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Abstract

Background: This study was aimed at understanding whether bronchial biopsy specimen can be used as a
surrogate for DNA methylation analysis in surgically resected lung cancer.

Methods: A genome-wide methylation was analyzed in 42 surgically resected tumor tissues, 136 bronchial
washing, 12 sputum, and 8 bronchial biopsy specimens using the Infinium HumanMethylation450 BeadChip, and
models for prediction of lung cancer were evaluated using TCGA lung cancer data.

Results: Four thousand seven hundred and twenty-six CpGs (P < 1.0E-07) that were highly methylated in tumor
tissues were identified from 42 lung cancer patients. Ten CpGs were selected for prediction of lung cancer. Genes
including the 10 CpGs were classified into three categories: (i) transcription (HOXA9, SOX17, ZNF154, HOXD13); (ii) cell
signaling (HBP1, SFRP1, VIPR2); and (iii) adhesion (PCDH17, ITGA5, CD34). Three logistic regression models based on
the 10 CpGs classified 897 TCGA primary lung tissues with a sensitivity of 95.0~97.8% and a specificity of 97.4~98.
7%. However, the classification performance of the models was very poor in bronchial washing samples: the area
under the curve (AUC) was equal to 0.72~0.78. The methylation levels of the 10 CpGs in bronchial biopsy were not
significantly different from those in surgically resected tumor tissues (P > 0.05, Wilcoxon rank-sum test). However,
their methylation levels were significantly different between paired bronchial biopsy and washing (P < 0.05,
Wilcoxon signed-rank test).

Conclusions: The present study suggests that bronchial biopsy specimen may be used as a surrogate for DNA
methylation analysis in patient with inoperable lung cancer.
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Background
Lung cancer is the most common cause of cancer-
related deaths in the world. Despite significant advances
in the diagnosis and treatment of the disease, the prog-
nosis remains extremely poor [1]. The poor prognosis
results largely from occult metastatic dissemination of
cancer cells nearby lymph nodes or tissues, which are

found in more than half of all patients with lung cancer at
the time of diagnosis, and from early recurrence after
curative surgical resection. Recently, precision medicines
that target potential oncogenic driver mutations have been
approved to treat lung cancer [2]. However, some lung
cancer patients do not have targetable mutations, and
many patients develop resistance to targeted therapy.
Tumor heterogeneity and mutational density are also a
challenge in treating lung cancer, which underscores the
need for developing alternative therapeutic strategies for
treating lung cancer. Epigenetic changes involve DNA
methylation, histone modification, and microRNA alter-
ation. While oncogenic mutations in human cancer cells
are irreversible, alterations in epigenetic machinery are
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potentially reversible, and this reversibility makes them
promising therapeutic targets.
Epigenetic changes have been increasingly studied in

lung cancer. These changes are observed frequently in
lung cancer, and they correlate with tumor suppressor
gene silencing and oncogene activation. Among epigen-
etic alterations, the de novo methylation of CpG islands
in the promoter regions of tumor suppressor genes is
usually associated with transcriptional silencing of such
genes and is one of the acquired epigenetic changes that
occur during the pathogenesis of lung cancer. Epigenetic
therapies may circumvent the problems of tumor cell
heterogeneity and drug resistance by inducing the ex-
pression of silenced tumor suppressor genes and may be
more effective for lung cancer relapses that follow con-
ventional treatment [3, 4]. In addition, there is growing
emphasis on using epigenetic therapies to reprogram
neoplastic cells prior to other anti-cancer therapies. To
date, DNA methyltransferase (DNMT) inhibitors or his-
tone deacetylase (HDAC) inhibitors in combination with
cytotoxic agents and targeted therapies have been clinic-
ally tested in lung cancer [5–12]. Recent studies have re-
ported that epigenetic priming agents may render tumor
cells more susceptible to cytotoxic chemotherapy and
molecular targeted therapy including immunotherapy.
Pretreatment with epigenetic drugs prior to immune
checkpoint modulators such as CTLA-4, PD-1, and PD-
L1 inhibitors has shown observable responses in lung
cancer patient [5, 12]; cytotoxic chemotherapy after epi-
genetic therapy has also shown remarkable responses in
lung cancer [6].
For precision medicine using epigenetic priming prior

