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Abstract

HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular
reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV
eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins
have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved
in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation
plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in
complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG
proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a
valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules
have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will
highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with
special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to
reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.
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Background

Over the last two decades, combination antiretroviral
therapy (cART) has dramatically improved the manage-
ment of human immunodeficiency virus type 1 (HIV-1)
infection and remarkably declined the morbidity and
mortality associated with human immunodeficiency
virus  (HIV)/acquired immunodeficiency syndrome
(AIDS) [1]. Anti-HIV drugs particularly cART suppress
plasma viremia below the detection limit (<50 copies/
ml). Six classes of antiretroviral drugs currently exist,
and each class targets a different step in the viral life
cycle [2]. Despite the administration of cART, it is still
impossible to eliminate HIV in infected individuals.
Highly sensitive methods always detect residual viremia
in HIV-1-infected subjects on cART. Moreover, rebound
viremia occurs when cART is interrupted [3, 4]. It is
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generally believed that the rebound viremia occurs from
latent viral reservoirs such as resting CD4+ T cells (more
specifically central memory CD4+ T cells) and cells from
monocyte-macrophage lineage including microglial cells,
i.e., the resident macrophages of central nervous system
(CNS) [5, 6]. It seems that sterilizing or functional cure
of HIV-1 is not possible with current antiretroviral regi-
men. Various limitations are associated with current
cART [7, 8]. Lifelong adherence to cART is required to
suppress the viremia, while rebound viremia occurred
after cART interruption [4, 9]. Moreover, there are se-
vere side effects of cART treatment such as neurocogni-
tive and metabolic disorders [8, 10]. Most of the time,
HIV-drug resistant strains emerge due to high mutability
of the virus that limit and complicate the treatment op-
tions [11].

Rebound viremia from the Mississippi baby and
Boston patients suggest that functional cure for HIV will
be difficult to achieve. It may be due to the presence of
latent viral reservoirs [12, 13]. Latently infected resting
CD4+ T cells and macrophages are major viral reservoirs
in HIV-1 infection. The latent viral reservoirs persist in
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these long-lived cells that harbor integrated HIV-1
DNA, but remain transcriptionally silent, and are there-
fore hidden from immune surveillance. Hence, they can-
not be targeted by cART [14-16]. In addition, IL-7
drives homeostatic proliferation of latently infected rest-
ing memory CD4+ T cells and maintains this pool of
cells for many vyears [17]. Further, the latent viral
reservoirs are established during early infections and
pose a significant barrier to HIV-1 eradication strategies
[18-20]. The early treatment with cART can reduce the
size of these latently infected viral reservoirs, but it can-
not prevent the establishment and maintenance of HIV-
1 persistence as seen in the Mississippi baby [21].

HIV-1 transcription is often silenced by epigenetic
changes in the residual reservoirs under cART [22, 23].
These epigenetic changes remain a principle obstacle in
eradication and cure of HIV/AIDS [24]. Understanding
the molecular mechanisms involved in the establishment
and maintenance of HIV-1 latency is of prime import-
ance in order to clear or achieve small population of la-
tent reservoirs [25]. Significant progress has been made
in the development of various anti-HIV therapies that
may target HIV and prevent the disease progression. It
includes therapeutic vaccine (viral vectors and DNA-
based vaccines), cell-based therapies (adoptive T cell
therapy and chimeric antigen receptors), gene therapies
(genetically modified stem cells), broadly neutralizing
antibodies (bnAbs), and epi-drugs (viral latency revers-
ing or promoting agents) [26-31]. However, latency-
reversing or latency-promoting agents that eliminate or
suppress the latently infected cells have received much
attention [32, 33]. Current report indicates that histone
methylation by Polycomb group (PcG) proteins affect
HIV latency in early phases of infection [34]. Originally,
PcG proteins are known as transcriptional repressors
that epigenetically alter chromatin and are involved in
the maintenance and establishment of cell fate [35, 36].
In this review, we will discuss the main mechanisms in-
volved in the establishment and maintenance of HIV-1
latency, with a focus on PcG proteins. Latency-reversing
or latency-promoting approaches together with effective
therapeutic agents that constantly enhance immune re-
sponse to HIV-1 infection may be helpful to achieve a
sterilizing or functional cure.

HIV-1 latency

Pre- and post-integration latency

HIV-1 latency can be divided into pre-integration and
post-integration latency depending upon whether or
not the virus has been integrated into host genome
[20, 23, 37]. Pre-integration latency occurs from par-
tial or complete inhibition of viral life cycle (prior to
integration of viral DNA into host genome) at one or
several of the stages: incomplete reverse transcription
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process of viral RNA, low metabolic state of host cell,
presence of host restriction factors such as tripartite
motif-containing protein 5« (TRIM5a) and apolipo-
protein B mRNA-editing enzyme catalytic subunit 3G
(APOBEC3G), and blockage of import of pre-
integration complex (PIC) into nucleus (Fig. 1) [23].
In CD4+ T cells, pre-integration latency does not ac-
count for establishment of HIV-1 latency for long
duration. In contrast to CD4+ T cells, tissue macro-
phages may harbor an unintegrated form of HIV for a
longer period [37, 38]. However, pre-integration la-
tency is clinically less important and less relevant in
HIV-1 eradication strategies.

Therefore, the focus of this review is the post-
integration latency that occurs when a provirus fails to
transcribe its genome and is reversibly silenced after in-
tegration into host cell DNA. Such mechanism of viral
latency has been documented in HIV-1-infected patients
predominantly in resting memory CD4+ T cells, and
cells of myeloid lineage such as monocytes/macrophages
[39]. However, silencing mechanisms of integrated pro-
virus have been poorly understood; therefore, it is an ac-
tive area of current HIV-1 research. The epigenetic
silencing of provirus depends upon several factors: site
and orientation of integration, availability of cellular or
host transcription factors, chromatin organization of
promoter, viral protein trans-activator of transcription
(Tat) and its host-associated factors, and miRNAs. HIV-
1 latency operates at several transcriptional and post-
transcriptional levels [23]. HIV-1 integrates into host
chromosomes in a non-random fashion, mainly intronic
regions of actively transcribed genes [40]. A variety of
stimuli or inducers such as antigens, mitogens/phorbol
esters, and cytokines can activate HIV-1 from post-
integration latency [41].

