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Abstract

In the last years, the explosion of high throughput sequencing technologies has enabled epigenome-wide analyses,
allowing a more comprehensive overview of the oropharyngeal squamous cell carcinoma (OPSCC) epigenetic
landscape. In this setting, the cellular pathways contributing to the neoplastic phenotype, including cell cycle
regulation, cell signaling, DNA repair, and apoptosis have been demonstrated to be potential targets of epigenetic
alterations in OPSCC. Of note, it has becoming increasingly clear that HPV infection and OPSCC lifestyle risk factors
differently drive the epigenetic machinery in cancer cells. Epigenetic changes, including DNA methylation, histone
modifications, and non-coding RNA expression, can be used as powerful and reliable tools for early diagnosis of
OPSCC patients and improve prognostication. Since epigenetic changes are dynamic and reversible, epigenetic
enzymes may also represent suitable targets for the development of more effective OPSCC therapeutic strategies.
Thus, this review will focus on the main known epigenetic modifications that can occur in OPSCC and their
exploitation as potential biomarkers and therapeutic targets. Furthermore, we will address epigenetic alterations to
OPSCC risk factors, with a particular focus on HPV infection, tobacco exposure, and heavy alcohol consumption.
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Background

Head and neck squamous cell carcinoma (HNSCC) is a
frequently lethal cancer that mainly develops in the
mucosal epithelial lining of oral cavity, hypopharynx,
oropharynx, or larynx. In 2020, HNSCC is expected to
affect approximately 833,000 new patients worldwide
and 151,000 in Europe, thus representing about 5 and
4% of all new cancers, respectively [1]. Generally,
HNSCCs are more common in men than in women and
in people aged 60 years than in younger persons [1].
Tobacco use and excessive alcohol intake represent the
main risk factors for HNSCC development, and they can
act synergistically to increase the risk of this malignancy
[2, 3]. To date, oropharyngeal SCC (OPSCC)—which
comprises SCC of the base of tongue, tonsillar region,
soft palate, and the posterior wall of the pharynx
between nasopharynx and the hypopharynx—represents
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a significantly higher proportion of HNSCC [4]. Among
alcohol abstainers, tobacco smokers reported a twofold
increased risk of OPSCC compared to never smokers,
with a dose-response relationship for both intensity and
duration [5]. Similarly, regular alcohol drinking was
associated to increased OPSCC risk among never
smokers, with risks peaking in people drinking =5
drink/day [5]. In the last decades, a decrease in the
incidence of HNSCC from non-oropharyngeal sites has
been observed as the results of preventive strategies to
reduce tobacco smoking [6]. Conversely, in economically
developed countries, incidence of OPSCC did not show
such a decline, despite the reduction of tobacco smoking
[7]. This suggests that the control of tobacco smoking
epidemic has brought out the burden of OPSCC cases
associated with high-risk human papillomaviruses (HPV)
infection [8]. HPV-driven OPSCC are rapidly increasing
in several Western countries [9], mainly topographically
restricted to the oropharynx [10], and exhibit a survival
benefit compared to HPV-unrelated tumors [10].
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Besides genetic alterations, the accumulation of aberrant
epigenetic events deeply influence OPSCC biology and
may contribute, at least in part, to the differences between
HPV-driven and non-HPV-driven OPSCC [11]. To date,
the most extensively characterized mediators of epigenetic
modifications are DNA methylation and the post-
translational modifications of histone proteins [12].
Despite not yet having been extensively characterized, also
non-coding RNAs (ncRNAs) are emerging as important
factors in the epigenetic determination of gene expression
[12-16]. Rather than acting separately, these epigenetic
regulators are dynamically connected to each other in the
regulation of gene expression. Disruption of this complex
epigenetic control mechanism can affect the structure and
the integrity of the genome and alter the expression of
genes critically involved in tumorigenesis. Of note, it has
becoming increasingly clear that environmental and life-
style risk factors can promote a wide range of epigenetic
alterations that are causally involved in cancer develop-
ment and progression [17]. Based on these considerations,
the primary objective of this review is to resume the
common epigenetic events in OPSCC and to discuss their
potential translational applications for the management of
this disease. Any discussion in this review will also relate
epigenetic alterations to OPSCC risk factors, with a par-
ticular focus on HPV infection, tobacco smoking, and
excessive alcohol intake (Fig. 1).

HPV-driven OPSCC

HPVs are a heterogeneous family consisting of five
phylogenetic genera (alpha, beta, gamma, mu, and nu
HPVs, encompassing at least 120 genotypes) of small
non-enveloped, circular, double-stranded DNA viruses
targeting the basal cells of stratified epithelia of the
genital and upper respiratory tracts and the skin. Based
on their oncogenic potential, the alpha genus (mucosal)
HPV types are divided into two groups: low-risk (LR)
HPVs, which are mainly associated with benign genital
warts, and high-risk (HR) HPVs, which are causative
agents of cervical, anogenital, and oropharyngeal cancers
(reviewed in [18]). The HPV genome is organized into
three regions: a non-coding region, termed the long
control region (LCR), regulating gene expression and
replication, and two protein-coding regions, the early (E)
region coding proteins regulating viral transcription
(E2), viral DNA replication (E1, E2), cell proliferation
(E5, E6, E7), and viral particle release (E4) and the late
(L) region coding for two structural viral capsid proteins
(L1 and L2). E5, E6, and E7 are thus viral oncogenes and
studies on mucosal HR HPVs have demonstrated that E6
and E7 play a key role in both benign proliferation and
malignant transformation, and their continuous expres-
sion is critical in maintaining the cancer phenotype in
infected cells (reviewed in [19]). In the last two decades,
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HR alpha HPVs, and in particular HPV type 16
(HPV16), have been causally related to a subset of
OPSCC arising from the crypt epithelium of the palatine
tonsils and base of tongue [20, 21] as well as to a sub-
stantial fraction of SCCs from unknown primary
metastatic to the neck nodes [22] to which they confer a
more favorable prognosis [23-27]. HPV-driven OPSCC
is now considered a rising sexually transmitted disease
showing distinctive epidemiological, clinical, and mo-
lecular features [4]. Patients with HPV-driven OPSCC
are more likely to be younger, without a history of smok-
ing and alcohol abuse, and have a higher socio-
economic status and better performance status than
those with non-HPV-driven OPSCC [28]. While
non-HPV-driven OPSCC show molecular aberrations
similar to those observed in SCC of the lung, HPV-
driven tumors share similarities with cervical cancer.
TP53 and CDKN2A/RBI axes are the most frequently
deregulated signaling pathways in both HPV-driven and
non-HPV-driven HNSCC [29]. Most environmental-
induced cancers harbor inactivating mutations in the
TP53 gene leading to the loss of tumor suppression ac-
tivity [30]. Furthermore, the p16™***-cyclin D1-RB axis
is mainly deregulated by deletion or promoter hyperme-
thylation of the CDKN2A gene encoding pl6™ ** [31]
and/or by CCNDI amplification [32], which encodes
cyclin D1, with both leading to a decrease in the
growth-suppressive hypo-phosphorylated RB form. Con-
versely from environmental-related HNSCC and consist-
ently with HPV-mediated carcinogenesis, cells from
HPV-driven OPSCC rarely contain loss-of-function
TP53 mutations or CDKN2A inactivation and show less
genomic instability [33]. In this subset of cancers, the
p53 and RB pathways are both inactivated as a result of
sequestration by binding viral oncoproteins. The E6
protein drives cell proliferation by stimulating ubiquitina-
tion and proteasome-dependent degradation of the p53
protein tumor suppressor protein [34]. E7 viral oncopro-
tein disrupts the RB/E2F complex, resulting in the
dissociation of E2F transcription factors from RB-family
proteins, thus inducing S-phase entry [35]. Furthermore,
viral integration into host genome may contribute to
neoplastic transformations by deregulation of key cellular
genes and induction of genome instability [36].