to conventional standard therapy or targeted cancer
therapy in lung cancer, analyzing clinically relevant pre-
dictive response biomarkers in lung tumor tissue is
needed. However, it is difficult to obtain tumor tissues in
inoperable patients with advanced lung cancer. In situa-
tions where obtaining tumor tissue is difficult, an alter-
native approach is to use surrogate specimens for
analyzing DNA methylation in tumor tissues and to
apply the results to epigenetic therapy. In this study, we
analyzed if bronchial washing and bronchial biopsy spec-
imens can be used as a surrogate for analyzing DNA
methylation in surgically resected tumor tissues.

Methods
Study population
A total of 118 lung cancer patients and 60 healthy individ-
uals who were admitted for curative surgical resection of
lung cancer or for bronchoscopy at the Samsung Medical
Center in Seoul, Korea between March 2010 and August
2016 participated in this study. One hundred and thirty-six
(76 lung cancer patients and 60 hospital-based controls)
bronchial washings and 42 tumor and matched normal

tissues were obtained with written informed consent from
all participants. Bronchoscopy in control group was per-
formed to rule out lung cancer. Paired bronchial washing
and bronchial biopsy specimens were collected only
from eight (11%) of 76 lung cancer patients receiving
bronchoscopy. Flexible fiberoptic bronchoscopy and
sample preparation were performed as described pre-
viously [13]. Bronchial washing was performed by in-
stilling 10 mL of sterile warm saline before obtaining
biopsy samples to avoid contamination by the sloughing-
off of bronchial cells during bronchial biopsy. The pres-
ence of malignant cells in the bronchial washing fluid was
confirmed by cytologic examination. Individuals who were
clinically free of any cancer at the time of bronchoscopy
and did not have malignancy on their chest X-rays or CTs
were included in the control group. The control group
had tuberculosis, actinomycosis, bronchiolitis, pneumonia,
or anthracofibrosis. Benign lung tumors such as hamar-
toma and localized organizing pneumonia were excluded
in this study because their methylation profiling is not
known and can lead to misclassification. This study was
approved by our Institutional Review Board (IRB #:
2010-07-204) at the center. The pathologic stage was
determined according to the guidelines of the tumor-
node-metastasis (TNM) classification of the American
Joint Committee on Cancer Staging Manual [14].

Genome-wide methylation analysis
Genomic DNA was isolated from bronchial washing using
a QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA),
from sputum using the Sputum DNA Isolation Kit (Cat#
46200; Norgen Biotek, Thorold, ON, Canada) and from
fresh-frozen tissue using the DNeasy Blood & Tissue kit
(Qiagen) according to the manufacturers’ instructions. Bi-
sulfite conversion was performed using the Zymo EZ
DNA Methylation Kit (Zymo Research, Orange, CA), and
methylation levels were measured using the Infinium
HumanMethylation450 BeadChip (450K) (Illumina, San
Diego, CA) according to the manufacturer’s protocol.
Scanned images were processed using the GenomeStudio
Methylation Module (version 2011.2). Preprocessing of
450K data was conducted using wateRmelon package in R
(version 3.1.1) with Bioconductor 3.1 [15]. Methylation
levels (β-values) were estimated as the ratio of signal in-
tensity of methylated alleles to the sum of methylated and
unmethylated signal intensity of the alleles. The β-values
vary from 0 (no methylation) to 1 (100% methylation).

Pyrosequencing
To validate the methylation levels from the 450K array,
pyrosequencing for cg27364741 at the promoter region of
OTX1 gene was conducted using the PyroMark Q24 ID
System (Qiagen) according to the manufacturer’s protocol.
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Biotinylated PCR primer sets for the amplification of the
CpG were purchased from Qiagen (Cat no. PM00616336).

