
LETTER TO THE EDITOR Open Access

Combining omics data to identify genes
associated with allergic rhinitis
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Abstract

Allergic rhinitis is a common chronic disorder characterized by immunoglobulin E-mediated inflammation. To identify
new genes associated with this trait, we performed genome- and epigenome-wide association studies and linked
marginally significant CpGs located in genes or its promoter and SNPs located 1 Mb from the CpGs, by identifying cis
methylation quantitative trait loci (mQTL). This approach relies on functional cellular aspects rather than stringent
statistical correction. We were able to identify one gene with significant cis-mQTL for allergic rhinitis, caudal-type
homeobox 1 (CDX1). We also identified 11 genes with marginally significant cis-mQTLs (p < 0.05) including one with
both allergic rhinitis with or without asthma (RNF39). Moreover, most SNPs identified were not located closest to the
gene they were linked to through cis-mQTLs counting the one linked to CDX1 located in a gene previously associated
with asthma and atopic dermatitis. By combining omics data, we were able to identify new genes associated with
allergic rhinitis and better assess the genes linked to associated SNPs.
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Introduction
Allergic rhinitis is one of the most common allergies
worldwide and one of the most common chronic disor-
ders among children and adults [1]. Early sensitization
to aeroallergens and food combined with the presence of
atopic dermatitis, characterized by an immunoglobulin E
(IgE)-mediated inflammation, can result in the develop-
ment of asthma and/or allergic rhinitis later in life in a
process called “atopic march” [2]. Genetic studies
identified hundreds of genes associated with allergic
rhinitis, and genome-wide association studies (GWASs)
pinpointed single nucleotide polymorphisms (SNPs) asso-
ciated with its development [3, 4]. However, a majority of
identified SNPs lie in the non-coding genomic region,
making it difficult to identify the targeted genes. Given
that DNA methylation may have an impact on gene
regulation [5], the probability of detecting true posi-
tive associations should be improved by combining
nominally significant data from genomics and epige-
nomics and linking them by quantitative trait loci
(QTL) analysis. Methylation QTLs (mQTLs) allow

assessing the impact of DNA-sequenced variations
(SNPs) on DNA methylation. They have been assessed
in different tissues and cell types and were shown to
overlap with GWAS hits [6–9]. We used this ap-
proach to identify allergic rhinitis genes and illustrate
its usefulness in the context of a complex trait.

Materials and methods
Individual selection, characterization, and sample
preparation
We used data available from the Saguenay–Lac-Saint-Jean
(SLSJ) asthma familial collection from Québec, Canada,
that has data for rhinitis and allergies (Table 1). This
population is known for its founder effect and is more
homogeneous than a cosmopolitan population [10, 11].
Individuals affected with rhinitis and allergies, with or
without asthma, were analyzed as cases. Individuals with
no rhinitis, allergies, and asthma were considered as con-
trols. In this study, patients were defined as asthmatics
based on if they either had a reported history of asthma
(validated by a physician) or if at recruitment they mani-
fested asthma-related symptoms and positive PC20

(<8 mg/ml) [12]. Rhinitis was self-reported, and the sub-
ject had to answer “yes” to at least one of the following
questions: Have you ever had rhinitis?; Have you ever had
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hay fever?; and Have you ever had sneeze or rheum after
contact with the following: hay, flowers, animals, and
dust? Allergy was defined by a skin prick test for 26 aero-
allergens (≥3 mm). All subjects were recruited and evalu-
ated out of the pollen season [12]. Recruitment and
clinical evaluation of individuals as well as phenotype de-
scription can be found in Laprise [12]. All subjects gave
their informed consent, and the project was approved by
the research ethic committee of the Centre intégré univer-
sitaire de santé et de services sociaux du SLSJ.

Genome-wide association study
A total of 508 subjects (321 cases and 187 controls) and
312 subjects (125 cases and 187 controls) were included
in the analysis for allergic rhinitis with or without asthma,
respectively. The same group of controls was used to
compare to both phenotypes (i.e., allergic rhinitis and al-
lergic rhinitis with asthma). DNA extraction, genotyping
methods, and statistical analyses were described previously
[12]. Genotyping was performed using the Illumina 610K
Quad array (Illumina, San Diego, CA, USA). Association
test was performed using a quasi-likelihood score test
using the MQLS program (Release 1.5, http://www.stat.u-
chicago.edu/~mcpeek/software/MQLS/index.html), which
allows performing case-control association analysis
using related individuals [13]. The kinship coefficient
was calculated using KinlnbCoef program (version 1.1,
http://www.stat.uchicago.edu/~mcpeek/software/KinInbc
oef/index.html). We included in the analysis SNPs with

minor allele frequency (MAF) >0.05, p value for Hardy-
Weinberg equilibrium >0.0001, and overall call rate >95%.
Samples with genotyping rate <95% were excluded. A total
of 633 samples (321 subjects with allergic rhinitis with
asthma, 125 subject with allergic rhinitis only, and 187
controls (used to compare to both phenotypes)) and
506,388 SNPs were included in the analysis.