DNA methylation

DNA methylation, catalyzed by DNA methyltransferases
(DNMTs), usually occurs at the 5" position of the cyto-
sine ring within the cytosine-guanine dinucleotides
(CpG). Although five members of the DNMT family
have been identified, only DNMT1, DNMT3A, and
DNMT3B have functional enzymatic activity in mam-
mals. DNMT1 has been called “maintenance” DNMTs
since it has a substrate preference for hemi-methylated
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Fig. 1 Epigenetic regulation of gene expression involves the crosstalk of DNA methylation, histone modifications, and non-coding RNA (ncRNAs). In
normal cells (a), CpG within promoter regions of tumor suppressor genes (TSG) are not methylated and are occupied by complexes including RNA
polymerase (RNA pol) and transcription factors (TF), thus allowing gene transcription. Histones undergo several post-translational modifications on their
N-terminal tails, including acetylation and methylation. Histone acetylation is the result of the dynamic interplay between histone acetyltransferases
(HATSs) and histone deacetylases (HDACs), and acetylated histones have been associated with actively expressed genes. Unlike histone acetylation,
methylation of histone proteins can result in both repressive or promoting effects on transcription, depending on which residue is modified. NcRNAs,
which are involved in almost all major cellular functions, may function either as oncogenes or as TSG. NcRNAs whose expression is increased in tumors
may be considered as oncogenes, whereas ncRNAs whose expression is decreased in tumor cells are considered TSG. NcRNAs can also regulate the
expression and/or the activity of the epigenetic enzymes, such as DNA methyltransferases (DNMTs). In oropharyngeal squamous cell carcinoma (b), the
epigenetic state of cells changes in response to HPV infection and environmental-lifestyle factors (i.e., tobacco smoke and/or excessive alcohol intake).
The result is the accumulation of several aberrant epigenetic modifications that lead to inappropriate activation or inhibition of key signaling pathways.
For example, E6 and E7 HPV oncoproteins and carcinogens from cigarettes and alcohol have been demonstrated to affect histone acetylation and
methylation patterns either by directly interacting with epigenetic enzymes [i.e, DNMT, enhancer of zeste homolog 2 (EZH2)] or by modulating the

substrate after DNA replication. Conversely, DNMT3A
and DNMT3B are regarded as de novo DNMTs since
they create new methylation patterns during embryogen-
esis and germ-cell development by methylating CpG
dinucleotides previously unmethylated on both strands.
DNA methylation is associated with repression of genes
involved in development and plays a crucial function in
genomic imprinting and in X-chromosome inactivation.
Besides its role in gene regulation, DNA methylation
prevents chromosomal instability by silencing endogenous
retroviral and parasitic repetitive sequences (reviewed in
[37]). Alterations in DNA methylation patterns have been
extensively documented in cancer and appear to deeply
contribute to its biology. DNA hypermethylation acts as
an alternate and/or complementary mechanism to gene
mutation or deletion, resulting in the inactivation of
specific gene expression and function of tumor suppressor
genes (TSGs) that promote the acquisition of tumorigenic
behaviors, such as increased proliferation, enhanced inva-
siveness, and escape from apoptosis. Besides DNA hyper-
methylation, the genome of cancer cells undergoes an
overall decrease in the level of 5-methylcytosine. This
genome-wide hypomethylation affects intergenic and
intronic regions of the DNA, particularly repeat sequences
and transposable elements, and is believed to facilitate
chromosomal instability, loss of imprinting, and reactiva-
tion of endogenous parasitic sequences [38].

Impact of aberrant DNA methylation in HPV-positive and
HPV-negative OPSCC

The list of genes that are silenced by DNA methylation in
OPSCC is growing rapidly and includes genes involved in
several pathways, including apoptosis, cell cycle, DNA re-
pair, and WNT signaling. A selection of the most frequently
hypermethylated genes in OPSCC is given in Table 1.
Notably, differences in DNA methylation profiles between
HPV-positive and HPV-negative OPSCC have been fre-
quently observed in several studies. Overall, while HPV-
negative cancers are mainly characterized by genome-wide

hypomethylation, the HPV-positive counterpart displays
higher levels of promoter methylation (Table 1).

Apoptosis

Defects in the apoptotic pathways are essential for
cancer development and progression, but also for resist-
ance to chemotherapy and radiotherapy. Thus, identifi-
cation of genes related to apoptosis in OPSCC may offer
newer therapeutic modalities. The pro-apoptotic gene
death-associated protein kinase (DAPK) is commonly
hypermethylated in at least 20% of OPSCC independent
of HPV status, indicating it is involved in both HPV-
positive and HPV-negative OPSCC carcinogenesis [39].
DAPK gene encodes for a calcium/calmodulin-regulated
serine/threonine kinase that is required for apoptosis
induced by interferon-gamma [40].

Cell cycle

Cell cycle regulation depends on the appropriate expression
of cyclin-dependent kinases (CDKs), their binding partners,
and the inhibitory molecules such as cyclin-dependent kin-
ase inhibitor-2A (CDKN2A). By using different first exons,
CDKNZ2A encodes two overlapping, but very disparate pro-
teins, p16™<* and p14"F, which are both involved in
negatively regulating cell cycle progression through the
pRB and the p53 pathways, respectively [12]. The CDKN2A
locus, which is frequently hypermethylated in tumors, is
often overexpressed in HPV-positive OPSCC [41]. Consist-
ently, immunohistochemical staining of p16™"** protein is
commonly used as a surrogate marker for HPV infection in
OPSCC [42]. To date, any correlation was observed be-
tween HPV status and CDKN2A promoter methylation
[43—45], thus suggesting that all of the CDKN2A promoters
of HPV-positive tumors may not be methylated. However,
Schlecht et al. have recently identified four hypermethylated
CDKN2A loci downstream of the pl6™ ** and p14*%*
transcription start sites. Interestingly, the hypermethylation
of this region was associated with p16™"** protein expres-
sion and correlated with an increased expression of p14™**
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Table 1 Genes hypermethylated in OPSCC
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Pathway Gene Name Hypermethylated in Region analyzed Reference
Apoptosis DAPK Death-associated protein kinase 1 HPV-negative/positive Promoter region [39]
RASSF1 Ras association domain-containing HPV-negative — 244 from TSS? [50]
protein 1 Promoter region [45, 51]
STATS Signal transducer and activator HPV-negative +42 from TSS [50]
of transcription 5
Cell cycle CCNA1 Cyclin A1 HPV-positive Promoter region [51]
+ 7 from TSS [50]
CDKN2A Cyclin-dependent kinase HPV-negative Promoter region [43-45, 51]
inhibitor-2A HPV-positive Three loci within [165]
the CpG island of
CDKN2A gene
CHFRP Checkpoint with forkhead and HPV-negative Promoter region [39]
ring finger domains
TP73 Tumor protein p73 HPV-negative/positive Promoter region [39]
Cell fate determination APC Adenomatous polyposis coli HPV-negative/positive Promoter region [39]
DNA repair MGMT 0O6-methylguanine-DNA HPV-negative — 272 from TSS [50, 51]
methyltransferases
Protein glycosylation TUSC3 Tumor suppressor candidate 3 HPV-positive + 29 from TSS [50]
Inflammation JAK3 Janus kinase 3 HPV-positive + 64 from TSS [50]
Invasion and metastasis CADM1 Cell Adhesion Molecule 1 HPV-positive Promoter region [39]
CDH11 Cadherin 11 HPV-positive — 354 from TSS [50]
CDH13® Cadherin 13 HPV-negative/positive Promoter region [39]
IGSF4 Immunoglobulin superfamily HPV-positive Promoter region [166]
member 4
SPDEF SAM pointed domain-containing HPV-negative + 116 from TSS [50]
Ets transcription factor
TIMP3 TIMP metallopeptidase inhibitor 3 HPV-positive Promoter region [39, 51]
SYBL1 Synaptobrevin-like 1 HPV-positive — 349 from TSS [50]
Signaling ESR1 Estrogen receptor 2 HPV-negative/positive Promoter region [39]
ESR2 Estrogen receptor 2 HPV-negative + 66 from TSS [50]
GALR1 Galanin receptor type 1/2 HPV-positive Two loci within [165]
the CpG island of
the GALR1 gene
GRB7 Growth factor receptor-bound HPV-positive — 160 from TSS [50]
protein 7
RARB® Retinoic acid receptor 3 HPV-negative/positive Promoter region [39]
Transcription RUNX1T1 RUNXT translocation partner 1 HPV-positive + 145 from TSS [50]
TCF21 Transcription factor 21 HPV-positive Promoter region [167]
WNT signaling SFRP1 Soluble frizzled receptor protein 1 Drinkers Promoter region [56]
SFRP4 Soluble frizzled receptor protein 4 HPV-positive Promoter region [56]
WIF1 WNT inhibitory factor 1 NA Promoter region [54]