Feature selection for lung cancer classification
Tumor-specific CpGs for lung cancer classification were
selected in the following order: (i) selection of differen-
tially methylated CpGs; (ii) removal of age-related methy-
lation sites; (iii) gene ontology (GO) analysis (gene set
enrichment analysis); (iv) feature selection based on a su-
pervised machine learning algorithm; and (v) test of model
performance. Gene ontology analysis in a set of genes was
performed using DAVID (https://david.ncifcrf.gov//), and
annotation clusters for which Bonferroni P value was
below 1.0E-5 were selected as candidate GO terms for
model building.

Statistical analysis
Continuous variables were analyzed using Wilcoxon rank-
sum test for independent samples or Wilcoxon signed-
rank test for paired samples. Correlations between two
continuous variables were analyzed using Pearson’s or
Spearman’s rank correlation coefficients. Multivariate lo-
gistic regression analysis was conducted to estimate the
relationship between the development of lung cancer and
the CpGs found to be statistically significant in the univar-
iate analysis. Statistical analysis was performed using R
software (version 3.1.1), and supervised machine learning
algorithms were carried out using RapidMiner 5.1. The
performance of a model was measured using receiver
operating characteristic (ROC) curves, which were created
with MedCalc software.

Results
Preprocessing of 450K array
Clinicopathological characteristics of 118 lung cancer
patients are summarized in Table 1. The assay quality of
the 450K array was tested by comparing measured levels

with DNA methylation levels of predefined subsets (0,
33, 66, and 100%) that were prepared by mixing fully
methylated and unmethylated human control DNA
(Qiagen, Hilden, Germany). The β-values in control
DNA of 33% methylation were slightly inflated than true
values, and β-values in control DNA of 0% methylation
were approximately 0~0.3 (Fig. 1a). Pyrosequencing also
suggested that β-values from the 450K array seemed to
be slightly inflated than true values; for example, a
cg27364741 locus at the OTX1 gene that is known to be
significantly methylated in lung cancer showed higher
methylation in 450K array than in pyrosequencing, sug-
gesting background signal of the 450K array (Figs. 1b, c).
Preprocessing including type I, II bias correction was
performed using the dasen function of the wateR-
melon package, and 4.665 (0.97%) of 485,577 CpGs
were filtered out.

Identification of differentially methylated regions
To identify differentially methylated regions (DMRs)
in 42 tumor and matched normal tissues, Pearson’s
Chi-square (or Fisher’s exact) test was utilized after
dichotomizing the data using a β-value threshold of
0.3 because background signal in normal tissues was
mostly below β = 0.3. In addition, the distribution of
β-values did not follow a normal distribution; they
were negatively skewed, especially in tumor tissues.
Four thousand seven hundred and twenty-six DMRs for
which the P value was less than or equal to 1.0E-07 (Bon-
ferroni-corrected P value < 0.05) were identified from the
480,912 CpGs. To identify age-related methylation, we an-
alyzed the relationship between methylation levels of indi-
vidual CpGs and patient’s age in 42 normal lung
tissues. Thirty-two CpGs (P < 1.1E-05) showing signifi-
cant positive correlation to patient’s age such as
cg26354128 (γ = 0.64; P = 1.86E-06; Fig. 1d) were re-
moved from further data analysis.

Feature selection for disease classification and the
evaluation of proposed models in the TCGA lung cancer
data
To perform the selection of features from 4694 CpGs
and construct a robust classification model, we used a
GO-based approach rather than a gene-based approach
because biological processes change as a function of
gradual accumulation of alterations in multiple genes. In
addition, each biological pathway contributes to tumori-
genesis to a different degree, though genes annotated with
the same GO term share common biological functions
and processes. Four thousand six hundred and ninety-four
CpGs were annotated using gene set enrichment analysis.
Among 46 candidate GO terms (Bonferroni P < 1.0E-5),
three GO terms (i.e., transcription regulation, cell-cell sig-
naling, and cell-cell adhesion; Bonferroni P = 3.7E-24,

Table 1 Clinicopathological characteristics of lung cancer
patients

Surgically resected tumor tissue Bronchial washing

Lung cancer (N = 42) Lung cancer (N = 76)