Epigenome-wide association study
A total of 31 controls and 48 cases for allergic rhinitis with
asthma or 30 cases for allergic rhinitis alone were included
in the epigenome-wide association study (EWAS) analysis.
These samples are a subset of the ones used in the GWAS
analysis. Unrelated subjects were included based on
having allergic rhinitis with or without asthma and hav-
ing no asthma, allergies, or rhinitis and based on having
high or low levels of IgE. DNA extraction and sodium
bisulfite conversion methods were described previously
[14]. The assay was carried out on the Infinium
HumanMethylation450 BeadChip array (Illumina, San
Diego, CA, USA). The analysis was performed using
the RnBeads Bioconductor R package [15]. We removed
probes with at least one of the following characteristics:
(1) weak signal (p > 0.01) (2128 CpG sites), (2) SNP-
enriched sites (4100 sites), (3) out of a CpG context
(not on a CG) (3149 sites), or (4) located on sex chro-
mosomes (11,129 sites). A total of 465,071 CpG sites
were analyzed initially. Signal was then normalized, first
by scaling to the internal controls using the methylumi

Table 1 General characterization of individuals analyzed in the study

GWAS samples EWAS samples

Controlsa Allergic rhinitisb Allergic rhinitis combined
with asthmac

Controlsa Allergic rhinitisb Allergic rhinitis combined
with asthmac

Number of samples 187 125 321 31 30 48

M/F ratio 1:1.13 1:0.87 1:0.87 1:1.60 1:0.88 1:0.78

Age, mean (range)d 43 (3–85) 37 (5–93) 28 (5–83) 29 (1–53) 28 (1–59) 28 (5–55)

Age mediand 41 38 26 35 30 26

Smoking status, n (%)e

Non-smoker 82 (44) 64 (51) 219 (68) 14 (45) 18 (60) 36 (75)

Ex smoker 61 (33) 37 (30) 53 (17) 8 (26) 6 (20) 4 (8)

Smoker 43 (23) 21 (17) 44 (14) 9 (29) 5 (17) 7 (15)

IgE, μg/L (SD)f 202.85 (1373.66) 411.27 (852.17) 856.45 (2075.62) 67.10 (90.45) 575.40 (1380.45) 597.73 (242.50)
aDefined as not affected by either asthma, allergies, or rhinitis. bDefined as being affected with both allergy and rhinitis. Allergic rhinitis phenotype is available for
all samples. Allergy is defined as at least one positive response on skin prick testing (wheal diameter ≥3 mm at 10 min). Rhinitis is self-reported, and the subject
had to answer “yes” to at least one of the following questions: Have you ever had rhinitis?; Have you ever had hay fever?; and Have you ever had sneeze or rheum
after contact with hay, flowers, animals, and dust? Can be either combinedc or notb with asthma. dAge difference between groups were assessed using an unpaired t
test. GWAS: controls vs allergic rhinitis p = 0.078 and control vs allergic rhinitis combined with asthma p = 1.2e−15. EWAS: controls vs allergic rhinitis p = 0.078
and control vs allergic rhinitis combined with asthma p = 0.43. eSmoking status available for 186 controls, 122 allergic rhinitis, and 316 allergic rhinitis com-
bined with asthma subjects for genome-wide association study (GWAS) samples and 31 controls, 29 allergic rhinitis, and 47 allergic rhinitis combined with
asthma subjects for epigenome-wide association study (EWAS) samples. Differences between groups were assessed using a chi-square test. GWAS: controls vs
allergic rhinitis p = 0.0045 and control vs allergic rhinitis combined with asthma p = 1.25e−19. EWAS: controls vs allergic rhinitis p = 0.049 and control vs allergic
rhinitis combined with asthma p = 7.7e−3. fGeometric mean and standard deviation (SD) for the immunoglobulin E (IgE) serum concentration calculated for 175 controls,
116 allergic rhinitis, and 302 allergic rhinitis combined with asthma subjects for GWAS samples and all subjects for EWAS samples. IgE level differences between groups
were assessed using an unpaired t test. GWAS: controls vs allergic rhinitis p = 0.145 and control vs allergic rhinitis combined with asthma p = 2.2e−3. EWAS: controls vs
allergic rhinitis p = 0.003 and control vs allergic rhinitis combined with asthma p = 0.90. Sex, age, cell count, and smoking status were used as covariates in the analyses