NA not applicable

7SS transcription start site

PHypermethylation of these genes is associated with development of radioresistance in other tumor types

in OPSCC. Although the involvement of HPV proteins in
the methylation of the CpG loci downstream of the
CDKN2A gene promoter remains unclear, this may repre-
sent a potential mechanism for p16™*** overexpression in

HPV-positive OPSCC [46].

genomic

DNA repair
The maintenance of cellular integrity depends on the ef-
ficiency of multiple specific DNA repair pathways
(reviewed in [47]) which are crucial in protecting against
characteristic

instability,

of tumor
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development [48]. Genotoxic exposure to carcinogens
such as tobacco often results in DNA damage that rep-
resents an important mechanism of OPSCC etiology
[49]. Aberrant DNA methylation affecting the O6-
methylguanine-DNA methyltransferases (MGMT) gene
has been revealed in HPV-negative OPSCC [50, 51], but
also in lung cancer [52], suggesting the loss of the repair
function of MGMT may reduce the ability of cells to
repair DNA damage in smoking-induced tumors.

WNT signaling

WNT proteins belong to a large family of secreted gly-
coproteins activating several pathways, including the
best-known Wnt/B-catenin or canonical pathway [53].
Aberrant methylation of the negative regulators of this
pathway has been observed in HNSCC, including
OPSCC [54]. Downregulation of the soluble frizzled
receptor protein (SFRP) genes, encoding soluble antago-
nists of WNT protein receptors, has been described as
an alternative mechanism of stabilization and activation
of B-catenin [55]. The promoter methylation status of
these genes was examined in 350 patients with HNSCC,
of which 25% derived from the oropharynx. Of note,
SFRP1 aberrant methylation occurred at a higher preva-
lence in both heavy and light drinkers, whereas SFRP4
promoter methylation was detected more frequently in
never and former smokers and was also associated with
HPV16 infection [56].

Radiotherapy resistance

Some genes, which are associated with the development
of tumor radioresistance, are frequently hypermethylated
in OPSCC [11, 57] (Table 1). However, the molecular
mechanism by which their inactivation may contribute
to radiotherapy resistance in OPSCC is yet to be deter-
mined. Among these, checkpoint with forkhead and
RING finger domains protein (CHFR) was hypermethy-
lated in 25% of HPV-negative OPSCC patients, while no
promoter methylation of this gene was observed in
HPV-positive group [11, 57]. CHFR silencing was associ-
ated to the upregulation of PARPI, a gene coding for a
DNA repair enzyme involved in radiotherapy resistance
in HNSCC [58, 59].

In contrast to gene-specific hypermethylation, which
usually occurs in HPV-positive OPSCC, genome-wide and
global hypomethylation are more frequently observed in
HPV-negative tumors [60], likely leading to chromosomal
instability. Although the exact mechanism of global
genomic DNA hypomethylation in HNSCC has not fully
elucidated yet, differences in the expression and/or activity
of DNMTs may explain HPV-related differences among
OPSCC [46, 61]. Consistently, methylation levels of the
long interspersed nucleotide element-1 (LINE-1) repetitive
elements, a widely accepted surrogate of overall genomic
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DNA methylation content, were shown to be higher in
HPV16-positive than in negative HNSCC [60, 62]. This
finding suggests that HPV16-infected cells may attempt to
silence the virus by DNA methylation, which can result in
increased methylation of LINE-1 repetitive elements [62].

Methylation of HPV genome in HPV-associated OPSCC
HPV genome harbors CpG dinucleotides within con-
served palindromic sequences [63]; thus, its DNA
strands may be potentially targeted by covalent alter-
ations such as methylation. As HPV genome does not
encode any proteins with methyltransferase activity, the
methylation of HPV-DNA is supposed to be under the
control of the human host cell DNMT. It was shown
that HPV-E7 is capable to edit DNA methylation by
forming a complex with DNMT1 [46, 64]. In addition,
both DNMT1 [65] and DNMT3a [61] were found to be
more highly expressed in cells from HPV-positive
HNSCC than in those from HPV-negative tumors.

Opverall, the analysis of the methylation pattern of the
integrate HPV16 and human host genome in cultured
cells from HNSCC, including SCC from the base of the
tongue, revealed that the methylation status of HPV16 is
dramatically affected by the methylation status of the host
DNA flanking the integration site with HPV16-DNA
being highly methylated when integrated into intergenic
highly methylated host genome sites, while remaining
largely unmethylated when incorporated into poorly
methylated intergenic regions [66]. This observation
would argue for a bystander role of the virus methylome
rather than an important phenomenon in HPV-driven
carcinogenesis.