Age (years)a 60 ± 10 59 ± 10

Sex

Men 32 59

Women 10 17

Pack-yearsa 31 ± 29 29 ± 27

Histology

Adenoca 27 44

Squamous 8 22

Others 7 10

Adenoca adenocarcinoma, Squamous squamous cell carcinoma
aValues indicate mean ± standard deviation
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4.4E-8, and 2.9E-6, respectively) were selected due to high
sensitivity and specificity of lung cancer classification. Ten
CpGs (Additional file 1) of the 4694 CpGs were finally
selected for disease classification. Genes including the 10
CpGs were classified into three GO categories: (i) tran-
scription (HOXA9, SOX17, ZNF154, HOXD13), (ii) cell
signaling (HBP1, SFRP1, VIPR2), and (iii) adhesion
(PCDH17, ITGA5, CD34). Methylation levels of the 10
CpGs were compared according to histology (Fig. 1e).
HBP1 and ZNF154 showed higher methylation in other
cell types compared to adenocarcinoma and squamous
cell carcinoma, but model building was performed with-
out stratification of data according to histology due to the
lack of significant interaction between methylation levels
and histology (data not shown).
To build a parsimonious model for lung cancer classifi-

cation, we analyzed the relationship among 10 genes.
Protein-protein interactions were found between CD34
and ITGA5 in STRING (Fig. 2a). In addition, statistically
significant correlations within each GO categories were

found between methylation levels of ZNF154 and HOXA9
(Fig. 2b), SFRP1 and VIPR2 (Fig. 2c), and CD34 and
PCDH17 (Fig. 2d). Significantly correlated CpGs within
each individual GO term were not included simultan-
eously in a model for disease classification. Three subsets
of features were chosen for disease classification using lo-
gistic regression analysis (Table 2). Prediction performance
of three proposed models was tested in 897 TCGA pri-
mary lung tissues; the models were able to classify the
lung tissues (821 tumor tissues and 76 normal tissues)
with a sensitivity of 95.0~97.8% and a 97.4~98.7% of
specificity (Fig. 3a).

Methylation levels of CpGs in bronchial washing are
different from those in lung tumor tissues
To test if diagnostic panels of the 10 CpGs selected from
tumor tissues are applicable to bronchial washing, we
measured the methylation levels of 136 bronchial wash-
ing samples using the 450K array. The 450K data from
42 lung tumor and matched normal tissue samples were

Fig. 1 Selection of lung cancer-specific methylation. a The quality of the 450K array was checked by analyzing measured values for predefined
subsets of methylation levels (0, 33, 66, and 100%) that were prepared by mixing fully methylated and unmethylated human control DNA. The X-
and Y-axes indicate β-values of CpGs and the density of CpGs corresponding to individual β-values, respectively. b, c Methylation levels identified
by the 450K array were validated using pyrosequencing. Methylation levels at a randomly selected cg27364741 locus are higher in 450K array than
in pyrosequencing. d The relationship between patient’s age and β-values from 450K array was analyzed using Spearman’s correlation coefficient
in 42 normal tissues. Methylation levels at cg26354128 loci show a linear relationship to age. e Methylation levels of finally selected ten genes
were compared according to histology. “Squamous” indicates squamous cell carcinoma. The color spectrum from green (0%) to yellow (30%) to
red (100%) indicates the levels of DNA methylation. The X-axis indicates the identification number of lung tumor tissue (LTT)
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used as a training dataset. The area under curves (AUC)
of the ROC for prediction of lung cancer using the
models was 0.720~0.786 (Fig. 3b). Lung cancer in bron-
chial washing specimens was predicted with 63.2~89.8%
sensitivity and 53.3~73.3% specificity.
To understand factors responsible for the low accuracy

of lung cancer prediction in bronchial washing specimens
compared to TCGA, we compared methylation levels of
the 10 CpGs in 897 TCGA primary lung tissues (Fig. 3c)
and in bronchial washing samples from 76 lung cancers
and 60 hospital-based controls (Fig. 3d). All 10 CpGs were
significantly methylated in the 821 tumor tissues com-
pared to the 76 normal tissues (P < 0.0001; Fig. 3c). For
bronchial washing samples, nine CpGs except cg17496130

(P = 0.10) showed significantly different methylation levels
between 76 lung cancer patients and 60 healthy individ-
uals, but the difference was not high compared to TCGA
tissue samples (Fig. 3d). Based on these observations, it is
likely that a diagnostic panel of methylated CpGs selected
from tumor tissues may not allow for accurate prediction
of lung cancer in bronchial washing specimens.

