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Abstract

Background: Epigenetic regulation has emerged to be the critical steps for tumorigenesis and metastasis. Multiple
histone methyltransferase and demethylase have been implicated as tumor suppressors or oncogenes recently. But
the key epigenomic events in cancer cell transformation still remain poorly understood.

Methods: A breast cancer transformation model was established via stably expressing three oncogenes in primary
breast epithelial cells. Chromatin immunoprecipitation followed by the next-generation sequencing of histone
methylations was performed to determine epigenetic events during transformation. Western blot, quantitative
RT-PCR, and immunostaining were used to determine gene expression in cells and tissues.

Results: Histones H3K9me2 and me3, two repressive marks of transcription, decrease in in vitro breast cancer cell
model and in vivo clinical tissues. A survey of enzymes related with H3K9 methylation indicated that KDM3A/
JMID1A, a demethylase for H3K9me1 and me2, gradually increases during cancer transformation and is elevated in
patient tissues. KDM3A/JMID1A deficiency impairs the growth of tumors in nude mice and transformed cell lines.
Genome-wide ChIP-seq analysis reveals that the boundaries of decreased H3K9me?2 large organized chromatin K9
modifications (LOCKs) are enriched with cancer-related genes, such as MYC and PAX3. Further studies show that
KDM3A/JMID1TA directly binds to these oncogenes and regulates their transcription by removing H3K9me2 mark.

Conclusions: Our study demonstrates reduction of histones H3K9 me2 and me3, and elevation of KDM3A/JMID1A

transformation.

as important events for breast cancer, and illustrates the dynamic epigenomic mechanisms during breast cancer
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Background

Recent advances in epigenetics and epigenomics have re-
vealed that epigenetic abnormality is one of the critical
causes for tumorigenesis [1-5]. DNA methylation inhibi-
tors have already used for cancer treatment [6, 7]. Besides
DNA methylation, abnormality of histone methylation is
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implicated in cancer as well. Early studies have shown that
histone modification patterns can be used to predict tumor
phenotypes and the risk of cancer recurrence [8-10]. His-
tone acetylation and deacetylation have been extensively
studied and histone deacetylases (HDACs) are frequently
reported to inhibit the expression of tumor suppressors
[11]. Inhibitors of histone deacetylase (HDAC) are proved
to be useful in clinical cancer treatment [11]. However, the
relationship between cancer and other histone modifica-
tions, such as histone methylation, is still not conclusive.
Histone methylation usually occurs on lysines and argi-
nines, and each site has three different forms [12, 13]. In
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comparison with acetylation, histone methylation and de-
methylation have more complicated regulatory steps, mak-
ing them promising drug targets [1, 14]. Recently, several
well-studied histone methyltransferases emerged to be key
regulators in multiple cancer types. For example, enhancer
of zeste 2 polycomb repressive complex 2 subunit (EZH2),
the major enzyme for H3K27me3, was demonstrated as an
oncogene in prostate cancer [15]. Its mutation has also been
frequently found in lymphoma [16, 17]. An enzymatic in-
hibitor of EZH2 was shown to inhibit lymphoma cell prolif-
eration in a mouse model [18]. SET domain containing 2
(SETD2) is the major H3K36me3 methyltransferase in
mammalian cells and frequently mutated in clear cell kidney
carcinoma, acute leukemia, gliomas, and other cancers [2,
19-22]. H3K36me3 catalyzed by SETD2 is required for gen-
ome stability and DNA repair process after damage [23-25].
Myeloid/lymphoid or mixed-lineage leukemia 1-4 (MLL1-
4), the methyltransferases for H3K4, was found to be mu-
tated in multiple types of cancers [2, 4]. On the other hand,
demethylation is another critical aspect for the dynamic
regulation of histone methylation. Clinical studies from dif-
ferent groups found that the demethylases of H3K9me2 and
me3, such as lysine (K)-specific demethylase 3A (KDM3A,
also known as JMJD1A or JHDM2A) and lysine (K)-specific
demethylase 4A/B/C (KDM4A/B/C), are highly expressed
in cancer tissues and regulate tumorigenesis [26—29]. More-
over, KDM4A was reported to induce site-specific copy gain
and DNA re-replication and promote cellular transform-
ation by inhibiting p53 signaling [26, 30]. A histone H3K4
demethylase, lysine (K)-specific demethylase 5A (KDM5A),
is involved in the cancer cell drug tolerance [31]. All these
information suggests that histone methylation is critical in
the genesis and development of multiple cancer types.
However, the molecular mechanisms of these enzymes in
tumorigenesis still remain elusive.