Morin et al. Clinical Epigenetics  (2017) 9:3 Page 2 of 6

http://www.stat.uchicago.edu/~mcpeek/software/MQLS/index.html
http://www.stat.uchicago.edu/~mcpeek/software/MQLS/index.html
http://www.stat.uchicago.edu/~mcpeek/software/KinInbcoef/index.html
http://www.stat.uchicago.edu/~mcpeek/software/KinInbcoef/index.html


R package [16], then by applying the method of subset-
quantile within array normalization (SWAN) imple-
mented in the minfi R package [17, 18]. A total of 2203
sites were removed due to missing data. We removed
probes that mapped multiple genomic regions (≥90%
sequence similarity), that have a variant less than 10 bp
from the CpG, or that have ≥2 SNPs in it. A total of
374,498 CpG sites (80.5%) were analyzed for differential
DNA methylation using limma R package [19]. All sam-
ples had cell counts for eosinophils, basophils, monocytes,
lymphocytes, and neutrophils. The cell percentages were
used as covariates as well as sex, age, smoking status, and
batch effect.

Methylation quantitative trait loci analysis
To perform the mQTL analyses, we used associated
SNPs (p < 0.05) and CpGs (p < 0.05 and Δβ > 0.05) in the
GWAS and EWAS for both traits. We kept associated
CpGs that were located in either the gene body or 1.5-
kb upstream of the transcription start site, keeping 88
and 144 CpGs for allergic rhinitis with or without
asthma, respectively. SNPs were kept if present in all
samples and if the three genotype groups (homozygous
reference, heterozygous and homozygous alternative)
were observed at least five times. A total of 529 and 625
SNPs were included in the analysis for allergic rhinitis
with or without asthma, respectively. We analyzed cis-
mQTLs where the CpG-SNP combination was less than
1 Mb apart from each other based on the distance used
by the GTEX consortia for their cis expression quantita-
tive trait loci (cis-eQTLs) (http://www.gtexportal.org/

home/documentationPage). We used a Bonferroni cor-
rection to evaluate significance thresholds. We com-
puted mQTLs for these SNP-CpG pairs using an
additive linear model using the R package MatrixEQTL
[20]. Same covariates as in EWAS were included in this
analysis. A total of 274 (Bonferroni p = 0.05/274 = 1.8e−4)
and 500 (Bonferroni p = 0.05/500 = 1e−4) CpG-SNP com-
parisons were performed for allergic rhinitis with or with-
out asthma, respectively.

Results and discussion
In this study, we used a novel approach that links gen-
etic (SNPs) and functional (CpGs) data through the use
of mQTLs identifying new genes associated with allergic
rhinitis with or without asthma (Fig. 1). It relies on func-
tional cellular data and reduces the stringent cutoff nor-
mally used in GWAS. Even though this is a pilot
experiment with small number of samples, we identified
one significant cis-mQTL for allergic rhinitis located in
caudal-type homeobox 1 (CDX1) (p = 6.41e−5) (Table 2).
We also observed nine nominally associated cis-mQTLs
located in five genes for allergic rhinitis and 16 located
in nine genes for allergic rhinitis with asthma (Table 2).
One gene was reported being associated in both traits:
ring finger protein 39 (RNF39). It has the highest num-
ber of mQTLs identified in both allergic rhinitis with
(four) or without asthma (five).
The significantly or nominally associated genes were

not associated with any related trait before. Interestingly,
the majority of the genes linked to a SNP by the cis-
mQTLs are not the closest ones, thus would not be the

Fig. 1 Flowchart presenting our approach combining genome-wide association study (GWAS) and epigenome-wide association study (EWAS) hits
to identify cis methylation quantitative trait loci (mQTLs) that could be associated with allergic rhinitis with (ARA) or without asthma (AR). We first
performed GWAS and EWAS separately for AR and ARA. We then selected marginally associated SNPs (p < 0.05) where the three genotyping
groups were observed at least five times. We also selected marginally associated CpGs (p < 0.05) that had a Δβ > 0.05 and that were located in
the gene body or 1.5-kb from the transcription start site (TSS). We then linked the SNPs and CpGs that were 1 Mb apart by performing cis-mQTLs
for both AR and ARA. We used Bonferroni p value cutoffs to assess significance
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ones reported in a regular GWAS study. For example, all
of the significant SNPs reported for the RNF39 cis-mQTLs
are located 300 kb to 1 Mb away from the gene and are lo-
cated closer to other genes, which were previously associ-
ated with pulmonary function (rs2844833-HLA-F [21],
rs2523872-MUC22 [21], rs2517504-HCG22 [21, 22],
rs2535238-ZFP57 [21]). The best example remains the
one for the significantly associated mQTL that links
rs888989 to a CpG located in the promoter region of the
CDX1 gene. The SNP is located in an intron of TNFAIP3
interacting protein 1 (TNIP1) and 900 kb from CDX1.
The former was previously associated with atopic derma-
titis [23] and asthma [24]. According to the GTEx Portal
(http://www.gtexportal.org/), rs888989 and CDX1 form an
expression quantitative trait loci (eQTL) in the lungs
(p = 0.04), which is not the case for TNIP1 (p = 0.94). This
reinforces the possible implication of this gene in allergic
rhinitis and shows that our method may better assess the
true genes of interest linked to the associated SNPs.