Different changes of the HPV methylome were observed
in relation to squamous epithelial differentiation suggest-
ing that HPV-DNA methylation is a more dynamic
phenomenon both in the context of the viral life cycle and
progression towards transforming infection modes [67].
The HPV genome includes a non-coding LCR, or up-
stream regulatory region, which contains a large number
of cis-responsive elements governing HPV gene expres-
sion and replication. The p97 promoter at the E6 proximal
part of the LCR regulates the transcription of E6 and E7
viral oncogenes [68]. HPV16 polymorphisms in the LCR
may alter the oncogenic potential of the virus by enhan-
cing p97 promoter activity [69]. Furthermore, numerous
mutations were uncovered in the LCRs from oral cancer
cells and HPV-immortalized oral epithelial cells which
increase the expression of HPV-transforming proteins
[70]. Therefore, the methylation status of LCR was inten-
sively investigated both in cervical cancer and OPSCC.
The functional significance of CpG methylation in the
LCR may be indeed an attempt by the host cell to silence
the expression of viral genes or a virus-induced strategy to
shift from the productive stage of the viral life cycle
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towards the transforming phase of HPV infection [67].
Unexpectedly, two research groups observed an unmethy-
lated status of the Cp@ sites within LCR in the majority of
OPSCC samples with integrated HPV16 genome [71, 72].
On the other hand, consistently with previous findings
derived from cervical cancer, they found a CpG methyla-
tion enrichment at the boundary of the L1 and L2 viral
gene. In cervical cancer, the rate of hypermethylation at
the L1 and L2 sites was observed to rise progressively with
the increasing severity of the lesions [73], and HPV16
CpG methylation at L1 and L2 sites was a reliable
biomarker of pre-cancer that can potentially stratify the
risk in HPV-positive women [74]. Regardless of the onco-
logical consequences of L1/L2 methylation which remains
unknown, the authors suggest its potential utility as diag-
nostic biomarker of HPV-driven OPSCC [72].

The level of viral oncogene E6/E7 expression is regu-
lated by binding of E2 to E2-binding sites (E2BSs). In
particular, at high concentration, E2 binds low-affinity
E2BS3 and E2BS4 resulting in inhibition of the p97
promoter and thereby maintaining low levels of E6 and
E7 (reviewed in [75]). Thus, the transition towards a
transforming HPV infection requires the inactivation of
E2. The main mechanism by which this is achieved is
the linearization of the viral DNA within the E2 open
reading frame [76]. However, in about 60% of OPSCC
HPV16 integration appears not necessary for viral trans-
formation [36, 77]. In addition, viral integration in host
genome may result in head-to-tail concatemers of full-
length HPV16 genomes [78]. In the above two contexts,
other mechanisms may contribute to the inhibition of
E2 functions. Interestingly, tumor samples from OPSCC
patients harboring intact E2 sequences (episomal state
or integrated head-to-tail concatemers) displayed inter-
mediated to complete methylation of E2BS3 and E2BS4
and high methylation levels at these sites were closely
associated with the highest E6 and E7 expression levels
and worse prognosis [79, 80]. Methylation status of
E2BSs was critical in maintaining the transformed
phenotype in oral SCC cells, as demethylation of HPV16
LCR by 5-aza-2'-deoxycytidine (5-AZA-CdR) caused
repression of E6 and E7 expression followed by cell cycle
arrest at G2/M [80]. Thus, in the presence of an intact
E2 open reading frame, methylation at E2BSs in the LCR
of E6 and E7 appears to positively regulate their expres-
sion. On the contrary, in a context of E2 gene disrup-
tion, the selective pressure on cellular clones harboring
methylated LCR site is lost.

Impact of lifestyle risk factors in OPSCC aberrant DNA
methylation

Tobacco smoke has been associated with both TSG pro-
moter hypermethylation and genome-wide hypomethyla-
tion, especially in long-term tobacco users, along with
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prolonged alcohol consumption [81-83]. Tobacco and
its metabolites influence the methylation profiles in can-
cers by impairing DNMT1 and DNMT3 expression,
both at transcript and protein level, and by altering its
enzymatic activity (reviewed in [84]). The genotoxic ex-
posure to cigarette smoke condensate and heavy metals
that are present in tobacco smoke has been also associ-
ated with global DNA hypomethylation [85]. Cigarette
smoke decreases acid folic and vitamin B;, levels [86],
which are required for the maintenance of methylation
patterns in DNA [87]. Consistently, a reduced concen-
tration of folate was found in the buccal mucosal cells of
tobacco smokers [88]. Although these evidences indi-
cated that deficiencies of folate and vitamin B;, may be
associated with increased risk of developing OPSCC,
several CpG sites were found to be differentially methyl-
ated in HPV-negative OPSCC patients with the highest
levels of both vitamin A and vitamin B;, intake. Interest-
ingly, vitamin B, intake was positively correlated with
RARB hypomethylation in HPV-positive OPSCC pa-
tients, thus emphasizing the differences in tumor biology
between HPV-positive and HPV-negative OPSCC [89].
Excessive alcohol intake has been reported to affect
DNA methylation by altering folate metabolism and
transmethylation reactions (for reviews see [90, 91]).
Alcohol can also reduce or increase DNMT activity [92,
93], consistent with the evidence that within the nucleus
accumbens core chronic low-level drinking promoted
DNA hypomethylation, whereas high levels of drinking
resulted in CpG hypermethylation [94]. Despite the lim-
ited number of studies that have looked for associations
between DNA methylation and alcohol consumption, an
analysis on cancers of the upper aerodigestive tract
revealed increased levels of CDKN2A promoter methyla-
tion among alcohol drinkers [95].

Histone modifications
Histone (H) 2A, H2B, H3, and H4 core histones represent
abundant nuclear proteins involved in the chromatin
architecture since they enter into the constitution of nu-
cleosomes. Core histones display N-terminal tails that
protrude from the nucleosome and are subject to combi-
nations of covalent modifications including acetylation,
methylation, phosphorylation, sumoylation, and ubiquiti-
nation. These modifications determine how tightly the
chromatin is compacted, playing a decisive role in modu-
lating gene expression, as well as serve as docking stations
for protein recognition modules which recruit specific
functional complexes (reviewed in [96]). Histone acetyl-
ation and methylation are most commonly associated with
carcinogenesis [37].

Histone acetylation is the result of the dynamic inter-
play between histone acetyltransferases (HATs) and
histone deacetylases (HDACs). In general, transcriptional
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activators recruit HATs, which alter nucleosomal con-
formation to produce an open chromatin structure
where transcription factors and co-activators can bind to
turn on gene transcription, whereas transcriptional re-
pressor associates with HDACs, which promote a more
condensed and inactive chromatin state. HATs and
HDACs target not only histone tails, but also non-
chromatin proteins [97]. Histone methylation, catalyzed
by histone methyltransferases (HMTs), occurs at both
arginine and lysine residues on the tails of histone pro-
teins H3 and H4. Similar to acetylation/deacetylation,
histone methylation is reversible, and demethylation is
catalyzed by histone demethylases (HDMs). Unlike
histone acetylation, methylation of histone proteins can
result in either activation or repression, depending on
which residue is affected. Indeed, trimethylation of
histone H3 lysine 9 (H3K9), 27 (H3K27), and histone H4
lysine 20 (H4K20) is associated with silent chromatin
and transcriptionally inactive genes. Conversely, methy-
lation of lysines 4, 36, and 79 on histone H3 (H3K4,
H3K36, and H3K79) can experience various methylated
states, including monomethylated, dimethylated, and
trimethylated which is closely linked with active tran-
scription [98, 99]. Myeloid mixed-lineage leukemia
(MLL) is a HMT that targets several lysine residues on
histones, including H3K4, and usually acts as a positive
transcriptional regulator. A whole-exome sequencing
analysis identified inactivating mutations in MLL2 and
MLL3 genes in both HPV-positive and HPV-negative
OPSCC [100], indicating a tumor suppressor function.
In the same study, the mutational spectrum of HPV-
negative tumors resulted very similar to those observed
in lung and esophageal squamous cell carcinomas and
included mutations of the HMT nuclear-receptor-
binding SET-domain-containing 1 (NSD1), which prefer-
entially targets H3K36 methylation [100]. By analyzing
public genomic and epigenomic data sets from HNSCC,
Papillon-Cavanagh et al. have recently identified a DNA
methylation cluster that exclusively contained samples
carrying NSD1 mutations or H3K36 alterations. Results
were further validated in an independent cohort of
OPSCC samples, in which the presence of H3K36 alter-
ations associated to a drastic decrease in H3K36 methy-
lation levels [101]. Altogether, these findings suggest that
NSD1 mutations and/or H3K36 alterations may be asso-
ciated with a genome-wide hypomethylation phenotype
in OPSCC.