The early diagnosis and treatment are the most effect-
ive ways to cure cancer. But we are still lack of good
markers and drugs for precision medicine. During trans-
formation, the epigenetic programs in cells change dra-
matically, helping them to survive and gain growth
advantage [1, 3]. Along with the development of func-
tional genomics, some studies have investigated the dy-
namic changes during differentiation [32], but the
epigenetic dynamics at the genome-wide scale during
transformation are still not known. However, due to the
individual variation, cell heterogeneity, and limited
sample size, patient tissues are difficult for mechanistic
studies. Thus, a transformation model with clean back-
ground and high reproducibility is required. More than a
decade ago, a cell-based model was established to mimic
transformation from human primary cells to tumor cells
[33, 34]. With the introduction of three genes, large T
antigen, telomerase reverse transcriptase (TERT), and
Harvey rat sarcoma viral oncogene homolog v12 mutant
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(RAS (V12)), the engineered primary cell will extend life
span, become immortalized, and finally gain tumorigenic
capacity, which is considered to represent different stages
of tumor cell transformation [33, 34]. Considering the dif-
ficulties in studying human cancers, the in vitro model still
serves as one of the best platforms to study the molecular
mechanisms of tumor transformation. Recently, profiling
of global gene expression in the above model has provided
valuable information for tumor transformation study and
suggested a link between malignant transformation to de-
differentiation [35]. But due to the difficulty in making the
model, no epigenetic study was reported.

In this study, we took advantage of the in vitro tumor
transformation model and made a series of transformed
cell lines starting from human primary mammary cell
(HMC). By combining biochemical and epigenomic ap-
proaches, we demonstrate that histones H3K9me2 and
H3K9me3 decrease during breast cancer transformation
and contribute to the process with different mechanisms.
Furthermore, we identified that KDM3A/IMJD1A, an
H3K9me2 demethylase, is responsible for the H3K9me2
reduction and critical for breast tumor transformation.

Results
Gene expression profile of tumor transformation model
mimics clinical samples
To study the underlying mechanisms of breast cancer
transformation, we utilized an established cell-based
transformation model [34, 35]. Large T antigen, TERT,
and RAS (V12) were stably expressed in human primary
mammary cell respectively via retroviral infection. Four
cell lines were generated for following studies, namely
HMC-p6 (human primary mammary cell, passage 6),
HMC-L (HMC with large T stable expression), HMC-LT
(HMC with large T and TERT stable expression), and
HMC-LTR (HMC with large T, TERT, and HRAS (V12)
stable expression) (Additional file 1: Figure S1A, B).
HMC-p6 and HMC-LT can be passaged for 1 and
2 months, respectively, and HMC-LT is immortalized
(Additional file 1: Figure S1C). Only HMC-LTR can form
colonies in soft agar and grow into tumors in nude mice
(Additional file 1: Figure S1D). These observations are in
full accordance with previously reported results [34].
Based on their ability in proliferation and tumorigenicity,
the four cell lines are considered to represent different
transformation stages. To further confirm the validity of
the tumor cell model, we clustered the transformed cell
lines with clinical samples based on their expression pro-
files of differentially expressed genes (DEGs). Gene expres-
sion profiles of 100 cases of paired breast cancer and
normal tissues were downloaded from the Cancer Genome
Atlas (TCGA), and the DEGs (twofolds) were analyzed ac-
cording to the pipeline described in experimental procedure
(Additional file 1: Figure S2A and Additional file 2: Table
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S6). These DEGs were then compared with those (three-
folds) identified from transformed HMCs (Additional file 1:
Figure S2A and Additional file 2: Tables S1-S5), and the
expression patterns of resulting 338 genes were used for
clustering (Fig. 2a, Additional file 1: Figure S2B, C and Add-
itional file 2: Table S7). Cluster analysis grouped HMC-LTR
with breast cancer tissues and HMC with adjacent tissues
(Fig. 1a), suggesting the transformed LTR cell line may
partially mimic some of the clinical samples. HMC-p6, -L,
and -LT are grouped together, while HMC-LTR is separ-
ate, which may indicate the big difference of tumor cell
line with others (Additional file 1: Figure S2B). We further
used the DEGs of HMC-p6 and -LTR to cluster the TCGA
tissues and successfully grouped them into normal and
cancer groups (Additional file 1: Figure S2C).

Furthermore, gene ontology analysis showed that the
tumor transformation model shares similarities with clinical
samples (Fig. 1b, ¢, Additional file 1: Figure S2D, F). The
DEGs of HMC-LT and -LTR in comparison with HMC-p6
were enriched mostly in cell cycle regulation and extracellu-
lar environment (Fig. 1c, d), which were both enriched in
clinical samples (Fig. 1b). Then, we analyzed the gene ex-
pression profiles of all the four cell lines. We found that the
most significant enriched processes are the following: (1) re-
sponse to oxygen and hypoxia for p6 to HMC-L, (2) re-
sponse to wounding, immune, and inflammatory response
for HMC-L to HMC-LT, (3) regulation of cell motility, mi-
gration, and proliferation for HMC-LT to HMC-LTR (Fig. 1e
and Additional file 2: Tables S1-S5). All these processes are
frequently activated in tumors. Our analysis provides im-
portant information of precancerous transformation.