Chromatin organization and epigenetic players in HIV-1
latency

The chromatin architecture is critical for the control of
eukaryotic gene expression since it modulates the accessi-
bility of cellular transcriptional factors that bind to DNA
[42, 43]. Eukaryotic DNA is packaged within the chroma-
tin; and a nucleosome is a functional and structural unit of
chromatin. A nucleosome consists of two molecules; each
contains four core histones, H2A, H2B, H3, and H4 (Fig. 2)
[44]. The amino terminal domain of each histone portrays
outside of the nucleosome core and is subject to various
types of post-translational modifications. Each nucleosome
is wrapped in 146 bp of DNA which is tightly packed in
1.65 super helical turn around the octamer [43, 45]. The
nucleosomes are linked to each other by a small fragment
of linker DNA which is stabilized by H1 histone. Further,
decondensed genome or euchromatin is reported to be
linked to actively transcribed genes, while the condensed or
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Fig. 1 Cellular and virological events in early HIV-1 infection. HIV-1 infects the cells having CD4 receptor and either of the coreceptor CXCR4 and/or CCRS.
The resting cells are less permissive to viral infection due to low metabolism characterized by low level of available dNTPs for energy source and reverse
transcription. Various cellular intrinsic factors influence HIV-1 infection process. TRIM5a targets viral capsid and interferes with uncoating process of viral
core. Cytidine deaminases, APOBEC3G, or F cause mutation in viral DNA resulting virus inactivation. Tetherin arrests viral particles on the cell membrane
and inhibits virion budding. SAMHD?1 inhibits viral infection by depleting intracellular pool of dNTPs. Pre-integration latency refers to unintegrated form of
HIV-1 genome. In post-integration latency, the integrated form of proviral DNA is silenced by various DNA and chromatin-modifying enzymes
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Fig. 2 Histone methylation pattern in HIV-1 transcription and latency: histone can undergo post-translational (methylation) modifications. These modifications
could determine the gene expression by regulating the local and global chromatin architecture. Trimethylation marks of lysine 4, 36, or 79 on H3 results in
gene activation while di or trimethylation of lysine 9 and trimethylation of lysine 27 on H3 is associated with chromatin condensation
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heterochromatin to transcriptionally inactive region of gen-
ome [43]. The chromatin condensation or decondensation
status can be altered through a variety of post-translational
modifications [23, 43].

Histone modifications are all reversible and include
methylation, acetylation, sumoylation, ADP ribosylation
ubiquitination, and phosphorylation [46]. However, we
will focus on histone methylation that is one of the most
important histone marks for HIV-1 repression mediated
by PcG proteins. Histone lysine methyltransferases
(HKMTs) catalyze the transfer of methyl groups from
the S-adenosylmethionine (SAM) to lysine residue.
Histone methylation has no effect on histone-DNA
interactions rather it provides the platform for the re-
cruitment of various chromatin-modifying enzyme com-
plexes [46-48]. In contrast to acetylation, histone
methylation alters the steric and hydrophobic properties
of histone which is usually associated with activation as
well as repression of transcription. The levels of histone
methylation can be mono-, di-, or tri-methylated, de-
pending upon particular functional properties of the as-
sociated  methyltransferase. ~The major histone
methylation marks include lysine 4, 9, 27, 36, and 79 of
H3 and lysine 20 of H4. Generally, H3K4, H3K36, and
H3K79 methylation are linked to euchromatin (tran-
scriptionally active) while H3K9, H3K27, and H4K20
methylation are linked to heterochromatin (transcrip-
tionally inactive) (Fig. 2) [49-51]. Moreover, H3K9 di-
and trimethylation are associated with transcription re-
pression while H3K9 monomethylation is a transcrip-
tional activation mark. Histone methyltransferases are
histone-modifying enzymes which catalyze the transfer
of methyl groups to lysine or arginine residues of histone
proteins. It is a reversible process, and histone demethy-
lases actively remove the methyl groups [45]. The dis-
covery of histone lysine methyltransferase (HMT),
suppressor of variegation 3-9 homolog 1 (Suv39h1), has
increased our understanding of gene expression regu-
lated by histone methylation [52, 53]. The Suv39hl is
conserved from yeast to human, and its homolog in
Drosophila is Su(var) 3-9 [54, 55]. HMTs have been
characterized by the presence of SET (Su(var)3-9, En-
hancer of Zeste, Trithorax) domain. The SET domain
contains catalytic HMT activity [56]. Currently, approxi-
mately seven SET domain families have been described
which are suppressor of variegation 3-9 (Suv39), SET1-2,
retinoblastoma protein-interacting zinc-finger (RIZ), en-
hancer of zeste (EZ), suppressor of variegation 4-20
(Suv4-20), and SET and MYND domain-containing pro-
teins (SMYD) [57]. The differential regulation (activation
and repression) and transcription of a gene is mediated
through methylation of histone at different residues. Ac-
tually, different histone modifications allow the cell to
respond through various chromatin-associated proteins
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which recognize specific modifications on histone resi-
dues [49]. For instance, heterochromatin protein 1
(HP1) binds to methyl group on H3K9 leading to gene
repression [58]. While transcriptional activator WD
repeat-containing protein 5 (WDR5) recognizes methyl-
ated H3K4 and promotes gene activation [59]. In con-
trast to HMT, the HDMs remove methyl groups from
histones. In this regard, two classes of HDMs have been
reported, ie., Jumonji C (jmjC) domain-containing pro-
teins and lysine-specific demethylase 1 (LSD1). LSD1
can remove mono- or dimethylation marks on histone
while jmjC domain containing an enzyme can remove
all three methylation marks [60]. Following the HP1 re-
cruitment to methylated histone, DNA methyltransfer-
ases (DNMTs) are then recruited at that site and
reinforce inhibitory signal by promoting the methylation
of nearby sites on DNA [61]. Though DNA methylation
and histone methylation are executed by different en-
zymes, they maintain a close biological relationship in
mediating epigenetic silencing which is further termed
as double lock [62, 63].

Histone methylation and HIV-1 latency
The chromatin organization and epigenetic regulation of
HIV-1 promoter are key players in the control of viral
transcription and latency. Two nucleosomes (nuc-0 and
nuc-1) are precisely positioned on HIV-1 long terminal
repeat (LTR) in several latently infected cell lines [42, 64,
65]. The nuc-1 is positioned immediately downstream of
transcription start site and imposes a block to transcrip-
tion initiation and elongation (Fig. 3) [23]. During la-
tency, Tat is absent and only short mRNA-containing
trans-activation response elements (TAR) region is tran-
scribed. Nuc-1 is kept epigenetically silenced via several
transcriptional factors such as COUP-TF-interacting
protein 2 (CTIP-2), Ying-yang 1 (YY1), C-repeat binding
factor 1 (CBF-1), and p50/50 homodimers [20, 23, 43,
66, 67]. Following transcriptional activation, nuc-1 is
precisely remodeled and is specifically involved in the
transcriptional activation process. Transcription factors
such as nuclear factor kappa B (NF-kB) (p50/65 hetero-
dimers) and Specificity protein 1 (Spl) bind to the 5’
HIV-1 LTR and hence enhance the HIV-1 transcription.
In addition, viral protein Tat is involved actively in tran-
scriptional process via binding to TAR [23]. Tat interacts
with various cellular transcriptional activation factors
such as CDK9, cyclin T1, and p300, and thus allows the
transcriptional elongation of HIV-1 genes [23, 39].
Suv39hl and G9a are primarily participated in
H3K9me3 and H3K9me2, respectively. These histone
modifications have been reported to play an important
role in HIV-1 gene silencing in different cellular model-
ing including primary cells such as peripheral blood
mononuclear cells (PBMCs) isolated from HIV-1-
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infected patients [68]. Actually, Suv39hl initiates the for-
mation of heterochromatin via recruiting HP1. HP1 pro-
tein exists in three isoforms: HPla, HP1P, and HPly.
Suv39hl is required for the deposition of trimethylation
marks on H3, and then, trimethylated H3 serves as a
platform for HP1, more specifically HP-1y [69, 70]. Fol-
lowing the knockdown of HPly, Suv39hl is displaced
from HIV-1 promoter, and the level of H3K9me3 is also
reduced [42, 68]. The HIV-1 LTR is occupied simultan-
eously by the two transcriptional activators: positive
transcription elongation factor b (PTEFb) and P300/
CBP-associated factor (PCAF). This results in the activa-
tion of viral transcription. Similarly, CTIP-2 also partici-
pates in the deposition of H3K9 trimethylation marks
(42, 71].