Methylation patterns in bronchial biopsy are comparable
to those in lung tumor tissue
To test if bronchial biopsy specimens can be used as a
surrogate for DNA methylation analysis in lung cancer,
we compared the methylation levels of the 10 CpGs in
eight bronchial biopsy specimens from lung cancer pa-
tients (Fig. 4). The methylation levels of the 10 CpGs in
lung tumor tissues were not significantly different
from those in bronchial biopsy from lung cancer pa-
tients (P > 0.05, Wilcoxon rank-sum test; Figs. 4a–c;
Additional file 2). The methylation levels of the 10 CpGs
were further compared between paired bronchial biopsies
and bronchial washings from eight lung cancer patients.
The methylation levels of the 10 CpGs, such as the three

Fig. 2 Relationship among methylation levels of 10 genes. a Protein-protein interaction was determined by the STRING protein interaction
database (https://string-db.org/). b–d Correlation among methylation levels of genes for each of the three GO categories (transcription, cell
signaling, and cell adhesion) was analyzed using Spearman’s correlation coefficient in 42 lung cancers. Magenta color indicates P < 0.05

Table 2 The best classification models for lung cancer
identified using likelihood ratio test

Model Model covariates − 2logL P value

1 HOXA9, SOX17, SFRP1, PCDH17, ITGA5 0.593 < 0.0001

2 SOX17, ZNF154, SFRP1, PCDH17, ITGA5 0.336 < 0.0001

3 SOX17, ZNF154, HBP1, SFRP1, PCDH17, ITGA5 0.230 < 0.0001
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CpGs in Fig. 4d, e, f, were found to be higher in bronchial
biopsy than in bronchial washing. Furthermore, the differ-
ence was statistically significant (P < 0.05, Wilcoxon
signed-rank test).
Finally, we analyzed methylation levels of multiple CpGs

within the genes selected in this study. The methylation
levels of HOX9 (Fig. 5a) and SOX17 (Fig. 5b) are shown as
representative examples. Twenty-one CpGs in HOXA9
and 18 CpGs in SOX17 were analyzed in sputum, bron-
chial washing, bronchial biopsy, and lung tissue speci-
mens. Although CpGs located in the gene body showed
methylation in lung normal tissues, other CpGs in
TSS1500, TSS200, 5’ UTR, and the first exon were simi-
larly methylated in bronchial biopsy from lung cancer
patients as well as in surgically resected tumor tissues.
These data suggest that bronchial biopsy specimen may
be used as a surrogate for DNA methylation analysis in
lung cancer.

Discussion
Although several potential biomarkers that are associ-
ated with lung cancer have been identified in sputum
and bronchial washing [16, 17], few biomarkers have
been sufficiently validated for use in clinical applications.
Several groups have reported that abnormal methylation
observed in tumor tissues is also found in bronchial
washing and sputum samples [18, 19], suggesting that
biomarkers selected from lung tumor tissues may be
applicable to bronchial washing and sputum samples.
However, the methylation levels of the 10 CpGs identi-
fied from 42 lung tumor tissues in this study were gener-
ally very low in bronchial washing samples from lung
cancer patients (Fig 4c). In addition, most of the highly
methylated CpGs in lung tumor tissues did not show
significant methylation in exfoliated bronchial epithelial
cells from bronchial washing, and a small number of
CpGs showed a statistically significant methylation in