When we initiated our study, we randomly selected some
datasets from the TCGA database. The analysis did not dis-
tinguish HMC-p6 and -LTR as good as that in Fig. 1a, and
HMC cells clustered much better with adjacent normal tis-
sues in the new analysis (Fig. 1a, Additional file 1: Figure
S2G, H). The difference between the two analysis is as fol-
lows: (1) More tissues were used in the new analysis (100
paired tissues) compared with the early one (70 cancer and
12 normal tissues); (2) paired tissues are more useful than
random samples because less individual difference leads to
less disturbance; (3) more strict conditions were used for
DEGs among tissues (threefolds compared with twofolds,
Additional file 1: Figure S2A, G). These experiences might
be useful to the other similar analysis with online large-
scale sequencing data.

Profiling of histone modifications during transformation

In order to systematically characterize epigenetic changes
during transformation, we profiled the four cell lines with
available commercial antibodies for histone modifications.
Interestingly, we observed a gradual reduction of
H3K9me2 and me3 along with transformation (Fig. 2a).
On the contrary, H3K9 acetylation showed a gradual
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elevation (Fig. 2a). No obvious changes were observed for
other modifications (Fig. 2a). Next, we studied if our
discovery in in vitro cell model is also the same in clinical
patient tissues. We performed immunostaining in com-
mercial breast cancer tissue arrays and observed a strong
reduction in cancer tissues for both methylations (Fig. 2b).
In total, we analyzed 140 cancer and 40 adjacent samples
for H3K9me3 and 42 cancer and 66 adjacent samples for
H3K9me2. Statistical analyses of fluorescence densities
representing H3K9 me2 and me3 show obvious lower
methylation levels in cancer tissues (Fig. 2¢, d).

The altered transcription programs of cancer-related
genes regulated by H3K9me2

To further confirm our discovery, we performed ChIP-
seq studies in the four cell lines of H3K9me2, H3K4me3,
and H3K27me3. The data suggested H3K9me2 reduced
significantly in HMC-L, -LT, and -LTR; H3K27me3 had
no significant change (Fig. 3a, b). H3K4me3 enrichment
seemed reduced also in transformed cell lines but not
significant enough (Additional file 1: Figure S3G). How-
ever, we did not see a gradual change by high through-
put sequencing among the later three cell lines, which is
different from western. The reason might be that two
methods used different standards for normalization,
histone H3 for western and input for ChIP-seq. Never-
theless, our results indicate that histone H3K9me2 de-
creased significantly during transformation.

We then analyzed the dynamic changes of H3K9me?2 dis-
tribution during tumor transformation. A slight increase of
H3K9me2 peaks on distal intergenic regions during trans-
formation was observed (Additional file 1: Figure S3A-C).
The length of all H3K9me2 peaks and decreased peaks re-
duced modestly during the process, while the length of in-
creased peaks remained unchanged (Additional file 1:
Figure S3D, E). The biological meanings for these changes
still required more studies. Interestingly, we also found that
the length of H3K27me3 peaks decreased along with trans-
formation (Additional file 1: Figure S3F), though its total
enrichment did not change significantly (Fig. 3b). Various
mutations and abnormal expression of EZH2, the major en-
zyme catalyzing H3K27me3, are associated with cancers
[15, 17, 18]. Our discovery provides a clue to the study how
H3K27me3 dysregulation is involved in breast cancer
transformation.

We noticed that decreased H3K9me2 peaks were mainly
located on gene bodies (Additional file 1: Figure S3C),
therefore, the relationship between gene expression and
H3K9me2 during transformation was investigated. Con-
sidering the importance of promoters for gene expression,
the total reads of H3K9me2 peaks from -10 kb before
TTS (usually considered as proximal promoter region) to
TES was calculated. We found that H3K9me2 dynamically
changed on many oncogenes (Fig. 3c). We then confirmed
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the change of histone modifications on some of them
(Fig. 3d and Additional file 1: Figure S4A). We further an-
alyzed their messenger RNA (mRNA) levels and con-
firmed with quantitative PCR that many genes exhibited
correlated expression (Fig. 3e and Additional file 1: Figure
S4B-C). Meanwhile, we found that a few genes did
not show the expected elevated expression, such as
MYC and BCL2 (Fig. 3e). H3K9me2 is generally

believed to be a transcription repression mark and its
reduction is required for gene activation. However,
H3K9me2 reduction on genes may not directly lead
to transcription alteration, and upstream signals
sometimes are required.

