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Abstract

Background: Prostate cancer (PC) can be stratified into distinct molecular subtypes based on TMPRSS2-ERG gene
fusion status, but its potential prognostic value remains controversial. Likewise, routine clinicopathological features
cannot clearly distinguish aggressive from indolent tumors at the time of diagnosis; thus, new prognostic
biomarkers are urgently needed. The DNA methylation variant 5-hydroxymethylcytosine (5hmC, an oxidized
derivative of 5-methylcytosine) has recently emerged as a new diagnostic and/or prognostic biomarker candidate
for several human malignancies. However, this remains to be systematically investigated for PC. In this study, we
determined 5hmC levels in 311 PC (stratified by ERG status) and 228 adjacent non-malignant (NM) prostate tissue
specimens by immunohistochemical analysis of a tissue microarray, representing a large radical prostatectomy (RP)
cohort with long clinical follow-up. We investigated possible correlations between 5hmC and routine clinicopathological
variables and assessed the prognostic potential of 5hmC by Kaplan-Meier and uni- and multivariate Cox regression
analyses in ERG+ (n = 178) vs. ERG— (n = 133) PCs using biochemical recurrence (BCR) as endpoint.

Results: We observed a borderline significant (p = 0.06) reduction in 5hmC levels in PC compared to NM tissue samples,
which was explained by a highly significant (p < 0.001) loss of 5hmC in ERG— PCs. ERG status was not predictive of BCR
in this cohort (p =0.73), and no significant association was found between BCR and 5hmC levels in ERG+ PCs (p = 0.98).
In contrast, high 5hmC immunoreactivity was a significant adverse predictor of BCR after RP in FRG— PCs, independent
of Gleason score, pathological tumor stage, surgical margin status, and pre-operative prostate-specific antigen (PSA) level
(hazard ratio (HR) (95 % confidence interval (CI)): 1.62 (1.15-2.28), p = 0.006).

Conclusions: This is the first study to demonstrate a prognostic potential for 5hmC in PC. Our findings highlight the
importance of ERG stratification in PC biomarker studies and suggest that epigenetic mechanisms involving 5hmC are
important for the development and/or progression of FRG— PC.
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Background

In 2012, more than 1 million men worldwide were diag-
nosed with prostate cancer (PC), accounting for 15 % of
all male cancer diagnoses that year [1]. While most PCs
are indolent and rarely progress into clinically significant
disease, a subset of PC patients develop highly aggressive
metastatic disease with lethal outcome [2]. At the time
of diagnosis, currently available routine prognostic tools
(mainly Gleason score (GS), serum prostate-specific
antigen (PSA), and clinical tumor stage) are unable to
accurately predict the outcome of PC. Accordingly,
although widespread use of PSA testing has facilitated
early detection of PC, it has also led to over diagnosis
and overtreatment of many indolent tumors [3]. Thus,
novel and improved prognostic biomarkers for PC are
urgently needed.

Approximately 50 % of all PCs carry the TMPRSS2-
ERG gene fusion [4] that places the proto-oncogene
ERG under androgen regulation, resulting in overex-
pression of this ETS family transcription factor. How-
ever, there is conflicting evidence as to whether the
TMPRSS2-ERG fusion and/or the level of ERG expres-
sion have prognostic implications [5]. Nevertheless,
results from several studies indicate that distinct mo-
lecular mechanisms are at play in ERG-positive (ERG+)
vs. ERG-negative (ERG-) PCs, including significant differ-
ences in the epigenome [6-14].