With the exception of H4, all “canonical” histone
proteins in mammals have several variants with different
sequences [102]. The “canonical” histones are expressed
at high levels during the S-phase of the cell cycle,
whereas replication-independent histone “variants” are
expressed and incorporated into chromatin throughout
the cell cycle (for a review see [103]). Among histone
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“variants,” phosphorylated H2A.X (yH2A.X) variant
represents a useful marker of DNA integrity and repair,
because of its ability in recruiting DNA repair proteins
at the site of the dysplastic tissue. In response to double-
strand breaks (DSB), the serine/threonine kinase ataxia-
telangiectasia mutated is activated and rapidly phosphor-
ylates the histone variant H2A.X on S$139, forming
YH2A.X [104]. Upon DSB induction, yH2A.X appears as
subnuclear foci within minutes. The release of YH2A.X
foci and the subsequent repair of damage DNA depend
on YH2A.X acetylation and subsequent ubiquitination.
[105]. Residual YH2A.X foci which are detectable 24 h
after damage likely indicate misrepaired or incompletely
repaired DSB [106]. Interestingly, Park et al. reported
that HPV E7 oncoprotein was able to increase retention
of YH2AX nuclear foci following radiation-induced DNA
damage. Consequently, the normal kinetics of DNA
damage repair was impaired in HPV-positive OPSCC
cells both in vitro and in vivo [25]. These findings may
explain why HPV-positive tumors are more sensitive to
radiotherapy.

HPV infection and histone modifications in OPSCC

E6 and E7 HR-HPV oncoproteins have been demon-
strated to affect histone acetylation and methylation pat-
tern by interacting with HATs, HDACs, HMTs, and
HDMs (reviewed in [107]), thus affecting the chromatin
landscape of cancer cells. In HPV-driven cancers, his-
tone modifications on targeted genes can mediate bidir-
ectional effects on gene transcription. The interaction
between E6 and E7 HPV oncoproteins and the HAT
p300/CBP is, in fact, mainly direct towards non-histone
targets and aimed to enhance the deregulation of TP53
and CDKN2A/RBI pathways. Independent of its ability
to induce p53 degradation, E6 inhibits p300-mediated
p53 acetylation, leading to repression of p53-targeted
gene activation [108]. By recruiting p300/CBP and pRb,
E7 brings the histone acetyltransferase domain of p300/
CBP into proximity to pRb and promotes its acetylation,
leading to cell cycle deregulation [109]. The C-terminal
zinc-binding domain of E7 interacts with HDAC1 and 2
through Mi2p protein, a component of the nucleosome
remodeling deacetylase complex, thus inhibiting histone
deacetylase activity [110, 111]. Of interest, human
keratinocyte-expressing HPV16 E7 show an increased
histone H3K9 acetylation on E2F-responsive promoters,
which depend on E7 binding with both pRb and HDAC.
In addition, methylation of H3K4, which is associated
with transcriptional activation, was also increased [112].
This results in the weakening of the histone-DNA inter-
action at E2F-responsive sites and may promote the
transcription of cell cycle progression genes. Enhancer
of zeste homolog 2 (EZH2), the functional enzymatic
component of the polycomb repressive complex 2
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(PRC2), is a HMT catalyzing the addition of methyl
groups to H3K27 and, eventually, contributing to forma-
tion of a repressive chromatin state [113]. Thus, PRC2
marks transcriptionally silenced genes. Polycomb si-
lencers mediate the repression of key tumor-suppressor
pathways and play a crucial role in suppressing genes
required for differentiation and maintaining a cancer
stem cell phenotype (reviewed in [114]). In vitro studies
demonstrated that EZH2 promoter can be activated by
HPV E7 oncoprotein via the release of E2F factors from
growth-inhibitory pocket proteins [115]. HPV-positive
OPSCC have genome-wide elevation in the repressive
H3K27me3 histone modification [116], thus confirming
HPV-driven carcinogenesis and EZH2 overexpression
are closely related. Furthermore, double immunofluores-
cence quantification of histone lysine methylation re-
vealed that p16-positive OPSCC had global elevation of
H3K27me3 and H4K20mel that are both involved in
generating a repressive gene environment through the
formation of facultative heterochromatin [117]. Intri-
guingly, in HPV-positive HNSCC, several PRC2 target
genes were found to undergo hypermethylation includ-
ing members of the cadherin superfamily whose deregu-
lation is implicated in several tumor progression and
metastasis processes such as epithelial to mesenchymal
transition [118]. Furthermore, a significant enrichment
of highly methylated promoter regions of PRC2 targets
together with a higher expression of DNMT3a was ob-
served in cell lines from HPV-positive OPSCC compared
to HPV-negative ones [61]. In contrast to the abovemen-
tioned studies, HPV E7 oncoprotein was shown to in-
duce the expression of the lysine demethylases KDM6A
and KDM6B causing epigenetic reprogramming mainly
by removing the repressive H3K27me3 marks [119].
While in environmental-related carcinomas the cyclin-
dependent kinase inhibitor p16™*** is usually downreg-
ulated mainly by gene mutation or deletion, it is fre-
quently overexpressed in HPV-driven tumor and thus, it
is considered a surrogate marker for active HPV involve-
ment in OPSCC carcinogenesis. p16™"** upregulation
was considered the effect of transcriptional activation by
E2F transcription factor released after E7-mediated dis-
ruption of pRb/E2F complexes. But detailed mechanistic
investigations suggested that pl16™*** is overexpressed
upon HPV E7 oncoprotein signaling via induction of the
demethylase KDM6B that removes repressive H3K27me3
marks from the p16™** _encoding CDKN2A promoter
region [119, 120].

Tobacco smoke may induce chromatin histone
modifications in HPV-negative OPSCC

To date, the effect of excessive alcohol exposure and to-
bacco consumption on histone modifications has not
been investigated in OPSCC. However, cigarette smoking
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was shown to induce specific post-translational modifi-
cations in H3 and H4 lysine and arginine during the
pathogenesis of smoking-related diseases [121]. In lung
cancer, mutations and deregulations of histone-
modifying enzymes have been described in association
with tobacco smoke condensate [101, 122], and smoke-
induced modifications in histone patterns have linked to
aberrant gene expression in immune cells [123]. Given
that HPV-negative OPSCC most closely resemble lung
SCC [124], deregulation of histone-modifying enzymes
and chromatin structure may also play a role in tobacco
smoke-induced OPSCC.

NcRNA involvement in OPSCC

NcRNAs are of increasing biologic and therapeutic
relevance due to their role in modulating gene expres-
sion [12-16]. Generally, ncRNAs less than 200 bp are
known as small ncRNAs (sncRNAs) and included small
interfering RNAs, micro RNAs (miRNAs), and PIWI-
interacting RNAs (piRNAs), while all larger transcripts
are defined as long non-coding RNAs (IncRNAs) [125].
NcRNAs can interact with histone-modifying complexes
and/or DNMTs, being also targets of these epigenetic
mediators [12, 16]. At present, the list of ncRNAs
involved in OPSCC includes a large number of sncRNAs
(mainly miRNAs) and few IncRNAs (Table 2).