We also analyzed H3K4me3 and H3K27me3 on genes
with decreased H3K9me2. Surprisingly, the average
levels of these marks on the above genes are all lower
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than that in primary cell (Additional file 1: Figure S4D,
E). Recently, several groups reported that synergistic de-
crease of histone H3K4, K9, and K27 methylation is as-
sociated with the increase of DNA methylation [36, 37].
It is possible that some genes with H3K9me2 decrease
may be also involved in DNA methylation changes.

Boundaries of H3K9me2 LOCKs are enriched with cancer-
related genes

H3K9me2 often modifies broad regions on chromatin,
which have been previously named as large organized
chromatin K9 modifications (LOCKs) [38]. The H3K9me2
on LOCKs has a similar pattern as the total peaks, high in

HMC and low in the other three cell lines (Fig. 3f). The
total numbers and genome coverages of H3K9me2
LOCKs decreased during transformation (Fig. 3g, h). We
analyzed the genes overlapped with all decreased
H3K9me2 LOCKs but did not find any relationships with
cancer. We speculated that change of a broad chromatin
region may start from its boundaries, so we analyzed the
genes located on the boundaries of the decreased LOCKs.
Surprisingly, we found that the genes located in these
boundaries are enriched with cancer-related pathways
(Fig. 3i and Additional file 2: Tables S8-S10). This sug-
gests that the localization of genes in H3K9me2 LOCKs is
related with cellular functional changes and unlocking the
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of genes located at the boundaries of LOCKs with decreased H3K9me2

Fig. 3 Decreased H3K9me2 alters the transcription program of cancer-related genes at the boundaries of LOCKs. a, b Average enrichment levels
of H3K9me2 (a) and H3K27me3 (b) around detected peaks. ¢ The heatmap shows the dynamic H3K9me2 levels on the oncogenes with
H3K9me2 reduction. The reads of all H3K9me2 peaks from —10 kb of TSS to TES on each gene were used. The genes verified later by ChIP-PCR
and RT-PCR are labelled by arrows. d H3K9me?2 levels on several oncogenes were confirmed by ChIP-PCR. @ The mRNA expression level of
oncogenes with decreased H3K9me2 in transformed cell lines. f The average levels of H3K9me2 LOCKs in the four cell lines. Peaks with length
>100 kb were defined as LOCKs. All LOCKs in the four cell lines were extended down- and upstream for 50 kb, and their average H3K9me2
enrichment levels were calculated. g, h The number and average coverage of H3K9me2 LOCK number in four cell lines. i KEGG pathway analysis

oncogenes at the boundaries facilitates the transformation
process. The genes at decreased H3K9me2 LOCK bound-
aries in three transformed cells are very similar, including
BTGI1, MYC, PIK3R1, and WNT5A for oncogenes and
CDKN2A, CDKNZ2B, FH, INTS6, LINC00032, MITF
PLK2, and WNT5A for tumor suppressors (Additional file
2: Table S11). MYC is the well-known oncogene in breast
cancer and many other cancer types [39]. All the other
genes may also play important roles in breast tumor
transformation.

High expression of H3K9 demethylase KDM3A/JMJD1A in

breast cancer cell lines

After determining the reduction of H3K9 methylation as
a frequent event in breast cancer, we started to investi-
gate the underlying molecular mechanisms. We firstly
examined the mRNA levels of all the known H3K9
methyltransferases and demethylases by RNA-seq and
quantitative RT-PCR, but none matched the observed
H3K9 methylation pattern (Additional file 1: Figure S5A,
B). We then asked if the regulations of these enzymes
take place at the protein level. We surveyed the protein
levels in transformed cell line with all the available
antibodies and found that KDM3A/JMJD1A, a demethy-
lase for H3K9mel and me2, gradually increased during
transformation, inversely matching the decrease of
H3K9me2 (Fig. 4a and Additional file 1: Figure S5C).
We further found that KDM3A/JMJD1A is much higher
in two breast cancer cell lines, MCF and T47D, than that
in the primary HMC and other two cancer cell lines,
HCT116 and 769-P (Fig. 4b). A commercial breast tissue
array containing 48 pairs was stained with KDM3A and
the statistical analysis showed that KDM3A significantly
increases in breast cancer tissues compared with normal
tissues (Fig. 4c, d). Another piece of array from the same
batch was stained with H3K9me2. Fifteen of 48 pairs
(31.3 %) showed both KDM3A increase and H3K9me2
decrease. Taken together, these data show that histone
H3K9 demethylase, KDM3A/JMJD1A, increases in breast
cancer cell lines.