Methylation of the cytosine 5 carbon (5-methylcytosine,
5mC) in CpG dinucleotides is the most extensively
investigated epigenetic modification of the human genome.
Whereas PC is characterized by a low frequency of somatic
mutations, DNA methylation changes are considered one
of its hallmarks [15], and several studies have shown that
specific DNA methylation changes have promising poten-
tial as diagnostic and/or prognostic markers for PC
[16—19]. However, the mechanisms of 5mC removal
remained obscure until the recent discovery of the ten-
eleven translocated (TET) proteins that convert 5mC
to 5-hydroxymethylcytosine (5hmC) in an active oxida-
tive demethylation process [20, 21]. 5hmC can be
further oxidized by TETs to 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC), which are removed by base
excision repair and replaced by an unmodified cytosine
to complete the demethylation process [22, 23]. Active
DNA demethylation is recognized as an important
mechanism of plasticity in epigenetic regulation. How-
ever, accumulating evidence indicates that 5hmC is not
only simply an intermediate in the process of active
demethylation but also may function as a distinct
epigenetic mark [24]. Indeed, it has been demonstrated
that 5mC and 5hmC interact with unique sets of
chromatin binding proteins [25], suggesting that these
epigenetic marks hold distinct roles in chromatin
regulation and/or organization.
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Because standard methods for DNA methylation ana-
lysis, such as genomic bisulfite sequencing, cannot dis-
tinguish between 5mC and 5hmC, the contribution of
5hmC to epigenetic regulation has been overlooked [26].
Recent reports indicate that 5hmC levels are relatively
high in terminally differentiated cells and lower in stem/
progenitor cells [27-29]. Consistent with this, several
studies have reported significantly reduced levels of
5hmC in cancer compared to non-malignant (NM) tis-
sue samples [27, 29-39], and reduced levels of 5hmC
have been suggested as a potential diagnostic marker for
malignant transformation in several cancer types, includ-
ing PC [27, 31, 32, 34, 37, 39]. However, for the latter,
this is currently based only on two small-scale studies,
reporting reduced 5hmC immunoreactivity in 30 PC vs.
10 NM [27] and 11 PC vs. 11 NM prostate tissue sam-
ples [37], respectively. To the best of our knowledge,
there are no previous reports of a prognostic potential of
5hmC in PC, but low 5hmC levels have been associated
with poor outcome in melanoma [34], myelodysplastic
syndromes [35], gastric cancer [38], and glioblastoma
[29], while high 5hmC levels have been associated with
poor outcome in acute myeloid leukemia (AML) [40].

In the present study, we investigated the level of
5hmC in 311 malignant and 228 NM prostate tissue
samples from a large radical prostatectomy (RP) pa-
tient cohort with 80 months median follow-up. We
used a commercially available polyclonal anti-5hmC
antibody with validated performance and specificity
for 5hmC, as demonstrated in several published studies
[21, 27-29, 37, 38, 41-44]. Our results indicate that 5ShmC
levels are significantly reduced in ERG- but not in ERG+
PCs, as compared to NM prostate tissue samples. Further-
more, we found that 5hmC had significant prognostic
potential in ERG- but not in ERG+ PCs.

Results

5hmC levels are significantly reduced in ERG— PC tissue
samples

To systematically investigate 5hmC levels in NM and PC
tissue samples, we analyzed a large RP tissue microarray
by immunohistochemistry (clinical data in Table 1). Nu-
clear 5ShmC staining intensity in prostate epithelial cells
was evaluated and given a numerical grade (0, no staining;
1, moderate staining; 2, strong staining; Fig. la-d). A
5hmC score was then calculated as the mean grade of at
least two malignant or 2 NM cores, respectively (5hmC
score <1, weak; =1, moderate; >1, strong). Initially, we
compared 5hmC scores for 311 patients for whom we
could evaluate 5hmC staining in at least 2 malignant cores
and 228 patients for whom 5hmC staining was assessable
in 2 NM cores (Table 1). The vast majority (96 %) of NM
samples displayed strong or intermediate 5hmC staining
(Fig. 2). In the full patient set (n = 311), 5hmC levels were
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Table 1 Clinical data for PC patients represented on the radical prostatectomy tissue microarray

546 RP patients
included on TMA
in malignant cores

311 RP patients for whom a
5hmC score could be evaluated

178 ERG positive RP patients
for whom a 5hmC score could
be evaluated in malignant cores

133 ERG negative RP patients
for whom a 5hmC score could
be evaluated in malignant cores

Age at RP, median (range) 64 (36-77) 63 (36-76)
Pathological Gleason score
=6, n (%) 178 (32.6 %) 88 (28 %)
=7,n (%) 270 (49.5 %) 172 (55 %)
28, n (%) 98 (17.9 %) 51 (16 %)

Pathological T stage (n)
<pT2c, n (%)
2pT3a, n (%)

363 (66.5 %)
182 (33.3 %)
1(0.2 %)

205 (66 %)
105 (34 %)
Unknown, n (%) 1 (<1 %)
Pre-operative PSA

PSA <10 ng/ml, n (%)

PSA >10 ng/ml, n (%)

222 (40.7 %)
324 (59.3 %)

132 (42 %)
179 (58 %)
Surgical margin status

174 (31.9 %)

Negative, n (%) 211 (68 %)