MiRNAs represent important mediators of epigenetic
regulation of gene expression. MiRNAs can direct endo-
nucleolytic cleavage of the targeted mRNAs or inhibit
translation through perfect or nearly perfect comple-
mentarity to targeted mRNAs at the 3’ untranslated
[12]. To date, limited information is available regarding
mechanisms by which miRNA alterations may contrib-
ute to OPSCC carcinogenesis and progression. MiRNAs
are transcribed in the nucleus by RNA polymerase II
into long primary transcripts, which are further proc-
essed by two RNase-III enzymes, Drosha and Dicer
[126]. Of note, increased expression levels of Drosha,
Dicer, and other components of the miRNAs machinery
were detected in tonsil SCC [127]. Consistent with these
data, a number of miRNAs were upregulated, with the
exception of miR-198 and let-7 [127], which has been
previously shown to negatively regulate Dicer expression
[128]. Among upregulated miRNAs, miR-21 and miR-
499 were found to suppress the programmed cell death
protein 4 (PDCD4), a tumor suppressor protein that is
lost in the majority of tonsil SCC [127]. Apart from
miRNA machinery, single nucleotide polymorphisms in
miRNA precursors may influence their maturation, and
thereby modulate their expression as reported for miR-
146, miR-149, miR-196, and miR-499. Polymorphisms in
the immature form of these miRNAs were found to
significantly increase the risk of HPV16-associated
OPSCC, particularly in never smokers [129].
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Table 2 NcRNAs altered in OPSCC
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MIRNA

Let-7c
MiR-9

MiR-18a

MiR-20a
MiR-20b
MiR-21
MiR-26b
MiR-30a
MiR-30d
MiR-31
MiR-93
MiR-101

MiR-103
MiR-106b
MiR-125a
MiR-126
MiR-127
MiR-130a
MiR-137

MiR-143
MiR-145
MiR-146
MiR-149
MiR-155

MiR-181b/d
MiR-191
MiR-195
MiR-196
MiR-198
MiR-199a/b
MiR-200c
MiR-222
MiR-223
MiR-320
MiR-363
MiR-372
MiR-375
MiR-379

Up-/downregulation
or polymorphism

Down

Down

Up
Down
Up
Up
Up
Up
Down
Up
Up
Down
Up
Down
Up
Up
Up
Down
Down
Down
Up

Down

Down
Down
Polymorphism
Polymorphism

Up

Up
Up
Up
Polymorphism
Down
Down
Up
Up
Down
Up
Up
Up
Up

Down

HPV-associated

No
No

Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
No
No

Yes
Yes
Yes
Yes
No
Yes
No
No
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
No

Yes

Environmental
factors associated

Alcohol

Alcohol

Alcohol

Epigenetic
regulation

Promoter
methylation

Promoter
methylation

References

[127]
[131]

[168, 169, 140]
e8]
[127]
[127]
[169, 140]
[127,151]
[142]
[150]
[127]
[168]
[140]
[142]
[150]
[170]
[140]
[142]
[140, 142]

[140, 142]
[140, 142]
[129]
[129]

[140, 142]
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Table 2 NcRNAs altered in OPSCC (Continued)
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MiR-381 Down Yes
MiR-409 Down Yes
Up No
MiR-432 Down Yes
MiR-433 Down Yes
MiR-499 Up No
Polymorphism Yes
MiR-517 Down Yes
MiR-675 Up No
MiR-934 Up No
MiR-1201 Down Yes
MiR-1266 Up No
MiR-3164 Up No
MiR-3178 Up No
MiR-3690 Up No
LncRNA Up-/downregulation HPV-associated
CDKN2B-AS Up Yes
EGOT Up Yes
LINCO0152 Down Yes
NCRNA00185 Down Yes
PRINS Up Yes
TTTY14 Up Yes
TTTY15 Up Yes
XIST Up Yes

Alcohol
Alcohol

Alcohol
Alcohol
Alcohol
Alcohol

Environmental References

factors associated

Epigenetic
regulation

[135]
[135]
[135]
[135]
[135]
[135]
[135]
(135]

135
135

Interestingly, miRNAs have been reported to be epige-
netically silenced in laryngeal SCC, oral cavity SCC
(OSCC), and OPSCC. In particular, treatment of
HNSCC cell lines with 5-AZA-CdR has proven to be
effective in restoring the expression of miR-9, one of the
best characterized miRNA regulated by DNA methyla-
tion in cancer [130]. Furthermore, miR-9 ectopic expres-
sion led to PTEN upregulation, and a significant
repression of HNSCC proliferation [131]. Thus, miR-9
could represent an important negative regulator of
OPSCC cells growth. Other than being regulated by epi-
genetic mechanisms, miRNAs can in turn modulate the
expression of the epigenetic enzymes. Along this line,
miR-874 silencing by aberrant CpG promoter methyla-
tion has been frequently described in laryngeal SCC,
OSCC, and OPSCC. Performing an in silico database
analysis, miR-874 was found to negatively regulate the
expression of HDACI. Accordingly, luciferase reporter
assay demonstrated that miR-874 directly regulated
HDACI in HNSCC cells, thus creating a complicated
network of reciprocal interconnections [132].

As described above, IncRNAs are defined as RNA
transcripts longer than 200 nucleotides that lack

protein-coding potential. After transcription via RNA
polymerase, IncRNAs are processed are subject to 5'-
capping, polyadenylation, and intron splicing. Most
IncRNAs are retained in the nucleus, but in some cases,
they can also be exported to the cytoplasm. LncRNAs
represent potent cis- and trans-regulators of gene tran-
scription and act as scaffolds for chromatin-modifying
complexes (reviewed in [133]). At present, the know-
ledge of IncRNA involvement in carcinogenesis is still in
its infancy, largely due to the novelty of these molecules.
The putative role of IncRNAs in OPSCC further confirm
this, as only few IncRNAs have been studied in detail,
and have been directly linked to HPV oncogenic protein
activity [134, 135].

NcRNA deregulation in HPV-positive OPSCC

Although the involvement of ncRNAs in HNSCC is well
recognized, only few studies have focused specifically on
ncRNAs profile in HPV-positive OPSCC (Table 2) and in-
vestigated how HPV modulates their expression [136, 137],
since both E6 and E7 HPV oncoproteins were shown to
modulate the ncRNA landscape in cancer cells [138, 139].
Using different cohorts of OPSCC, a miRNA panel that
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differentiates HPV-positive OPSCC from HPV-negative
tumors has been recently identified [140]. Interestingly,
strong upregulation of miR-9 has been observed in HPV-
positive OPSCC but not in HPV-negative tumors [140], in
which miR-9 expression was found silenced by promoter
methylation [131]. Consistent with this data, increased
miR-9 expression associated with HPV activity has been
reported in cervical cancer [141]. However, the mechanism
by which HPV promotes miR-9 expression is yet to be
discovered. In a study of Lajer et al., HPV-positive OPSCC
showed a considerable upregulation of miR-363 expression
[142], consistent with another report of Wald et al, in
which HPV16 E6 knockdown was accompanied by a reduc-
tion of miR-363 levels in HNSCC [143], thus suggesting a
possible role for miR-363 in HPV-positive OPSCC. MiR-
NAs can also directly target HPV E6/E7 mRNA, as it has
been demonstrated via the ectopic expression of miR-375
mimic in OPSCC and cervical cancer cell lines [144].
Notably, Liu et al. has recently showed that E6 oncoprotein
promoted miR-375 epigenetic silencing through overex-
pression of DNMT1 in HPV16 positive cervical cancer cells
[145]. Furthermore, miR-375 was found to negatively
regulate the metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) IncRNA [145], which is frequently
overexpressed in cancers, and has extensively involved in
oncogenic processes [146]. In a previous study of Jang et
al, MALAT1 expression increased in oral keratinocytes
transfected with HPV16 E6 and HPV E6/E7 oncoproteins,
indicating HPV16 may promote cell proliferation by
promoting MALAT1 upregulation [134]. A recent study
performed on the extensive data set available on The
Cancer Genome Atlas portal showed ncRNAs as a signifi-
cantly upregulated transcriptional RNA population in
HPV16-positive HNSCC with the most prominent differen-
tially expressed ncRNAs between HPV16-positive and
HPV-negative being associated with protein-coding “tar-
gets” involved in the cell cycle and cell-cell signaling [147].
Altogether, these findings suggest the role of ncRNAs in
HPV-driven OPSCC warrants future investigation.