Considering the inconsistency of its mRNA and protein
level, KDM3A/JMJD1A is probably regulated at the post-
translational level. To further verify it, MG132 (an inhibitor
for proteasome) or chloroquine (CQ, an inhibitor for

lysosome) was used to treat HMC cell line. Both drugs in-
creased the protein level of KDM3A/JMJD1A (Additional
file 1: Figure S5D), suggesting its stability was controlled by
both proteasome and lysosome. To verify the function of
KDM3A/IMJD1A, we expressed its wild type or catalytic
dead mutant (H1180A) and confirmed the expression of
wild type decrease H3K9me2 in the cell (Additional file 1:
Figure S5E).

H3K9 dimethylation and transcription of cancer-related
genes regulated by KDM3A/JMJD1A

To further investigate the role of KDM3A/JMJD1A in regu-
lating transformation, we knocked it down in HMC-LTR
using small interfering RNA (siRNA) and found that
KDM3A/IMJD1A deficiency rescued the expression of
most cancer-related genes in HMC-LTR to the levels in pri-
mary cells (Additional file 1: Figure S6A). We performed
RNA sequencing and found that KDM3A/JMJD1A defi-
ciency mainly affected the genes involved in cell prolifera-
tion, cell cycle, wound healing, and protein transport
(Additional file 1: Figure S6B, C). We took the DEGs in
HMC-LT (Fig. 5a, Additional file 2: Tables S12 and S13)
and HMC-LTR (Fig. 5b, Additional file 2: Tables S14 and
S15), respectively, which were rescued by KDM3A/JMJD1A
knockdown to the levels in primary cell, and performed
GO analysis. The biological processes of these genes are
very similar to those changed during transformation (Fig. 5c¢,
d), indicating KDM3A/JMJD1A is the key factor for the
process. H3K9me2 ChIP-seq analysis in HMC-LT further
showed that the increased LOCKs by KDM3A/IMJD1A
knockdown largely overlapped with the decreased LOCKs
in transformation (Fig. 5e, left). The analysis in HMC-LTR
showed similar results (Fig. 5e, right). KDM3A/JMJD1A
deficiency also restored a large portion of the de-
creased H3K9me2 peaks in HMC-LT and -LTR cells
(Additional file 1: Figure S6D). The increased genes
with KDM3A knockdown were also studied with GO
analysis (Additional file 1: Figure S6E).

When KDM3A/JMJD1A was knocked down in HMC-
LTR, the mRNA of most of these genes decreased, sug-
gesting KDM3A may directly regulate their transcription
(Fig. 5f). The ChIP-seq results were verified with quantita-
tive PCR and we found that KDM3A/JMJD1A regulates
H3K9me2 on a group of oncogenes, including MYC,
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PAX3, AGR2, PRL, and BCL2 (Fig. 5g). We then per-
formed Flag ChIP analysis in an F-KDM3A/JMJD1A
stable cell lines derived from a breast cancer cell line
T47D. The results indicated that KDM3A/JMJD1A binds
directly on oncogenes MYC and PAX3 in T47D (Fig. 5h).
We speculated that additional signals are probably re-
quired to activate MYC expression. We induced MYC in
T47D breast cancer cell line with FBS treatment after
serum starvation. The elevation of MYC mRNA was im-
paired in the absence of KDM3A (Fig. 5i), as well as its
protein (Fig. 5j). All these results demonstrated that
KDM3A/JMJD1A regulates breast tumor transformation
through directly binding MYC and PAX3 oncogenes and
modulating their transcription.

KDM3A/JMJD1A deficiency impairs the growth and
migration of breast cancer cells

To further explore the function of KDM3A/JMJD1A in
breast cancer transformation, we made KDM3A stable
knockdown cell lines in HMC-L and HMC-LT. We
could not get the cell line in HMC-LTR because it was
extremely difficult to have four different constructs inte-
grated into one cell line. The results of MTT assay indi-
cated that the growth of HMC-LT was greatly impaired
in the absence of KDM3A (Fig. 6a). The cell cycle ana-
lysis also indicated that HMC-LT was arrested at Gl
phase with KDM3A deficiency (Fig. 6b). The abilities of
cell migration and invasion were measured by RTCA
real-time monitor or traditional transwell assay with
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T47D cell line. The results indicated that KDM3A/
JMJD1A overexpression enhanced T47D migration and
knockdown repressed it (Fig. 6¢c and Additional file 1:
Figure S7A). But cell invasion was not affected (Add Fig.
S7B). Colony formation assay indicated that KDM3A/
JMJD1A knockdown significantly decreased the colony
number in the plate (Fig. 6d). To further test whether
MYC and PAX3A really regulate the tumorigenicity abil-
ity of the transformed cell, we knock down the two
genes respectively in HMC-LTR. The assays performed
by RTCA system indicated that MYC and PAX3 are both
involved in cell migration and invasion (Additional file
1: Figure S7C). The above data indicated that KDM3A
positively regulates the survival and migration of breast
cancer cells.