Positive, n (%) 366 (67.0 %) 95 (31 %)

Unknown, n (%) 6 (1.1 %) 5 (2 %)
Lymph node status

Positive, n (%) 0 (0.0 %) 0 (0.0 %)

Negative, n (%) 366 (67.0 %) 98 (32 %)

180 (33.0 %)
79.7 (0-157.5)

213 (68 %)
798 (12.2-157.5)

Unknown, n (%)

Median follow-up,
months (range)

236 (43.2 %)
No PSA recurrence, n (%) 310 (56.8 %)

ERG status (determined by IHC)

289 (52.9 %)

242 (443 %)

14 (2.6 %)

143 (46 %)
168 (54 %)

PSA recurrence, n (%)

178 (57 %)
133 (43 %)
0 (0.0 %)

Positive, n (%)
Negative, n (%)

Unknown, n (%)

63 (48-74) 63 (36-76)
62 (35 %) 26 (20 %)
98 (55 %) 74 (56 %)
18 (10 %) 33 (25 %)
116 (65 %) 89 (67 %)
62 (35 %) 43 (32 %)
0 (0.0 %) 1(1 %)
83 (47 %) 49 (37 %)
95 (53 %) 84 (63 %)
122 (69 %) 89 (67 %)
52 (29 %) 43 (32 %)
4 (2 %) 1(1 %)

0 (0.0 %) 0 (0.0 %)
57 (32 %) 41 (31 %)
121 (68 %) 92 (69 %)

804 (12.3-157.5) 78.7 (12.2-140.9)

83 (46.6 %) 60 (45 %)
95 (534 %) 73 (55 %)
178 (100 %) 0 (0.0 %)
0 (0.0 %) 133 (100 %)
0 (0.0 %) 0 (0.0 %)

slightly reduced in PC compared to NM tissue samples
(Fig. 1a), but the difference was only borderline significant
(Fig. 2; p=0.06, chi® test). This finding is in agreement
with results from two previous immunohistochemistry
(IHC) studies that used relatively small PC patient sample
sets [27, 37].

Next, we investigated 5hmC levels in PCs stratified by
ERG status, as determined by an IHC-based method that
has >95 % sensitivity and specificity for detecting ERG
rearrangements in PC [45, 46]. For ERG- PCs (n =133,
Table 1), malignant cores showed significantly less
strong (42 vs. 63 %), more moderate (46 vs. 33 %), and
more weak (12 vs. 4 %) 5hmC staining compared to NM
cores (Fig. 2), a difference that was highly statistically
significant (p < 0.001, chi? test; Fig. 2). In contrast, ERG+

PCs (n=178, Table 1) displayed an almost identical
score distribution as seen in NM cores (strong, 62 vs.
63 %; moderate, 34 vs. 33 %; weak, both 4 %; p=0.98,
chi® test; Fig. 2). No difference was observed in 5hmC
scores in NM tissue samples from patients with ERG+
(n=106) vs. ERG— (n=122) PC (p =0.18, chi® test; data
not shown). Together, these results indicate that loss of
5hmC in PC occurs preferentially in ERG- cases.

Correlation between 5hmC levels and clinicopathological
parameters in PC

Next, we investigated possible correlations between 5hmC
score in malignant cores and routine clinicopathological pa-
rameters pre-operative PSA, GS, pathological tumor stage
(pT), surgical margin (SM), and biochemical recurrence
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Fig. 1 Representative images of 5hmC immunoreactivity in malignant and NM prostate tissue samples. a TMA tissue core (ERG— PC) containing
both malignant and NM prostate glands. Reduced 5hmC levels were observed in the malignant (grade 1, arrowheads) compared to the NM
glands (grade 2, arrows). b Strong 5hmC staining in malignant core (grade 2). ¢ Intermediate 5hmC staining in malignant core (grade 1). d No
5hmC staining in malignant core (grade 0)
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Fig. 2 5hmC scores in PC and NM cores. Distribution of 5hmC scores in the full PC patient set and FRG+ and ERG— PCs. For each patient, 5hmC
scores were determined as the mean grade of minimum two PC or NM cores, respectively. P values from chi? test
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(BCR) status. In the full patient set, strong 5hmC staining
(score >1) was significantly associated with BCR (p = 0.018,
chi® test), whereas no significant correlations were seen
with any of the other parameters (p>0.39, chi® test;
Additional file 1: Figure S1). Notably, by subgroup analysis,
we found that strong 5hmC staining (score >1) was sig-
nificantly associated with BCR in the ERG- (p =0.006,
chi® test; Additional file 2: Figure S2) but not in the ERG
+ subset (p = 0.45; Additional file 3: Figure S3). Strong
5hmC staining was also significantly associated with ad-
vanced pT stage (pT3-4) in ERG- (p=0.001, chi® test;
Additional file 2: Figure S2), but not in ERG+ PCs, where
instead a borderline significant trend towards reduced
5hmC staining in pT3-4 stage tumors was seen (p = 0.06,
chi” test; Additional file 3: Figure S3). There was no sig-
nificant association between 5hmC score and pre-
operative PSA, GS, or SM status in either the ERG+
or ERG- subset (p>0.12; Additional file 2: Figure S2,
Additional file 3: Figure S3). In summary, these findings
suggest that high 5hmC levels may be associated with
tumor progression in ERG- PC.