In fact, Spl binds to its three binding sites located at
5" LTR of HIV-1 promoter and recruits histone deacety-
lases (HDACs) (HDAC1 and HDAC?2) to viral promoter
via CTIP-2, leading to H3K9 deacetylation. This
phenomenon is a prerequisite for Suv39hl-mediated
H3K9me3 [71, 72]. Further, Suv39hl interacts and re-
cruits CTIP-2 at HIV-1 promoter that results in the for-
mation of multi-enzyme complex consisting of HDACI,
HDAC2, and HP1 (HPla, HP1B, and HP1y), and thus
creates repressive chromatin environment at viral pro-
moter (Fig. 3). Notably, Suv39hl and CTIP-2 interact
functionally to maintain the repressive chromatin envir-
onment at HIV-1 LTR. Upon CTIP-2 downregulation,
the level of Suv39hl recruitment and H3K9me3 is de-
creased with HP1 displacement. [23, 42]. Moreover,
Suv39hl-mediated H3K9me3 requires a previous de-
methylation step of H3K4 by LSD-1. In this regard,
CTIP-2 plays a critical role during HIV-1 latency. CTIP-
2 interacts with LSD-1, and then this multi-enzyme

complex is recruited to HIV-1 LTR. The CTIP-2 and
LSD-1 complex then synergistically downregulate the
HIV-1 replication and transcription by modulating the
epigenetic status of H3K9 in microglial cells, the main
target of HIV-1 infection in CNS [73, 74]. In addition to
Suv39hl, G9a, another methyl transferase, also regulates
HIV-1 latency. Upon the G9a knockdown, the increased
LTR or viral transcription and reduced H3K9me2 has
been observed. The treatment of BIX01924, a G9a in-
hibitor, results in decreased H3K9me2 activity, thereby
reactivating HIV-1 LTR from latency [42, 75]. Further,
G9a-mediated H3K9me2 recruits various enzymatic
complexes including HP1 and thereby participating in
the development and maintenance of HIV-1 silencing
and latency [22]. In addition to H3K9me2 by G9a, En-
hancer of Zeste-2 (EZH2) that mediates H3K27me3 is
present at high level at the promoter of HIV-1 latent
reservoirs [76, 77]. Recently, it has been reported that
H3K27me3 of HIV-1 promoter plays an important role
in the establishment of HIV-1 latency [77, 78]. During
latency, increased H3K27me3 has been observed and
thus represents a repressive chromatin structure while
EZH2 can be displaced following proviral reactivation in
T cells by latency-reversing agents (LRAs) [79]. Several
cellular transcription factors such as CBF-1 are respon-
sible for the recruitment of EZH2 at 5" LTR of HIV-1
promoter. The knockdown of EZH2 results in loss of
H3K27me3 and reactivates HIV-1 from latency more
strongly than that of Suv39hl and G9a [42]. EZH2 not
only induces HIV-1 latency through H3K27me3 but also
serves as a binding plate form of multi-enzyme complex
that further suppresses HIV-1 transcription epigeneti-
cally. Moreover, EZH2 inhibitor 3-deazaneplanocin A
(DZNep) significantly reactivates HIV-1 latent reservoirs
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while the selective inhibitors of Suv39hl and G9a have
modest effect on HIV-1 latency. These findings have
suggested that histone methyltransferase inhibitors
(HMTIs) particularly EZH2 inhibitors could represent
an attractive and promising therapeutic drug target in
the eradication of HIV-1 latent reservoirs [79, 80].

Polycomb group proteins

Polycomb genes were initially identified in Drosophila
melanogaster as the regulators of anterior and posterior
body patterns through the repression of Hox genes,
which is now they are considered as key regulators and
global epigenetic transcriptional repressors of cell fate
[81, 82]. Advancement in the recent research have ex-
tended our understanding about how the homeotic phe-
notypes are regulated by polycomb genes [83, 84]. In D.
melanogaster, members of polycomb group (PcQG)
proteins exist as multiprotein complex that interacts
with chromatin. Also, these complexes mediate the
heritable repression of gene expression while the mem-
bers of Trithorax group (TrxG) activate the same genes
[82, 85, 86]. In mammals, three main families of poly-
comb genes have been identified: Polycomb-repressive
complex 1 (PRC1), Polycomb-repressive complex 2
(PRC2), and Pho-repressive complex (PhoRC) (Fig. 4
and Table 1). The PRCs interact with chromatin through
Polycomb response elements (PREs). There are hun-
dreds to thousands of PREs which act as binding sites
for PRC1 and PRC2 [86—88]. Through different mecha-
nisms, PRCs are recruited at their genomic target sites
by CpG islands, non-coding RNAs and transcription fac-
tors [89]. The number of polycomb genes identified dur-
ing evolution from invertebrates to vertebrates rises
approximately 20 in D. melanogaster to 37 in human
and mouse [82, 89]. However, recent data suggests that
the variants and diversity of PRCs may be greater than
expected [81, 90, 91].