High expression of KDM3A/JMJD1A in breast cancer
tissues

We then asked whether KDM3A/JMJDI1A elevation also
occurs in breast cancer patients. We analyzed the breast
cancer tissues from 18 patients by Western blotting, out
of which 15 has the corresponding adjacent tissues. In
the 15 paired tissues, 8 pairs showed H3K9me2 reduc-
tion in cancer, 10 with KDN3A/JMJDI1A increase; 7 with
MYC mRNA increase, and 6 with PAX3 mRNA increase;
4 with all the above characteristics (Fig. 6e—g). The re-
sults suggested KDM3A/JMJD1A regulates the tumori-
genesis of breast cancer through down-regulating
H3K9me2 on oncogenes MYC and PAX3.

Discussion

Development of novel markers and drug targets are keys
for precision diagnosis and treatment. In this study, we
combine systematic and biochemistry approaches and
prove that H3K9me2/3 decreases and KDM3A/JMJD1A
increases in tumor cell transformation model and in vivo
clinical samples. Epigenomic analysis identifies the dy-
namic changes of H3K9me2 reduction on MYC, PAX3,
WNT5A, and CDKN2A/B, are critical events during
transformation. These events can be further developed
as diagnosis markers and drug targets in clinical
research.

Our data suggest that H3K9me2 regulates transform-
ation mainly through transcription. We discovered that
the boundaries of decreased H3K9me2 LOCKs are
enriched with cancer-related genes. H3K9me2 reduction
usually starts from the LOCK boundaries and the
boundary genes are relatively easier to be de-repressed
and, therefore, can help the cell adapt to different devel-
opment or transformation cues. The genes in the center
regions are difficult to be accessed. This explains how
H3K9me2 regulates cell identity in tumor transform-
ation, as well as other processes. In our study, we also
found that H3K9me2 reduction may not be always
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related with increased transcription of some genes. For
example, H3K9me2 on MYC is gradually reduced during
transformation, but its mRNA level keeps constant.
However, we found that its induced transcription is reg-
ulated by KDM3A/IMJD1A transient knockdown with
siRNA. These data further indicated that changes of
histone modifications may not affect transcription im-
mediately, but it will be critical during some special cir-
cumstances. This has also been observed with other
modifications [40].

KDM3A/JMJD1A is a gene involved in sex determin-
ation [41, 42]. While we are submitting the manuscript,
one group reported that KDM3A/JMJD1A regulates the
expression of ER target genes in breast cancer cells [43],
which supports our discovery of KDM3A/IMJD1A’s role
in breast cancer. Beyond this, we provided genome-wide
H3K9me2 map in the absence of KDM3A/JMJD1A and
identified MYC and PAX3 as direct target genes of
KDM3A/JMJD1A. MYC is a well-known oncogene for
breast cancer, as well as many other cancer types.
Mutations in PAX3 are associated with Waardenburg
syndrome, craniofacial-deafness-hand syndrome, and al-
veolar rhabdomyosarcoma. Above all, our discovery pro-
vides new mechanisms for tumorigenesis regulated by
KDM3A/JMJD1A.

Taken together, our study reveals the dynamic changes
occurring at the boundary regions of H3K9me2 LOCKs,
identifies key epigenetic events on cancer-related genes,
and proposes their crucial roles in dynamically regulat-
ing cell transformation. The work not only provides po-
tential diagnosis markers and drug targets for future
clinical research but also puts forward novel concepts
for epigenomic studies.

Conclusions

Our study demonstrates that the levels of H3K9me2 and
me3 decrease during breast cancer cell transformation
in vitro and in patient tissues. ChIP analysis revealed
that the genes localized at the boundaries of H3K9me2
LOCKs are related with cancer. The increase of
KDM3A, a histone demethylase, is responsible for the
reduction of H3K9me2. KDM3A regulates transcription
of oncogenes, such as MYC and PAX3, via directly bind-
ing to the genes and regulates their H3K9me2 level.

Methods

Cell lines and reagents

Human primary mammary cells were purchased from
Chi Scientific and cultured in DMEM/F12 (10 % FBS,
with addition of insulin, hydrocortisone, and EGF) at
37 °C with 5 % CO,. MCF7 was purchased from Cell
Bank of Chinese Academy and cultured in DMEM with
EBS, insulin (10 pg/mL), sodium pyruvate (Invitrogen),
and nonessential amino acid (Invitrogen); T47D is a gift
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from Dr. Yong-Feng Shang of Tianjin Medical University
and cultured in RPMI1640 with FBS and insulin. Both
the primary cells and cancer cell lines were sub-cultured
1:4 on reaching confluence; each passage was considered
two PD.

