.81(0.89) 1.8E-01
Beo-twin - - -1236(3.86) 14E-03 —345(258) 18E-01 —890 (552) 5.3E-02
Methylation score as the predictor  Ssq 1024 (219) 13E-08 - - 11.14 247) 6.7E-06 0.90 (1.27) 24E-01
Beo-twin - - — 448 (2.65) 9.2E-02 —3.86(266) 15E-01 061 (3.77) 44E-01

Regression coefficients from the analyses in which the methylation score as the predictor were reported as being multiplied by 100, as well as for standard errors

reported by the meta-analysis. The investigation of caus-
ation suggests that smoking has a causal effect on DNA
methylation, not vice versa or being due to familial
confounding.

To the best of our knowledge, our study is the first
study to confirm the associations for ¢g06226150 and
€g21733098. ¢g06226150 is located at the promoter of,
and potentially regulates the expression of, SLC2A4RG
(solute carrier family 2 member 4 regulator gene).
SLC2A4RG is involved in the Gene Ontology pathway
for regulation of transcription (GO:0006355). Protein
encoded by SLC2A4RG regulates the activation of
SLC2A4 (solute carrier family 2 member 4). SLC2A4 is
involved in the glucose transportation across cell mem-
branes stimulated by insulin. Genetic variants at
SLC2A4RG have been found to be associated with in-
flammatory bowel disease [50] and prostate cancer [51].
cg21733098 is located at an intergenic region on
12q24.32. The region contains several long non-coding
RNA genes. Little is known about the regulatory func-
tion of ¢g21733098. The biological relevance of smoking
to blood methylation at these two CpGs is largely un-
known, and more research are warranted.

We found evidence that 18 and 20 of the identified
CpGs were also associated with pack-years and years
since quitting, respectively. Given that smokers have
lower methylation levels at the identified CpGs, the
negative associations with pack-years imply that there
appear to be dose-relationships between smoking and
methylation at the 18 CpGs, and the positive associa-
tions with years quitting smoking imply that methylation
changes at the 20 CpGs tend to reverse after cessation.
The dose-relationship and reversion have also been re-
ported by several studies [4, 9-12, 15, 16, 19, 20, 22].

Our study, as one of the first studies, provides insights
into the causality underlying the cross-sectional association

between smoking and blood DNA methylation. Our results
are inconsistent with the proposition that the cross-
sectional association is due to familial confounding, e.g.
shared genes and/or environment. The roles of shared
genes and/or environment are also in part unsupported by
that certain smoking-related loci, such as AHRR and
F2RL3, are observed across Europeans (3, 5, 8-11, 16, 19,
20, 22], South Asians [8], Arabian Asians [21], East Asians
[12, 23], and African Americans [7, 11, 13, 18], who have
different germline genetic backgrounds and environments.
Our results support that smoking has a causal effect on
the overall methylation at the identified CpGs and at the
replicated CpGs, but not vice versa. Results from the two-
step MR analysis performed by Jhun et al. [31] also sug-
gest that differential methylation at cg03636183 (F2RL3)
and cgl9859270 (GPRI15) between current and never
smokers are consequential to smoking under the assump-
tions of MR.

That smoking causes changes in methylation is also sup-
ported to some extent by other evidence. The ‘reversion’
phenomenon is in line with the ‘experimental evidence’
criterion proposed by Bradford Hill, i.e. ‘reducing or
eliminating a putatively harmful exposure and seeing if
the frequency of disease subsequently declines’ [52]. The
associations between cord blood methylation for new-
borns at some active-smoking-related loci, such as AHRR
and GFII, and maternal smoking in pregnancy [53] also
imply that smoking is likely to cause methylation changes
at these loci. Additionally, some smoking-related loci are
involved in the metabolism of smoking-released chemi-
cals. AHRR gene encodes a repressor of the aryl hydrocar-
bon receptor (AHR) gene, the protein encoded by which is
involved in the regulation of biological response to planar
aromatic hydrocarbons. Polycyclic aromatic hydrocarbons,
one main smoking-related toxic and carcinogenic sub-
stance, trigger AHR signalling cascade [16, 22]. Protein
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coded by the AHR gene activates the expression of the
AHRR gene, which in turn represses the function of AHR
through a negative feedback mechanism [54]. That hy-
pomethylation at AHRR gene caused by smoking is bio-
logically plausible.

That smoking causes changes in blood methylation
has great clinical and etiological implications: methyla-
tion might mediate the effects of smoking on smoking-
related health outcomes. As introduced above, there
have been a few studies [26—29] investigating the medi-
ating role of methylation. A better understanding of the
mechanisms of smoking affecting health is expected with
more investigations on methylation.

Our study shows the value of ICE FALCON in causality
assessment for observational associations. Associations
from observational studies can be due to confounding
and, although analyses of measured potential confounders
can eliminate some confounding, there is always the possi-
bility of unmeasured confounding, even with prospective
studies. With recent discoveries of genetic markers that
predict variation in risk factors, the MR concept has been
explored by epidemiologists. MR uses measured genetic
variants as the instrumental variable and the results of
MR might be biased due to several factors such as
strengthen of instrumental variable, directional pleiotropy,
and unmeasured confounding [55]. ICE FALCON is a
novel approach to making inference about causation. It in
effect uses the familial causes of exposure and of outcome
as instrumental variables. The familial causes are not mea-
sured but surrogated by co-twin’s measured exposure and
outcome. Thus, ICE FALCON resembles a bidirectional
MR approach [56]. The instrumental variables consider all
familial causes in exposure and in outcome, thus poten-
tially less biased by their strengths than a finite number of
genetic markers. More importantly, even should direc-
tional pleiotropy exist, the attenuation in the coefficient
for co-twin’s exposure after adjusting for an individual’s
own exposure also supports a causal effect.

Conclusions

We found evidence that in the peripheral blood from
middle-aged women, DNA methylation at several loci is
associated with smoking. By investigating causation under-
lying the association, our study found evidence consistent
with smoking having a causal effect on methylation, but
not vice versa.

Additional files

Additional file 1: Table S1. This file includes Table S1: Associations for
the 1882 replicated CpGs. (XLSX 156 kb)

Additional file 2: Table S2. This file includes Table S2: Associations of
methylation at the 1882 replicated CpGs with smoking status from the
between- and within-sibship analyses. (XLSX 100 kb)
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