Environmental regulation of ncRNAs in OPSCC

NcRNA expression changes following exposure to
environmental carcinogens have been documented in
HNSCC. Unfortunately, results were obtained using het-
erogeneous tumor tissues or cell lines from different
sites of HNSCC, so they are not exclusively specific for
OPSCC. Overexpression of miR-23a was described in
HNSCC from areca-nut chewing patients and correlated
with an increase of the DNA damage marker yH2A.X
and a reduction of DBS repair [148]. A recent study re-
ported that the downregulation of miR-145 in oral fibro-
blasts exposed to cigarette smoke condensates promoted
pro-tumorigenic stromal-epithelial interactions [149]. A
number of aberrantly expressed miRNAs were identified
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in HNSCC patients, who were subdivided into non-
drinkers, light, and heavy drinkers. Among these, miR-
30a and miR-934 were the most highly upregulated in
drinkers, and their overexpression was associated to the
induction of the anti-apoptotic gene BCL-2 and to
increased levels of cell proliferation [150]. MiR-375 was
also demonstrated to increase with alcohol consumption
in OPSCC [151], but the pathway involved between this
miRNA and the excessive alcohol use has not yet been
elucidated.

Epigenetic alterations as diagnostic biomarkers in
OPSCC
Epigenetic alterations share some characteristics that
render them particularly attractive as clinically applic-
able biomarkers, since they are characterized by high
stability in biologic samples, and they can be easily
detected in body fluids (e.g., serum, plasma, saliva,
urine). Furthermore, the possibility to amplify them in a
cost-effective manner represents a further advantage for
routine analyses [152]. The increasingly recognized role
of aberrant epigenetic modifications in OPSCC biology
strongly suggests for the opportunity to test epigenetic
markers as potential indicators of disease prognosis and
response to therapy. The ability to determine epigenetic
alterations in premalignant lesions, serum, and saliva
may also provide valuable biomarkers for the early
detection of OPSCC and for monitoring its recurrence.
Consistent with the increasing role of aberrant DNA
methylation in HNSCC biology, different studies have
reported the methylation of single genes/loci to have a
potential in predicting OPSCC clinical outcome. How-
ever, a number of them have been conducted on study
populations consisted of OPSCC and other HNSCC
(Table 3). Taioli et al. studied the methylation of
CDKN2A, MGMT, and RASSFI in correlation with OS
and tumor recurrence in OSCC and OPSCC. Results
demonstrated that MGMT promoter methylation was
significantly associated with poorer outcome, consistent
with the critical role of MGMT in DNA repair [45]. In
the last years, a number of studies have sought to estab-
lish a correlation between promoter methylation and
improved survival rate in HPV-positive OPSCC. Along
this line, Gubanova et al. provided the evidence that the
downregulation of the serine/threonine-protein kinase
SMG-1 by promoter hypermethylation correlated with
HPV-positive status and improved OPSCC patient sur-
vival, and also with enhanced response to radiotherapy
in HPV-positive HNSCC cell lines [153]. Subsequently,
Kostareli et al. described an HPV-related promoter
methylation signature of five genes (ALDH1A2, GATAA4,
GFR4, IRX4, and OSR2) with strong correlation and
predictive power for clinical outcome of OPSCC patients
[154]. A more recent study has investigated the
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Table 3 Association of aberrant DNA methylation and clinical outcome in OPSCC patients

Gene Hyper-/hypomethylation Cohort Clinical outcome References

MGMT Hyper 88 OPSCC Poorer PFS and OS [45]

ALDH3A1 Hyper 76 HNSCC, including 15 OPSCC Decreased OS [172]

TAP1 Hyper

SMGT Hypo 40 OPSCC Improved OS in HPV-positive [153]
OPsCC

ALDH1A2 Hypo 170 OPSCC (3 independent cohorts) Improved clinical outcome in [154]

GATAA Hyper HPV-positive OPSCC

GRIA4 Hyper

IRX4 Hyper

OSR2 Hypo

DAPK1 Hyper 70 HNSCC, including 9 OPSCC Lymph node metastasis [173]

MGMT Hyper

WIF1 Hyper 43 HNSCC, including 19 OPSCC Decreased OS [54]

GALR1/2 Hyper 202 HNSCC, including 58 OPSCC Poor survival with the highest [174]
association in HPV-negative OPSCC

LINE-1 Hypo 110 OPSCC (2 independent cohorts) Increased risk of early relapse in [60]

HPV-negative OPSCC

ALDH aldehyde dehydrogenase, DAPK death-associated protein kinase, GALR galanin receptor, GATA GATA binding protein, GRIA glutamate receptor, IRX iroquois
homeobox, LINE long interspersed nuclear element, MGMT O-6-methylguanine-DNA methyltransferases, OSR odd-skipped-related, SMG nonsense mediated mRNA
decay associated PI3K-related kinase, TAP transporter associated with antigen processing, WIFI WNT inhibitory factor

influence of the overall level of genomic DNA methyla-
tion on early OPSCC relapse risk. Results reported that
OPSCC smokers who relapsed within 24 months exhib-
ited significantly reduced methylation levels of the
LINE-1 repetitive elements. Interestingly, the association
between smoking habits and LINE-1 hypomethylation
was stronger in HPV16-negative OPSCC cases [60].

Due to their stability as well as the potential role of
their dysregulation at different stages of carcinogenesis,
ncRNA may represent very promising non-invasive bio-
markers for OPSCC. Based on their size and greater sta-
bility with respect to mRNA, miRNA represent an
attractive target for salivary-based diagnostic [155]. Con-
sistently, several groups have already published miRNA
profiles correlated to clinical outcome of OPSCC pa-
tients (Table 4). In most cases, the causal relationship
has not been completely elucidated. Since the expression
of several miRNA is specifically modulated in HPV-
driven tumors, miRNA profiles may also be useful for
identifying HPV-positive OPSCC patients in the early
stage of the disease. The clinical importance of another
class of small ncRNA, called piRNAs, has emerged from
a study of Firmino et al. in which piRNA expression was
assessed in 498 non-malignant and HNSCC tissues,
including OPSCC. Data obtained revealed 87 piRNAs
that were exclusively expressed in HNSCC, with 41
piRNA clearly associated to HPV status. Among these,
11 piRNAs were significantly downregulated in HPV16/
18 tumors compared to other HPV types. Based on these
data, authors defined an expression signature of five

piRNAs that correlated with OS exclusively in HPV-
positive patients, indicating the potential utility of piRNAs
in assessing HNSCC patient outcome [156] (Table 4).