Antibodies were purchased from the indicated compan-
ies: H3K9ac, hTERT, KRT14, and ACTG (Epitomics);
KRT18 (ProteinTech), J]MJD1B, JMJD2B, JMJD2A, H4K
20me3, H3K79me2, E-cadherin, and RAS (CST); H3K4
mel, H3K4me3, H3K27me3, H3K27mel, H3K27me2, and
H3K36me2 (Millipore); H3, H3K9mel, H3K4me2, and
H3K36me3 (Abcam); H3K9me2, H3K9me3, GAPDH, EH
MT2, SUV39H1, CBX5, DNMT3A, DNMT3B, DNMT1,
and KDM1A (Abclonal); KDM3A/JMJD1A (Abclonal for
western and Millipore for immunostaining). The informa-
tion of primers and siRNAs are listed in Additional file 2:
Table S16.

Transformation of human breast tumor cell

Transformed breast cell lines were generated as previous
described. 293FRT cells were co-transfected with pack-
aging plasmid ZV77 (psPAX and pMD2G for lentivirus)
and pBabe retroviral plasmids containing desired comple-
mentary DNA (cDNA). Supernatants containing virus
were harvested 48 h later and HMC was infected together
with 8 pug/ml polybrene. Typically, more than 80 % of cells
were infected as measured by parallel infections with a
GFP-expressing construct. Drug selection was performed
with 200 pg/ml G418 for neomycin, 50 pg/ml hygromycin,
or 0.5 pg/ml puromycin. pBabe with large T antigen,
hTERT, or RAS (V12) were purchased from Addgene.

Immunofluorescent staining of cancer tissues and
cultured cells

Tumors tissue array (Alenabio, www.alenabio.com) were
fixed in 10 % formalin, embedded in paraffin, and followed
by standard dewaxing procedures. Cells were cultured on
the cover slips and fixed with freezing methanol after
washing twice in PBS. The cover slips or tumors tissue
array were then washed three times by PBS and blocked
in PBS with 1 % BSA for 10 min or 1 h. The cover
slips or tumor tissue arrays were hybridized with first
and second antibodies for 1 h, respectively. Then, the
slips were mounted with prolong anti-fade kit (Invitro-
gen) and observed with fluorescent microscopy. The ar-
rays used for staining are as follows: H3K9me2 - BR243K,
BR243L, BR243M, BR724, BR725, BCN963a; H3K9me3 -
BR243B, BR243D, BR243K, BR243L, BR243A, BC081120,
BCN963a; and KDM3A - BR724, BR725.

Reverse transcription and quantitative PCR

Cells were scraped down and collected by centrifugation.
Total RNA was extracted with RNA extraction kit
(Yuanpinghao) according to manufacturer’s manual
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Approximately 1 pg of total RNA was used for reverse
transcription with a first-strand ¢cDNA synthesis kit
(Toyobo). The amount of mRNA was assayed by quanti-
tative PCR. B-Actin was used to normalize the amount
of each sample. Assays were repeated at least three
times. Data shown were average values + SD of one rep-
resentative experiment. All primer sequences are pre-
sented in Additional file 2: Table S16.

ChlIP assay

ChIP assay was performed as previously described [40].
Briefly, approximately 1 x 107 cells were fixed with 1 %
formaldehyde and quenched by glycine. The cells were
washed three times with PBS and then harvested in ChIP
lysis buffer (50 mM Tris-HCI, pH 7.6, 1 mM CaCl,, 0.2 %
Triton X-100). DNA was digested to 150-300 bp by
MNase (Sigma) before extensive centrifugation. Four vol-
umes of ChIP dilution buffer (20 mM Tris-HCI, pH 8.0,
150 mM NaCl, 2 mM EDTA, 1 % Triton X-100, 0.1 %
SDS) was added to the supernatant. The resulted lysate
was then incubated with protein G beads and antibodies
at 4 °C over night. The beads were washed five times and
DNA was eluted by Chip elution buffer (0.1 M NaHCOs3,
1 % SDS, 20 pg/ml proteinase K). The elution was incu-
bated at 65 °C over night and DNA was extracted with
DNA purification kit (TIANGEN). The purified DNA was
assayed by quantitative PCR with Biorad MylQ. Assays
were repeated at least three times. Data shown were aver-
age values + SD of representative experiments. The se-
quences of primers are in Additional file 2: Table S16.