Page 6 of 19

Polycomb-repressive complexes

Polycomb-repressive complex 1

The purified form of PRC1 contains a group of four core
proteins: polyhomeotic (PH), posterior sex combs (PSC),
polycomb (PC), and sex comb extra (SCE) also termed as
dRING (Fig. 4 and Table 1) [92, 93]. Some additional pro-
teins were also purified simultaneously with these compo-
nents including the elements of multi-protein complexes
such as SMRT-related and ecdysone receptor-interacting
factor (SMRTER), member of SIN3 family protein
(SIN3A), menin-MLL inhibitor-2 (MI-2), and TATA-
binding protein-associated factors (TAF)II62, TAFII85,
TAFII110, TAFII250, and ZESTE protein [94, 95]. The
PRC1 adds ubiquitlytion to histone H2A, and the RING1
protein has monoubiquitylation E3 ligase activity that is
specific for the lysine 119 of H2A (H2AK119ub). This ac-
tivity is also associated with repressive chromatin struc-
ture (Fig. 5 and Table 1) [96]. H3K27me3 mark is
specifically recognized by the chromo-domain of PC,
while chromatin remodeling is inhibited by PH and PSC
component of PcG proteins. The primary complexes of
PRC1 can be purified simultaneously with sex comb on
midleg (SCM) which assigns the recruitment of PRCI to
PREs [97]. The PRC1 proteins particularly SCE and PSC
are the constituents of another polycomb complex entitled
as dRING-associated factors (ARAF) which contain lysine
demethylase-2 (KDM2) [98]. KDM2 belongs to group of
JmjC domain-containing histone demethylase and is the
single homolog of mammalian KDM2A, KDM2B, and
KDM?7 [99]. KDM2 has been known to mediate demethyl-
ation of H3K4me3 and H3K36me2 while it is also re-
quired for efficient ubiquitination of H2A. Moreover, it
also acts as an enhancer of PcG protein and suppressor of
the Trithorax (Trx) and absent, small, or homeotic discs 1
(Ashl). Actually, Trx and Ashl belong to TrxG of tran-
scriptional activator proteins, which maintain homeotic
gene expression during Drosophila development [82]. The
PSC induces the SCE ubiquitin ligase activity; however, it
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Table 1 PcG proteins core complex components in D. melanogaster and human

PcG subunits in Drosophila melanogaster PcG subunits in

Protein domains

Biochemical functions

humans
Polycomb-repressive complex 1 (PRC1)
Polyhomeotic proximal (PH-P) and distal PHC-1/EDRT, C2-C2 zinc-finger and SAM Higher order interaction?
(PH-D) PHC-2/EDR2, Domain
PHC-3/EDR3
Posterior sex comb (PSC)/suppressor 2 of ~ BMI1/PCGF4 Ring finger domain Co-factor for SCE and

MEL18/PCGF2
NSPC1/PCGF1
RNF110/ZFP144

CBX2/HPC1
CBX4/HPC2
CBX6, CBX7
and CBX8/HPC3

RING1/RINGTA,
RNF1
RING2/RING1B, RNF2

SCMH1
SCML2

Zeste (Su(2)2)

Polycomb (PC)

Sex comb extra (SCE)/dRING

Sex comb on midleg (SCM)

Polycomb-repressive complex 2 (PRC2)

Enhancer of Zeste (E(2)) EZH1 and EZH2/

(C3HC4 Zinc-finger)

Shadow domain and
chromodomain

Ring-finger domain
(C3HC4 Zinc-finger)

CXC domain, SET domain, SANT

compacts chromatin

Binds to H3K27 trimethylation marks and
CBX4 is reported to be a SUMO E3-ligase

Ubiquitinates H2AK118 (H2AK119 in
vertebrates) and compacts the chromatin

MBTs, SAM, DUF3588 and Zinc- ?
finger and SPM domain

Catalyzes trimethylation (H3K27)

KMT6 and homolog domain | and Il
Suppressor of Zeste 12 (Su(2)12) SUZ12 C2-H2 Zinc-finger, VEFS Box, ala- Enhances the enzymatic activities of EZ
nine rich and Glycine rich and also important for nucleosome binding
Extra sex comb (ESC) EED or WAIT-1 WD-40 repeats Stimulates H3K27 methyltransferase
Extra sex comb like (ESCL)
Chromatin assembly factor 1 (Caf1)/ RbAp46/RBBP7 WD-40 repeats Binds to histones and suppressor
nucleosome remodeling factor 55 (Nurf55) RbAp48/RBBP4 of Zeste 12
Polycomb-like (PCL) PHF1/PCL1 PHD finger and tudor domain Induces trimethylations and
MTF2/PCL2 recruits PRC2
PHF19/PCL3
Pleiohomeotic (Pho)-repressive complex (Pho-RC)
PHO YY1, YY2 Zinc-finger DNA binding
SFMBT (CG16975) MBT and SAM Bind to mono- and

dimethylated histone at
H3K9 and H4K20

also contains a Jumonji C (JmjC) domain that facilitates
the demethylation of H3K36. H3K36 is a signal of gene ac-
tivation in its methylated state. As a consequence, the PcG
proteins integrate the silencing marks while removing the
activation marks in chromatin as well, which are intro-
duced by TrxG [100]. Polycomb group genes in Drosoph-
ila have closely related homologs that function
alternatively during developmental stages, in different tis-
sues or even in the same cell at different target genes.
There are two polyhomeotic genes, i.e., polyhomeotic dis-
tal (PH-D) and polyhomeotic proximal (PH-P); however,
their functions have been poorly investigated. In the same
manner, suppressor 2 of zeste (Su(z)2) and PSC are closely
related and are said to have partially homolog functions
[101, 102]. Two other pair of PcG proteins which have
partially or completely overlapping functions are extra sex
comb (ESC) and extra sex combs like (ESCL) and

polyhomeotic (PHO) and polyhomeotic like (PHOL) [103,
104]. In humans and mice, obviously than D. melanoga-
ster, the number of these proteins has other homologs that
might function as alternatively in different tissue or at dif-
ferent targets [105].

Polycomb-repressive complex 2

The primary core component of polycomb-repressive
complex 2 (PRC2) contains four proteins: suppressor of
zeste-12 (Su(z)12), extra sex comb (ESC) or alternatively
extra sex comb like (ESCL), enhancer of zeste (E(z)), and
chromatin assembly factor 1 (CAF1) also referred as nu-
cleosome remodeling factor 55 (NURF55) (Fig. 4 and
Table 1). E(z) contains a SET domain that catalyzes
mono-, di-, and trimethylation of H3K27, which is a typ-
ical chromatin silencing mark. The ESC induces the en-
zymatic activity of E(z); however, NURF55 or CAF1 and
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Fig. 5 Epigenetic silencing mechanism of PcG proteins. Following the recruitment of PRC2 to chromatin, the histone methyltransferase E(Z) catalyzes
trimethylation onto H3K27. Subsequent recruitment of PRC1 occurs through affinity binding of the chromodomain of PC subunit to H3K27me3. The PRC1
dRING monoubiquitylates onto H2K119 which further consolidates the transcriptional repression and enhances the chromatin compaction. Pho-RC

comprises of PHO and SFMBT which binds to PRE via DNA binding activity of PHO. PHO then recruits PRC2 which methylate local chromatin