Epigenome-modifying enzymes as potential
therapeutic targets in OPSCC
Enzymes that maintain and modify the epigenome seem
to play a crucial role in OPSCC. In this context, epigen-
etic drugs might represent an important therapeutic mo-
dality for the clinical management of OPSCC patients.
Being regulated by multiple oncogenic pathways and
affecting OPSCC phenotype, DNMTs constitute a poten-
tial anti-cancer target. So far, the most widely studied
DNMT inhibitors (DNMTi) 5-azacytidine (azacitidine,
Vidaza) and 5-AZA-CdR (Decitabine, Dacogen) have
undergone intensive clinical development that led to
their Food and Drug Administration (FDA) approval for
patients affected by hematological malignancies [37]. As
described above, treatment with 5-AZA-CdR has proven
to be effective in restoring the expression of miRNA
with tumor suppressor function in HNSCC [131], but
also in HPV-transformed cell lines [157]. Considering
that HPV-positive OPSCC have been found to have
higher levels of TSG promoter methylation, DNMTi
might represent an additional treatment option for these
patients. Furthermore, an immunomodulatory activity of
5-AZA-CdR, which may ensure efficient therapeutic
anti-tumor effects in HPV-positive malignancies, has
been also shown in mice vaccinated with HPV DNA
vaccines. In fact, 5-AZA-CdR co-delivered with a DNA
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Table 4 Association of ncRNAs profiles and clinical outcome in
OPSCC patients

NcRNA Conclusion Cohort References
MiR-221 MiR-21 expression 147 HNSCC, [151]
correlated with poor including 31
prognosis in HNSCC OPSCC
patients
Let-7d Reduced expression of 104 HNSCC, including ~ [175]
) let-7d and miR-205isa 32 OPSCC
MiR-205 significant predictor of
HNSCC progression
independent of
anatomical site, tumor
stage, treatment, or
HPV
MiR-107 Associated with 88 OPSCC [169]
. overall survival (OS),
MiR-151 independent of HPV
MiR-492 status
MiR-20b Associated with
. disease-free survival,
MiR-107 independent of HPV
MiR-151 status
MiR-182
MiR-361
MiR-151 Associated with
. distant metastasis,
MiR-152 independent of HPV
MiR-324-5p  status
MiR-361
MiR-492
MiR-9 Associated with 150 OPSCC [168]
’ OS in HPV-positive
MiR-182 patients
MiR-31
MiR-155
MiR-223
MiR-146 Single nucleotide 1008 OPSCC [176]
) polymorphisms in
MiR-196 these miRNAs were
associated with
reduced and
increased risk of
OPSCC recurrence,
respectively
MiR-193b-3p  Positively associated 81 OPSCC obtained [177]
) with OS from "The Cancer
MiR-455-5p Genome Atlas”, and
MiR-92a-3p  Negatively associated 95 OPSCC patients
) with OS included for
MiR-497-5p validation
PiR-30506 Associated with OS 498 non-malignant [156]
) in HPV-positive and HNSCC tissues,
PiR-35953 patients including 66 OPSCC
PiR-36715
PiR-36984
PiR-39592

vaccine encoding calreticulin (CRT) linked to E7 antigen
(CRT/E7) was able to increase CRT/E7 DNA expression
and to enhance E7-specific CD8+ T cell immune re-
sponses [158].
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Although the biological consequences of HDAC
deregulation in OPSCC are still largely unknown, in
vitro studies have reported that HDAC inhibitors
(HDAC:) could induce cell cycle arrest [159] and pro-
mote apoptosis in HNSCC cell lines [160]. Epigenetic
drugs have also been explored in combination with
chemotherapeutics, indicating they may sensitize
HNSCC cells to chemotherapy-induced apoptosis. For ex-
ample, the combinations of 5-AZA-CdR or HDACi with
cisplatin enhanced the cytotoxic effectiveness of this well-
established chemotherapeutic in HNSCC treatment [161,
162]. DNMTi also demonstrated some synergistic effect
with radiation by reducing HNSCC cell survival compared
to the single treatments and by increasing radiation-
induced apoptosis [163]. Furthermore, in vivo HDACi
administration promoted DNA repair and survival in
normal cells after radiation, indicating that HDACi could
protect normal tissue from radiation-induced side effects
[164]. Based on these promising pre-clinical data, OPSCC
clinical trials involving HDACi have been carried out or are
on-going (NCT01064921, NCT01695122, NCT01249443,
available at www.clinicaltrials.gov).

Unlike DNMTi and HDAC], only a few HMT inhibi-
tors are currently known, and most of them were dis-
covered through random screening approaches [37]. In
this context, epigenetic inhibitors targeting the EZH2
pathway have recently shown effectiveness in suppress-
ing OPSCC growth and survival, with a major effect in
HPV-positive cell lines [116]. Despite these promising
results, no significant decrease in EZH2 and its sub-
strate H3K27 was observed [116], thus indicating the
mechanisms of these HMTi need to be further eluci-
dated in OPSCC.

Conclusions

The incidence of OPSCC is rising rapidly with about
60% of patients presenting with loco-regionally advanced
disease at diagnosis and requiring combined modality
treatment strategies. Thus, improving survival rate and
reducing treatment morbidity are both pressing issues.
Epigenetic alterations, including DNA methylation, his-
tone modification, and ncRNAs, clearly impact on key
pathways that are involved in OPSCC biology. Epigenetic
events occurring in OPSCC should be considered as the
consequence of a network of interactions between
epigenetic enzymes, on one side, and HPV infection and
environmental-lifestyle factors on the other. HPV-
positive and HPV-negative OPSCC have singular epigen-
etic drivers which may impact on different clinical
behaviors and treatment response and strengthen the
concept that HPV-driven OPSCC are biologically
distinct from non-HPV-driven tumors. Expanding our
understanding on how epigenetic modifications contrib-
ute to OPSCC and enlightening the convergent crosstalk
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existing between DNA methylation, histone modifica-
tion, and ncRNA networks may improve the knowledge
of its pathogenesis and provide new novel biomarkers
for diagnosis or prediction of disease outcome and/or
response to therapy. Furthermore, the development of
next-generation epigenetic drugs may offer the tools
necessary for promising therapeutic treatment of both
HPV-positive and HPV-negative OPSCC patients.
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type 16; HR: High risk; K: Lysine; L: Late; LCR: Long control region; LINE-

1: Long interspersed nucleotide element-1; INcRNA: Long non-coding RNA;
LR: Low-risk; MALAT1: Metastasis-associated lung adenocarcinoma transcript
1; MGMT: O6-Methylguanine-DNA methyltransferases; miRNA: Micro RNA;
MLL: Myeloid mixed-lineage leukemia; ncRNA: Non-coding RNA;

NSD1: Nuclear-receptor-binding SET-domain-containing 1;

OPSCC: Oropharyngeal squamous cell carcinoma; OSCC: Oral cavity
squamous cell carcinoma; PDCD4: Programmed cell death protein 4;

PiIRNA: PIWI-interacting RNA; PRC2: Polycomb repressive complex 2;

SFRP: Soluble frizzled receptor protein; sncRNA: Small non-coding RNA;

TSG: Tumor suppressor gene
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