Pipeline of RNA-seq analysis

mRNA-seq library was performed by using Illumina Tru-
Seq library construction kit. A 5 pg of total RNA was
used as initiation and then prepared according to the
manufacturer’s instruction. mRNA-seq libraries were se-
quenced using HiSeq2000 for 100-bp paired-end se-
quencing. Quality control of mRNA-seq data was
performed using Fatsqc, and then low quality bases were
trimmed. After quality control, data were mapped to
hg19 genome reference by Tophat2 and allow maximum
2 mismatch. Cufflinks were used to find out differential
expression genes. Gene ontology analysis was performed
using DAVID (http://david.abcc.ncifcrf.gov) [44, 45].

Pipeline of ChIP-seq analysis
ChIP was performed using desired antibodies. Library was
prepared using Illumina TruSeq kit according to the man-
ufacturer’s procedure. Briefly, DNA was prepared for end
repair and “A” tailing, adaptor ligation, and library amplifi-
cation. ChIP-seq libraries were sequenced on HiSeq 2000
for 100-bp paired-end sequencing.

Quality control of ChIP-seq data was performed using
Fastqc, and then low quality bases and adaptor
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contamination were deleted. After quality control and
data filtering, data were mapped to hgl9 using BWA aln
algorithm. Since H3K9me2 and H3K9me3 appear large
scale in chromatin, SICER software was used for peaks
calling with window size 1000 and gap size 10,000.
H3K9me2 and H3K9me3 enrichment region gene anno-
tation was performed using RefSeq gene reference [46].
Gene ontology analysis and KEGG pathway analysis
were performed using DAVID.

TCGA breast cancer differential expression gene analysis
The gene expression data pf 100 paired breast cancer
and normal tissues were downloaded from TCGA data
portal for analysis of differential expressed genes
(https://tcga-data.nci.nih.gov/tcga/, the data of total 101
pairs were downloaded but that of one cancer tissue
were not readable, so only 100 pairs were used). In order
to figure out significant differential expression genes be-
tween cancer sample and normal tissue, genes’ expres-
sion level less than 5 FPKM in all 201 samples were
deleted, and then ANOVA analysis was performed for
the rest genes with P value cutoff 0.001. After ANOVA
analysis, genes’ average expression level between cancer
and normal tissues less than twofold change was deleted.
Gene ontology analysis of differential expression genes
was performed using DAVID.

Cell cycle analysis with flow cytometry

Cells were harvested after digestion with 0.05 %
Trypsin-EDTA. The cells were then washed twice with
PBS and fixed in ice-cold 70 % ethanol overnight. Fixed
cells were washed twice with PBS and stained in PBS
containing propidium iodide (PI, 50 pg/mL) and RNase
(100 pg/mL) for 30 min at 37 °C. Cell cycle analysis was
performed on an Epics XL-MCL flow cytometer (Beckman
Coulter) with System II (version 3.0) software (Beckman
Coulter). Additional analysis of cell cycle distribution was
determined using Flowjo software.

Cell viability assay

Cell viability was performed by the MTT assay as previously
described [47]. Briefly, cells were split at 1 x 10° per well in
96-well plates. Next every 24 h, the cells were added with
MTT (0.25 pg) in each well for 4 h at 37 °C; the medium
with the formazan sediment was dissolved in 50 % DMF
and 30 % SDS (pH 4.7). The absorption was read at 570 nm.

Colony formation assay

The bottom layer of 0.6 % agar noble in medium was
first placed onto 6-well plate. Cells were seeded in
0.35 % top agar containing medium. Fresh top agar was
added 1.5 weeks later, and colonies were counted 8 weeks
later. For HMCs, the 50,000 cells were seeded while
5000 or 10,000 cells were seeded for T47D.
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Cell migration and invasion assay

The RTCA assay was done as the manufacturer’s protocol.
Cells were cultured at 6000 per well in CIM-Plate wells
coated with (invasion) or without (migration) matrigel.
The cell index signals were read by xCELLigence RTCA
DP Analyzer (ACEA Bioscience Inc.). Invasion and migra-
tion are monitored continuously over a 48-h period.

The transwell assay was done as follows. Briefly, cells were
split at 1x 10° per well in 24-well transwell plates coated
with (invasion) or without (migration) matrigel. The cells
were fixed in 4 % PFA and stained by crystal violet after
48 h. The positive cells were counted under microscope.

Each experiment was repeated three times and results
were presented as mean + SD.

Cancer tissue collection

All the cancer tissues are collected after obtaining the
consents of the patients. All the experiments are carried
out in accordance with the approved guidelines and
protocols by Medical Ethics Committee of Zhongnan
Hospital, Wuhan University.

Data access

The data have been uploaded to GEO database and can
be found at the following URL: http://www.ncbinlm.
nih.gov/geo/query/acc.cgi?acc=GSE64367.
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