Su(z)12 are important for nucleosome binding. PRC2
complex contains a distinct form of an additional pro-
tein polycomb-like (PCL). PCL protein is a classical PcG,
which has been purified from Drosophila embryo which
exists in association with E(z), Su(z)12, and ESC [93].
PCL protein is found at polycomb sites on polytene
chromosome that is required for polycomb silencing of
homeotic genes (Hox genes). Complete loss or mutation
in PCL results in the activation of Hox genes and loss of
H3K27me3 mark at target gene [106]. These five protein
components are primarily responsible for trimethylation
around PREs of H3K27, essential to sustain the re-
pressed state (Fig. 5) [107]. In Drosophila, all main mor-
phogenetic pathways are controlled by polycomb group
genes, and these silencing are characterized by the for-
mation of highly trimethylated of H3K27. The
localization of PcG proteins to PREs has been investi-
gated by genome wide high-resolution mapping [108].
Conversely, in mammals, the representation is more
complex as PRC2, PRC3, and PRC4 complexes have
been characterized biochemically, and their differences
rely on the presence of different isoforms of embry-
onic ectoderm development (EED) (homolog to ESC)
[109]. In mammals, the PcG proteins contain three
primary core components, Su(z)12, EED, and enhan-
cer of zeste homolog 2 (EZH2) or its homolog EZH1.
EZH1 and EZH2 are the components of PRC2 com-
plex that catalyzes mono-, di- and trimethylation of
H3K27 [110, 111]. The trimethylation of H3K27 can
act as a docking site for the protein subunit of PRCI,
more specifically, the chromobox protein homolog
(CBX) that provides a schematic mechanism for the
recruitment of PRC1 to the target genes. The CBX
forms the core of PRC1 together with one member of
the human polyhomeotic (HPH) family (HPH-1 and

HPH-3), ring fingers family (RING-1) (RING-Ia and
RING-Ib), and polycomb group ring fingers family
(PCGF) (PCGEF-I to 6). Further, this complex catalyzes
the mono-ubiquitination of histone-2A at lysine-119
(H2AK119ub) through RING-1 family E3 ligases, i.e.,
RING-1a and RING-1b [112, 113].

Pho-repressive complex

The only PcG proteins that bind directly to the DNA are
Pleiohomeotic (PHO), and its closely related homolog
PHO-like (PHOL). The PHO and PHOL are Drosophila
homologs of the mammalian factor Yin-Yang 1 (YY1)
and Yin-Yang 2 (YY2), respectively (Figs. 4 and 5 and
Table 1) [103, 114]. The PRC1 and PRC2 have been
functionally well characterized in Drosophila and mam-
mals; however, PHO and PHOL have not been observed
as an important component of PRC1 and PRC2 [91,
115-117]. Instead, PHO has been purified to exist in
two different complexes in Drosophila. One of them is
associated with chromatin remodeling machine, ie.,
INO80. The second complex includes MBT-domain pro-
tein (SEMBT) involved in the silencing of homeotic
genes. The repeats of MBT domain specifically bind to
mono and dimethylated H3K9 and H4K20, respectively
[96, 118, 119]. Different analysis of PHO and Pho-
repressive complex (Pho-RC) at selected target genes
have showed that it was specially localized at PRE se-
quence, and many of them are co-occupied by PRC1
and PRC2 complexes [89, 120, 121].

HIV-1 latency and PcG proteins

The establishment of HIV-1 latency occurs by two ways.
Firstly, the PcG proteins particularly PRC2 mediate
mono-, di-, and trimethylation of H3K27. These repres-
sive marks dominate the viral transcription in early
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phase of infection. In the second phase, the PRC2-
mediated viral latency from an ongoing active HIV-1 in-
fection [34]. In fact, PRC2 acts as a binding scenery for
various DNA and histone-modifying enzymes including
histone deacetylases [122], the SWItch/sucrose non-
fermentable (SWI/SNF) bromodomain component con-
taining Brd-7 [123] and DNA methyltransferase 1
(DNMT-1) [76]. The HIV-1 5°-LTR contains promoter
and enhancer elements which induce HIV transcription
by host transcription factors, while DNA methylation at
5" LTR together with chromatin conformations restrict
HIV reactivation characterizing a significant mechanism
of latency maintenance [90, 124—126]. It has been ob-
served that PRC1 and PRC2 are tightly related to control
of HIV-1 latency, and the breaking agents of these com-
plexes may be helpful to reactivate HIV from its latent
reservoirs (Table 2) [127, 128].

Enhancer of Zeste 2

Enhancer of Zeste homolog 2 (EZH2) is a member of
PRC2 that contains histone methyltransferase activities,
and it also acts as an epigenetic regulator with critical
consequences of promoting HIV-1 gene silencing. The
enzymatically active EZH2 is responsible for catalyzing
methylation (mono, di, and tri) of H3K27, while the
other three subunits such as retinoblastoma protein-
associated protein 46/48 (RbAp 46/48), EED, and
Su(z)12 promote chromatin compaction by enabling the
enzymatic activities of EZH2 [129]. In HIV-1 latent res-
ervoir, particularly in resting CD4+ T cell, the silencing
of HIV-1 gene expression has been linked to the in-
creased expression of EZH2. Their activities are upregu-
lated by different mechanism such as signaling pathway,
post-transcriptional modifications, highly reactive oxy-
gen species, miRNA, and transcriptional factors; while
on the other hand, they are downregulated by Akt sig-
naling pathway which inhibits EZH2 activities and thus
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reactivate the HIV-1 from latency [130, 131]. Further,
the presence of histone lysine methyltransferase compo-
nent of PRC2 (EZH2) and Suv39hl plays a unique role
in the HIV-1 gene silencing. Remarkably, 40 and 5% re-
activation of HIV-1 latent reservoirs are observed upon
EZH2 and Suv39hl knockdown, respectively [77, 79].
Recently, it has also been reported that PRC2 plays a
critical role in the establishment of HIV-1 latency. Two
latency models, i.e., HeLa/LTR-luciferase and Ul cells
have been used to evaluate the function of PRC2 in the
regulation of HIV-1 latency. Knockdown of PRC2
components: EZH2 and Su(z)12, reactivate HIV-1 from
latent reservoirs [34]. Moreover, the repression of
Su(z)12 increases sensitivity of HIV-1 Tat, and vice versa.
Similar results were observed in Ul cells as viral tran-
scription was enhanced in EZH2 and Su(z)12 knock-
down cells [34]. Some other reports have also revealed
that EZH2, the enzymatic component of PRC2, performs
a key role in HIV-1 post-integration latency [132].

Embryonic ectoderm development

The human embryonic ectoderm development (EED) is
a major component of PRC2 and of the superfamily of
WD-20 repeats also referred as WAIT-1 in human. Ini-
tially, EED was identified as cellular partner of HIV-1
matrix protein (MA), but later on, their interaction was
also found with HIV-1-negative regulatory factor (Nef)
and HIV-1 integrase (IN) [132]. The interaction of EED
with IN favors the oligomerization of IN, which in turn
enhances the HIV-1 integration process [133]. The inter-
action of EED with viral proteins inhibits HIV-1 matur-
ation and its release thus indirectly promotes HIV-1
latency [134]. In human, four different forms of EED
have been identified due to different translational initia-
tions at particular codons for Val-1, Val-36, Met-95, and
Met-110, related to the isoform EED-1, EED-2, EED-3,
and EED-4, respectively [135, 136]. A moderate antiviral

Table 2 Cross talk between PcG proteins and HIV-1 in the maintenance of viral latency