Fig. 3 Evaluation of prediction performance of models. The prediction performance of the proposed model using the 10 CpGs was tested in 897
TCGA primary lung tissues (a, b) and in 136 bronchial washing samples (c, d). a, c The area under curve (AUC) of the receiver operating
characteristic (ROC) in prediction of lung cancer using three models was 0.981–0.993 for 897 TCGA primary lung tissues and 0.720–0.786 for 136
bronchial washings. ROC curve was produced using MedCalc software. b, d The methylation levels of 10 CpGs selected in this study were
compared between the 821 TCGA primary lung tumor tissues and 76 normal tissues (b) and between 76 lung cancer patients and 60 controls
(d). All CpGs in the TCGA data were found to be highly methylated compared to the matched normal tissues (P < 0.0001; Wilcoxon rank-sum test).
Although most CpGs in the bronchial washing samples did show a statistically significant difference in the methylation levels between 76 lung
cancer patients and 60 controls, the difference was small compared to that in the TCGA data. The X- and Y-axes indicate CpG numbers and
β-values from 450K array, respectively
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bronchial washing (data not shown). Accordingly, it is
likely that lung tumor tissues may have different patterns
of DNA methylation compared to bronchial washing
and sputum.
It is not clear what is responsible for different methyla-

tion profiling between lung tumor tissues and exfoliated
bronchial epithelial cells from lung cancer patients. The
low methylation levels of the CpGs in bronchial washing
and sputum samples compared to tumor tissues might
result from contamination by normal bronchial epithelial
cells or from an inadequacy of bronchial washing and
sputum samples. In addition, methylation levels in spu-
tum samples may be affected by the contamination of
inflammatory cells such as neutrophils and macrophages
[20]. Bronchial washing and sputum samples are also
known to be inadequate for the identification of cen-
trally located tumors such as small cell lung cancer and
squamous cell carcinoma and in peripherally located

tumors, respectively. Accordingly, standardization of pro-
cessing protocols and bronchial epithelial cell enrichment
is required for a greater yield of bronchial epithelial cells,
and sample collection using a laser-induced fluorescence
bronchoscopy may reduce normal cell contamination. An-
other possibility is that CpG hypermethylation of genes
that are relevant to the progression from hyperplasia and
dysplasia to invasive or metastatic lung cancer may not be
detectable in exfoliated bronchial epithelial cells. For ex-
ample, the methylation levels at cg12600174 (Fig. 5a) and
cg15377283 (Fig. 5b) at the promoter regions of HOXA9
and SOX17 genes in lung tumor tissues, respectively, were
found to be similar to those in bronchial biopsy, but not
in bronchial washing and sputum. Several studies sug-
gest that HOXA9 [21–23] and SOX17 [24–27] are
involved in tumor progression. In addition, HBP1 and
SFRP1 included in the models (Additional file 1) are
known to function as suppressors of cancer progression

Fig. 4 Comparison of methylation levels of CpGs across different kinds of samples. a–c Methylation levels of three CpGs (cg07122178,
cg01268824, and cg03826594) at SFRP1, ZNF154, and ITGA5 genes were compared in bronchial washing samples from 76 lung cancer patients
(BW_cancer) and 60 healthy individuals (BW_control), bronchial biopsies from 8 lung cancer patients (LC_biopsy), 42 lung tumor (LC_tumor) and
matched normal tissues (LC_normal), and in sputum from 12 lung cancer patients (LC_sputum). d–f Methylation levels of three CpGs
(cg12600174, cg15377283, and cg17495130) at HOXA9, SOX17, and HOXD13 genes were compared using parallel coordinate plots between paired
bronchial biopsy and bronchial washing specimens from eight lung cancer patients. Methylation levels were significantly higher in bronchial
biopsy than in bronchial washing samples (P < 0.05, Wilcoxon signed-rank test). Y-axis indicates β-values from the 450K array
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by suppressing β-catenin transactivation [28], and cell
adhesion-related genes are involved in tumor invasion
or metastasis.
Although the number of bronchial biopsy specimens re-