The originality of our approach resides in combining
GWAS and EWAS nominally associated SNPs and
CpGs, using cis-mQTL data, to identify genes of interest
in this disease. This method has the potential to reduce
false negative findings by relying on the cellular mecha-
nisms of gene regulation compared to the use of strin-
gent statistical corrections. The use of a well-described
collection coming from a founder population and in-
cluding subjects selected based on the same precise cri-
teria allowed a more unified genetic background and
phenotype. However, since this is a pilot study, the lim-
ited number of samples included in the EWAS and the
GWAS may constrain the power of the findings. We
were not able to test SNPs previously associated with
the trait in previous GWASs because they did not meet
the criteria to be included in the mQTL analysis. We
also analyzed SNPs and CpGs preselected in the arrays
by the manufacturers, thus excluding potentially import-
ant SNPs or CpG sites, which are not in linkage

Table 2 Genes with cis-mQTL sites significantly associated with allergic rhinitis with or without asthma

Trait Gene Locus mQTLs GWAS analysis EWAS analysis

p value SNP p value CpGs Δβa p value

Allergic rhinitis CDX1b chr5q32 6.41e−5 rs888989 0.0038 cg18424208 −5.19 0.0002

PPAN-P2RY11 chr19p13.2 0.0245 rs3752199 0.0346 cg24118856 7.51 4.39e−5

RNF39c chr6p22.1 0.0090 rs2844833 0.0270 cg05563515 10.11 0.0212

0.0229 rs2844833 0.0270 cg24637044 5.85 0.0132

0.0265 rs2844833 0.0270 cg01286685 7.78 0.0266

0.0411 rs2523872 0.0123 cg10930308 9.50 0.0255

0.0499 rs2523872 0.0123 cg01286685 7.78 0.0266

SRRT chr7q22.1 0.0412 rs6942824 0.0224 cg10426581 5.26 0.0096

Allergic rhinitis with asthma ADORA1 chr1q32.1 0.0337 rs6661284 0.0337 cg19315653 −6.26 0.0315

ITGB2 chr21q22.3 0.0381 rs7275203 0.0381 cg18012089 6.10 0.0068

LINC00336 chr6p21.31 0.0073 rs9461924 0.0073 cg04329454 −7.16 0.0015

MFSD6L chr17p13.1 0.0120 rs9895992 0.0120 cg11685316 5.01 0.0072

PCDH8 chr13q14.3 0.0152 rs732774 0.0295 cg14950829 7.53 0.0097

0.0135 rs3742297 0.0480 cg14950829 7.53 0.0097

0.0259 rs1801249 0.0296 cg14950829 7.53 0.0097

0.0259 rs4943046 0.0298 cg14950829 7.53 0.0097

PITX2 chr4q25 0.0257 rs2067004 0.0272 cg13385016 5.06 0.0240

0.0249 rs9992755 0.0289 cg13385016 5.06 0.0240

RNF180 chr5q12.3 0.0130 rs7713289 0.0130 cg17370163 5.43 0.0021

RNF39c chr6p22.1 0.0133 rs2517504 0.0047 cg03343571 9.19 0.0451

0.0171 rs2517504 0.0047 cg01286685 8.21 0.0478

0.0401 rs2535238 0.0248 cg01286685 8.21 0.0478

0.0499 rs2523872 0.0299 cg01286685 8.21 0.0478

ZFPM1 chr16q24.2 0.0304 rs750740 0.0304 cg04983687 5.53 0.0056
aΔβ and p values for CpG sites and SNPs forming a cis-mQTL. A negative Δβ indicates a decrease in the percentage of methylation for cases compared to controls.
All loci refer to the human hg19 reference genome
bCDX1 is the only gene for which the mQTL p value survives multiple correction (p < 1e-4)
cRNF39 is the only gene marginally associated in both traits
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disequilibrium. DNA methylation analysis using whole
blood could have limited the findings, even if correction
for cell counts was included in our model. Apart from
the limitations, we showed that our approach is promis-
ing and acknowledging for the lack of power in future
studies will permit to better pinpoint genes of interests
for different traits. Studying other tissues implicated in
allergic rhinitis trait, like nasal or lung cells, could also
reveal other genes implicated in the physiopathology.
Genes identified in this study, notably CDX1, are worth-
while to be further investigated to understand the aller-
gic rhinitis pathogenesis and the atopic march.
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