Polycomb group protein PcG complex HIV-1 proteins Biochemical interaction
Embryonic ectoderm development (EED) PRC-2 MA, IN and Nef Induces antiviral activities at the last stage
of HIV-1 replication.
Phosphorylated enhancer of Zeste (p-EZH2) PRC-2 Tat Induces HIV-1 latency through Akt signaling pathway.
Retinoblastoma binding protein 4 PRC2 HIV-1 5" LTR Inhibits the production of viral particles at
(RbAp48/RBBP4) the transcriptional level.
Enhancer of Zeste 2 (EZH2) PRC2 HIV-1 5" LTR Induces repressive mark on H3K27me3.
Suppressor of Zeste 12 (Su(2)12) PRC2 HIV-1 5" LTR Catalyzes trimethylation in constitutive
heterochromatin on H3K9 and H3K27.
Ying Yang 1 (YY1) PhoRC 5"LTR Represses HIV-1 transcription and viral production.
BMIT and RINGTA PRC1 5"LTR Regulate HIV-1 latency.
Catalyze ubiquitination at H2K119
CBX PRC1 5'LTR Binds to H3K27 trimethylation marks produced

by PRC2 and induces E3-ligase activities.
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activity is associated with EED isoform EED-3 and EED-
4 in the early phase of infection, while a strong negative
effect on HIV-1 replication has been observed at late
phase of viral infection [134]. EED-3 and EED-4 do not
inhibit the expression of Gag protein, but instead it may
interfere with viral packaging and genome assembly
[134]. Moreover, EED together with B lymphoma Mo-
MLV insertion region 1 (BMI-1) and RING-2 induces
HIV-1 gene silencing by catalyzing trimethylation and
ubiquitination at H3K27 and H2A, respectively [132].
Following the knockdown of polycomb genes such as
bmi and eed reactivates HIV-1 from latent reservoirs.
This reactivation is associated with decreased
H3K27me3 and H2AK119ub, which reveals that these
repressive epigenetic marks control HIV-1 latency [127].

Suppressor of Zeste 12

Suppressor of Zeste 12 (Su(z)12) is an important compo-
nent of EZH2 and EED complex, which is necessary for
H3K27me3 and H3K9me3 in facultative and constitutive
heterochromatin, respectively. However, they regulate
H3K9me3 in an EZH2-independent manner [137].
Su(z)12 is also an important component of PRC2, which
stabilizes EZH2 and hence enhances the HMTase activ-
ity of the complex. It contains two stretches of con-
served amino acids that consist of C2H2 zinc finger-
binding domain and C-terminal Vrn2-Emf2-Fis2-Su(z)12
(VEFS) domain required for the interaction between
Su(z)12 and EZH2 [106]. Further, the region spanning
residues of Su(z)12 (79-91) can act as the binding sur-
face for RbAp46/48 [138]. However, mutation in Su(z)12
leads to strong homeotic transformation and lethality in
Drosophila. Similarly, if Su(z)12 is missing in mice, it
dies during embryogenesis at early post-implantation
stage [139]. In mammalian cells, the knockdown of
Su(z)12 causes demethylation of both H3K27me3- and
H3K9me3-repressive marks and alters the distribution of
HPla [140]. Moreover, the genetic knockdown of
Su(z)12, RbAp 46, and EED in Jurkat T cells is associated
with proviral reactivation indicating that Su(z)12 and
EED are also crucial for the methyltransferase activity of
EZH2. Further, the downregulation of Su(z)12 leads to
enhanced sensitivity of Tat-mediated transactivation of
HIV-1 LTR. All of these components of PRC2 are re-
cruited at HIV-1 promoter and impose H3K27me3 mark
that silences the driving transcription of HIV-1 [78].

Retinoblastoma-associated protein 46/48

Retinoblastoma associated protein 46 and 48 are also re-
ferred as RBBP7 and RBBP4, respectively. They are
present in the CAF1 and play a critical role in the chro-
matin assembly [141]. Retinoblastoma-associated protein
46/48 (RbAp 46/48) is equivalent to 50 kDa WD repeat
protein that is highly homologous to histone chaperones.
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It is present in HDAC and PcG complexes, therefore
playing an important role in the establishment and
maintenance of chromatin structure [142]. RbAp 46/48
recruits PRC2 complex to nucleosomes by binding to
histone H3-H4 heterodimers, although it is not required
for HMTase activity of EZH2, but both protein 46 and
48 are the components of PRC2 and remain unclear
whether they have diverse function in the context of
PRC2 [143]. Similarly, their role in the establishment of
HIV-1 latency has not been well studied to date [144].
Recent studies conducted by Wu group have demon-
strated that RbAp 46/48 inhibits HIV-1 production at
the transcriptional level. The knockdown of RbAp 46/48
markedly enhance the production HIV-1 particles which
clearly indicates that the RbAp 46/48 can act as tran-
scriptional inhibitors of HIV-1 transcription. This may
prompt the generation of specific therapies and may use
as new drug targets in purging HIV-1 latent reservoirs
[145].

Ying Yang factor 1

YY1, a member of PcG proteins, is known as NF-El,
UCRBP, and CF1. It is a zinc finger-containing transcrip-
tional regulator and ubiquitous cellular factor that plays
a critical role in both activation and repression of gene,
depending upon the promoter context. YYI was initially
cloned and characterized by two independent groups at
the same time [146, 147]. Over the last 25 years, YY1
was extensively characterized and became a rigorous
focus of study due to its highly conserved sequence and
ubiquitous in nature [148, 149]. Another cellular factor
LSF (late SV40 factor) is known as CP-2, LBP-1c, or
UBP-1 binds to 5’-LTR (-10 to +27) and recruits YY1 to
LTR through its zinc finger domain. YY1 and LSF co-
operate to form a complex called repressive complex se-
quences (RCS) which recruit HDACI that specifically
and synergistically represses HIV-1 LTR expression and
viral production by maintaining nuc-1 in hypoacetylated
state [150, 151].

Epi-inhibitors and HIV-1 latency: an area of
pharmaceutical targeting

HIV-1 latency is controlled by a wide-range of factors
and thus to wipe out HIV latent reservoirs may require
multiple strategies. The shock-and-kill strategy has
emerged to deal with this perplexing problem, ie.,
activation of latent reservoirs from infected cells in com-
bination with intensified cART; therefore, the eradica-
tion of HIV-1 latent reservoir pool may be accomplished
[43, 152]. Furthermore, the complete elucidation of
HIV-1 silencing in the cellular latent reservoirs is a con-
siderably challenging task in HIV-1 eradication strat-
egies. In this way, the recruitment of HMTs, HDACs:,
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and DNMTs may influence the discovery of new drug
targets and therapeutic breaks (Fig. 6).