quired to provide accurate molecular analysis has not
been defined, we extracted genomic DNA from one speci-
men for the analysis of methylation using the 450K array.
A minimum of 2 μg of genomic DNA was extracted from
all bronchial biopsy specimens. The amount of tumor
present in bronchial biopsy specimens is relatively low;
the mean percentage area of tumor in a biopsy speci-
men was 33.4%, and tumor was found in fewer than
half of cancer cases [29]. We did not measure the per-
centage of tumor cells in our bronchial biopsy speci-
mens, but methylation levels of CpGs from bronchial
biopsy were comparable to those from surgically resected
lung tumor tissues. Although we collected samples through
fiberoptic bronchoscopy, new systems such as endobron-
chial ultrasonography using a guided sheath (EBUS-GS)
and electromagnetic navigation (ENB) will provide more

appropriate bronchial biopsy specimens for molecular
analysis. In addition, advances in technology will lead
to improved yields with fewer complications even in
the peripheral regions of bronchus.
We used a GO-based approach instead of a gene-based

approach as a gene can be involved in multiple different
biological processes. Besides, a biological pathway is
usually composed of the negative or positive action of
multiple genes and contributes to tumorigenesis to a dif-
ferent degree. We identified relevant biological pathways
using gene-set enrichment analysis and deleted CpGs that
were significantly correlated in the same pathway in order
to make our model more parsimonious because simul-
taneous alterations in correlated genes in a pathway
are usually redundant in terms of the alteration of that
pathway. In this study, supervised machine learning
algorithms, including support vector machine [30],
decision tree, K-Nearest Neighbor (K-NN), random
forest [31], and artificial neural network [32], were
utilized for the classification of lung cancer; however,

Fig. 5 Methylation levels of multiple CpGs in HOXA9 and SOX17 genes. Methylation levels of 21 CpGs in HOXA9 gene (a) and of 18 CpGs in
SOX17 gene (b) were analyzed across different kinds of samples. Colors indicate average methylation levels of individual CpGs in sputum from 12
lung cancer patients (LC_sputum), bronchial biopsies from 8 lung cancer patients (LC_biopsy), bronchial washing samples from 76 lung cancer
patients (BW_cancer) and 60 healthy individuals (BW_control), and in 42 lung tumor (LC_tumor) and matched normal tissues (LC_normal)
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their classification performance was not better than a
logistic regression analysis (data not shown). Three
models using logistic regression analysis showed simi-
lar sensitivity and specificity in classifying lung cancer,
suggesting that multiple models may be possible and
result from lung cancer heterogeneity.
This study was limited by several factors. Above all, this

study was conducted in a small number of bronchial biopsy
specimens, especially a low number of paired biopsy and
lung resections. In addition, this study could not cover the
complex heterogeneity of lung cancer and compare methy-
lation levels of discovered CpGs in paired samples, includ-
ing tumor tissue, bronchial biopsy, sputum, and bronchial
washing due to the shortage of samples. Accordingly, rare-
type tumors and paired samples need to be further analyzed
by prospective large-scale studies.

Conclusions
Precision medicine using epigenetic priming before cyto-
toxic or targeted therapy requires methylation statuses
of predictive response biomarkers in lung cancer. The
present study suggests that bronchial biopsy specimen
may be used as a surrogate for DNA methylation analysis
in inoperable lung cancer patient.
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Additional file 1: Differentially methylated regions (DMRs). (DOCX 14 kb)

Additional file 2: Methylation levels of seven CpGs across different
kinds of samples. Methylation levels of seven CpGs at PCDH7 (A), VIPR2
(B), HBP1 (C), CD34 (D), HOXA9 (E), SOX17 (F), and HOXD13 (G) were
compared among six different kinds of samples: bronchial washing
samples from 76 lung cancer patients (BW_cancer), 60 healthy individuals
(BW_control), bronchial biopsies from 8 lung cancer patients (LC_biopsy),
42 lung tumor (LC_tumor) and matched normal tissues (LC_normal), and
sputum from 12 lung cancer patients (LC_sputum). Y-axis indicates β-
values from the 450K array. (TIFF 3249 kb)
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