Numerous latency reversal compounds have been ex-
plored which transcriptionally reactivate HIV-1 from its
latent reservoir. These LRAs could be categorized into
four different epigenetic drugs: histone methyl transfer-
ase inhibitors (quinazoline derivatives); DNA methyl
transferase inhibitors (decitabine, azacitidine, CP-4200,
S-100); histone deacetylase inhibitors (vorinostat,
romidepsin, panobinostat, valproic acid); and histone
demethylase inhibitors (polyamine analogues) [23, 153,
154]. Until now, three different types of DNMT
inhibitors, ie., decitabine (dacogen), 5-azacitidine
(vidaza), and panobinostat (farydak) and HDAC inhibi-
tors, i.e., vorinostat (zolinza), belinostat (beleodaq), and
romidepsin (istodax), have been approved for cancer
therapy. Furthermore, a diverse portfolio of LRAs is
under study and is currently at different pre-clinical and
clinical stages as novel therapies for various conditions
[155, 156]. Histone methyltransferases are also known as
protein methyltransferases (PMTs) because they methy-
late non-histone protein as well. The histone methyl-
transferases are divided into three main categories, i.e.,
writers, readers, and erasers. Modifications are created
by the writer enzymes, while reader proteins recognize
these modifications and eraser enzymes remove the
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same modifications. HMTs are also involved in the re-
pression of latent HIV-1, as discussed above, but the
treatment of latently infected cells with HMTIs which
target G9a, EZH2, Suv39h1, and H3K27me3 marks can
lead to reactivation of silenced provirus at transcription-
ally inactive viral promoter [78, 157]. In contrast to
HDACIs and DMTTIs, the search for HMTIs is still in its
infancy. During last 4 years, different types of high-
quality small molecule inhibitors have been discovered,
ie, UNCO0638 and UNCO642 for G9a; EPZ-6438,
GSK126, and EI1 for EZH2; UNC1999 for EZH2/EZH]I;
EPZ004777, SGC0946, and EPZ-5676 for DOTI1L, and
(R)-PFI-2 for SETD7. These molecules have been uti-
lized in a number of animal-based disease models and
cell-based studies [158—163].

BIX01294, a diazepin-quinazolinamine derivative,
was reported firstly as a selective small molecule in-
hibitor of G9a- and G9a-like protein histone methyl
transferase which was a great advancement in the
field of histone methyltransferase inhibitors [164].
BIX01294 is active at the promoter of G9a target
genes and can selectively reduce H3K9me2 and also
reactivates HIV-1 latent reservoir in vitro [165]. Al-
though, in cellular assays, it is toxic at concentration
above 4.1 pM. Moreover, the optimization of this
quinazoline (BIXO01294) scaffold has led to the
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development of other several cellular and chemical
probes such as UNC0224, UNC0321, UNC0638, and
UNCO0642. However, probe UNCO638 and UNC0642
have been extensively characterized in a series of cel-
lular, chemical, and biophysical assays. These inhibi-
tors have not only exhibited high in vitro
effectiveness and better selectivity but also displayed
the targeted activities in cellular models. These
chemical probes are a useful tool to interrogating the
role of G9a in health and diseases in cell-based stud-
ies [164, 166—-168]. These findings have opened the
door of pharmacological inhibitions of histone methy-
lation at H3K27, H4K20, and H3K9. In 2012, Bou-
chat et al. reported that HMTIs BIX01294, chaetocin,
and the broad spectrum DZNep reactivate the latent
reservoirs in the different latently infected cell lines
[165]. In HAART-treated patients with unnoticeable
viral load, chaetocin (Suv39hl inhibitor) reactivates
the HIV-1 from latency in CD4+ T cells isolated
from HIV-1-infected patients, while BIX01294 in-
duces 80% recovery in resting memory CD4+ T cells
isolated from an HIV-1-infected patient. However,
chaetocin and BIX01294 cannot be safely adminis-
tered to human [77, 165]. Another study has shown
that chaetocin causes 25-fold induction of latent
HIV-1 reservoir, without causing toxicity and T cell
proliferation or expansion. The induction is associ-
ated with loss of methylation and accumulation of
acetylation marks of H3K9 at HIV-1 promoter indi-
cating that a significant chromatin remodeling is reg-
ulated by chaetocin [77, 169].

Pyridone 6 or compound 6, a small molecule and in-
hibitor for EZH2, is another major expansion in the field
of HMT inhibitors [170]. The synthesis of this probe or
small molecule inhibitor has led to the discovery of
many other chemical probes such as EPZ-6438, GSK126,
GSK343, EI1, UNC1999, and UNC2400 [171, 172]. The
mentioned inhibitors of EZH2 have displayed robust ac-
tivities in target cells and selectively reduced the tri-
methylation mark of H3K27 in a number of wild and
mutant cell lines of EZH2 [172]. Prominently, EPZ-6438
and GSK126 have shown high efficacy rates in vivo. The
intraperitoneal and oral administration of GSK126 and
EPZ-6438 has led to drastic reduction in tumor volume
and significant improvement in the survival of more ag-
gressive KARPAS-422 tumor in xenografts mouse model
[173]. In 2013, the first EZH2 inhibitor entered into hu-
man clinical trials was EPZ-6438 while GSK126 has ad-
vanced to phase 1 clinical trials for the treatment of
various diseases [172, 174—176]. Friedman et al. reported
the efficacy rates of broad spectrum HMTIs DZNep that
mainly target EZH2 component of PRC2 and can purge
HIV-1 from the latent reservoirs [76]. In comparison to
azacitidine, decitabine, chaetocin, and BIX01294, DZNep
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is highly potent in reactivating the viral reservoirs from
latency. Unfortunately, DZNep is cytotoxic at concentra-
tion required to purge latent HIV-1 reservoir [77]. Re-
cently, two novel inhibitors of EZH2, i.e.,, DEC_42 and
DEC 254, have been discovered by using a combined in
silico screening and experimental study. These two com-
pounds are different from other EZH2 inhibitors by
exhibiting new molecular structure. Moreover, their ac-
tivities are very low (ICs values of 22.6 and 10.3 umole/
L, respectively) and require further optimization [177].
These findings clearly indicate that PcG proteins are as-
sociated with maintenance of HIV-1 latency (Table 2). It
may also give an important insight in developing novel
anti-HIV drugs that disrupt PcG proteins mediating
gene silencing in HIV-1 reservoirs. However, it is im-
portant to mention that epi-drugs have some side effects
and should all be evaluated carefully for the treatment of
HIV-1 infections and various other diseases [155, 165].
FDA has approved various epi-drugs, and there is still
potential for improvement as these drugs are relatively
unstable and can have some side effects, e.g., at high
dose, 5-azacytidine causes neutropenia [178-180].
While, the administration of vorinostat (SAHA) is asso-
ciated with  anorexia, anemia, hyperglycemia,
thrombocytopenia, fatigue, nausea, and ECG abnormal-
ities [178, 180]. Similar toxic side effects have also been
observed with romidepsin and belinostat [181]. However,
the long-term safety of epi-drugs has not been assessed
in HIV-1-positive people.

PcG-mediated epigenetic silencing and novel HIV-
1 reactivation strategies under cART

The concept of eliminating or reactivating HIV-1 from
latency was initially demonstrated by T cell activators
such as IL-2 and anti-CD3 antibody, but this approach
was associated with unacceptable toxicity of T cell prolif-
eration and expansion [182, 183]. In this regard, epi-
inhibitors are capable of reversing HIV-1 latency without
causing significant toxicities [165, 184]. The shock-and-
kill strategy is characterized by the use of epi-inhibitors
to reverse HIV-1 latency and reactivate the HIV-1 from
target cells such as CD4+ T cells and monocytes/macro-
phages that are supposed to be cleared by viral cyto-
pathic effect [156, 185, 186].

Why current LRAs are not decreasing the pool of
latent HIV-1 reservoirs? There are many factors that
need to be considered. Firstly, epi-inhibitors do not
activate all the HIV-1 latent reservoirs while strong
cytotoxic T lymphocytes (CTLs) response are re-
quired to clear the reactivated pool of HIV-1 reser-
voirs, but impaired CTLs response has been observed
[187-189]. Secondly, the data from various clinical
trials have shown that LRAs insufficiently reactivate
HIV-1 latent reservoirs [187, 190]. At present, we do
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not have the answer—why LRAs partially reactivate
HIV-1 from latency? Further, it is unclear whether
the shock induced by LRAs is influenced by cART or
not. Besides interfering with polyprotein processing of
immature virions, protease inhibitors (PIs) can influ-
ence several aspects of HIV-1 disease progression. In
this regard, Kumar et al. recently reported that Pls
regulate HIV-1 latency through Akt signaling [191].
They found that PIs but not non-PIs can limit LRA-
mediating reactivation of HIV-1 latent reservoirs. The
same group demonstrated that PIs block the reactiva-
tion of HIV-1 in resting CD4+ T cells isolated from
chronically infected aviremic patients [192]. In
addition to HIV-1 disease progression, Akt signaling
also regulates the chromatin remodeling through PcG
proteins [193]. In resting CD4+ T cells, the EZH2, a
component of PRC2 is associated with H3K27me3
and thus enhances HIV-1 latency and so the activity
of EZH2 can be regulated by Akt. Activation of Akt
signaling phosphorylates EZH2 and inhibits its en-
zymatic activity, thus releasing the epigenetic silen-
cing of HIV-1 promoter [193, 194]. In contrast to
non-PIs, the administration of PIs during shock-and-
kill strategies may enhance HIV-1 latency by blocking
Akt signaling, and so, it increases the enzymatic ac-
tivity of EZH2 (Fig. 7). In addition to EZH2, Akt also
impairs the function of BMI1 by phosphorylating it
at Ser 316. This Akt-mediated phosphorylation of
BMI1 is associated with decreased H2A ubiquitina-
tion [195]. However, the impact of cART on Akt sig-
naling and the reactivation of HIV-1 from latent
reservoirs require further investigation and validation.
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PcG-mediated epigenetic silencing will set the
stage for block-and-lock strategy?

Efforts for a sterilizing cure of HIV-1 infection have
been focused on the “shock and kill” strategy [185].
However, this method has faced various challenges
[187]. Recently, the block-and-lock strategy for func-
tional cure of HIV-1 has been proposed [181]. This
novel strategy aims to reinforce a deep state of latency
by using latency-promoting agents (LPAs). Interestingly,
a few recent findings indicate that this strategy is quite
feasible [196-199].

In block-and-lock strategy, the role of PcG-mediated
epigenetic silencing has become important. EZH2 is a
core component of PRC2, and its SET domain catalyzes
trimethylation of H3K27, a histone modification associ-
ated with transcriptional silencing [200]. Trimethylation
of H3K27 recruits PRC1 to the chromatin which further
reinforces the PcG-mediated epigenetic silencing [116].
Since, TrxG and PcG antagonize each other [201]. In
this way, targeting the TrxG proteins may stimulate the
PcG-mediated epigenetic silencing. Mixed lineage
leukemia (MLL) is a mammalian homolog of the
trithorax (Trx) protein found in Drosophila melanoga-
ster [202]. Small molecules such as menin-MLL inhibitor
(MI-2), pinometostat (EPZ-5676), and Flavopiridol (alvo-
cidib), have shown promising efficacies in targeting
MLL/Trx and represent potential therapeutic strategies
[203]. Administration of these drugs will inhibit Trx-
mediated H3K4me2 and stimulate the PcG-mediated
epigenetic silencing that may enhance the HIV-1 latency.
In addition, the activity of PcG can be modulated
through Akt signaling [194, 195]. Activation of Akt
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signaling inhibits PcG-mediated trimethylation of
H3K27. So, it limits the HIV-1 silencing. Arguably, Akt
inhibitors may provide a better and superior choice of
drug in inducing the viral latency. Akt inhibitors may in-
hibit the Akt-mediated phosphorylation of EZH2 and
may induce its enzymatic activity. Hence, enhancing the
epigenetic silencing of integrated HIV-1 genome [193].
Moreover, Akt inhibitors may impair the Akt-mediated
phosphorylation of BMI-1 [195]. Akt inhibitor may
induce H2A ubiquitination and may promote epigenetic
silencing of HIV-1 promoter. In addition, cART may
impact the block-and-lock strategy of HIV-1 cure, since
PIs inhibit Akt signaling and suppress HIV-1 reactiva-
tion from latency [191, 192]. The use of PIs or Akt
inhibitors together with LPAs may synergistically induce
viral latency and may contribute to functional cure of
HIV by preventing viral reactivation from latent reser-
voirs (Fig. 8).

Conclusion

Intensive work has been done by the scientific community
to investigate the molecular mechanisms involved in the
establishment of HIV-1 latency. Improved understanding
in viral persistence has paved the way for novel strategies
to limit the HIV-1 reservoirs. One approach for the eradi-
cation of HIV-1 reservoirs is the application of anti-latency
agents or latency-reversing agents (LRAs) to force the re-
activation of HIV from latency at various levels. In the re-
cent past, combination of drugs that alter chromatin status
have already been revealed to generate a synergistic reacti-
vation of HIV-1 from its latent reservoirs. Soon, it became

clear that the induction of latent viral reservoirs by the
shock-and-kill strategy may not be sufficient to clear la-
tently infected cells, but the recognition of viral antigens
by the immune cells specifically broad CTLs response may
be required to identify and clear the latently infected reser-
voirs. Histone methylation, acetylation, and DNA methyla-
tion have been under investigation for drug design, and
many of its inhibitors are FDA-approved for numerous dis-
orders such as cancer. More recently, compounds targeting
EZH2 and LSD are under investigation to modulate the
epigenetic markers regulating HIV-1 latency. Due to the
heterogeneous nature of cellular reservoirs, shock-and-kill
strategy still requires a hard and long road to achieve a
sterilizing or functional cure of HIV. Anyhow, other thera-
peutics strategies and targets should be explored. Suppres-
sion of ongoing viral replication from active viral reservoirs
is one strategy that has recently gained considerable atten-
tion. In this regard, PcG proteins may provide a promising
novel targets for the induction of HIV latency. The estab-
lishment of deep latency through PcG could prevent viral
rebound when cART is interrupted. A combination of Akt
inhibitors together with PcG proteins may represent an in-
teresting approach for future therapeutic intervention and
a functional cure of HIV-1.
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