Prognostic value of 5ShmC levels in PC

To assess the potential prognostic value of 5hmC levels in
PC, we investigated whether 5hmC score in malignant
cores was associated with time to BCR after RP. In the full
patient set (7 =311), a high 5hmC score (analyzed as a
continuous variable) was significantly associated with
shorter time to BCR in univariate Cox regression analysis
(hazard ratio (HR) (95 % confidence interval (CI)): 1.53
(1.09-2.15), p=0.013, Table 2). Likewise, high GS,
advanced pT stage, high pre-operative PSA, and positive
SM status predicted early BCR in univariate analysis
(p <0.001, Table 2), whereas ERG status had no prognostic
value in this patient set (p = 0.73, Table 2). Notably, 5hmC
score remained significant also in multivariate Cox regres-
sion analysis (HR (95 % CI): 1.62 (1.15-2.28), p = 0.006,
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Table 2) together with all routine clinicopathological
parameters (p <0.003, Table 2). We used Harrell's C-index
to estimate predictive accuracies of the multivariate
models, which remained at 0.75 whether 5hmC score was
included or not (Table 2). When 5hmC score was analyzed
as a dichotomized variable (<1 vs. >1) in the full patient
set, it was only borderline significant in uni- and multivari-
ate cox regression analysis (p=0.059 and p =0.066,
respectively; Additional file 4: Table S1) and in Kaplan-
Meier analysis (p = 0.058; Fig. 3a)

Recurrence-free survival analyses were also performed
after patient stratification by ERG status. Pre-operative
PSA, GS, pT stage, and SM status were significant
predictors of time to BCR in univariate analysis in both
patient subgroups (p < 0.05, Table 3), indicating that this
is a representative RP cohort. Furthermore, a high 5hmC
score (analyzed as a continuous variable) was a significant
adverse predictor of BCR in the ERG- subgroup in univar-
iate (HR (95 % CI), 1.97 (1.19-3.26), p = 0.008) as well as
multivariate Cox regression analysis (HR (95 % CI), 2.02
(1.16-3.51), p =0.013), whereas no significant association
was found for ERG+ PCs (Table 3). For the ERG- PC
subgroup, addition of 5hmC score to a multivariate model
containing clinicopathological factors only (pre-operative
PSA and SM status) improved Harrell’'s C-index from 0.68
to 0.73, suggesting moderately improved predictive
accuracy. Pathological T stage and GS were excluded from
the final model because they failed in multivariate analysis
(Table 3). Similar results were obtained when 5hmC score
was analyzed as a dichotomized variable (<1 vs. >1) in
uni- and multivariate Cox regression analysis (Additional
file 5: Table S2). A high 5hmC score (>1) was also
significantly associated with shorter time to BCR in
Kaplan-Meier analysis in ERG- PCs (p = 0.003, log-rank
test; Fig. 3b), whereas no difference was observed between
the high/low 5hmC score subgroups for ERG+ PCs
(p =0.95, log-rank test; Fig. 3c).

Table 2 Uni-and multivariate Cox regression analysis of BCR in the full PC patient set

All PCs (=311, 143 BCR)
Univariate Multivariate® Multivariate®
Variable HR (95 % Cl) p value  C-index HR (95 % Cl) pvalue  HR (95 % Cl) pvalue C-index®  C-index®
5hmC score (cont.) 153 (1.09-2.15) 0.013 057 158 (1.12-2.23)  0.009 162 (1.15-2.28)  0.006  0.75
Pre-op. PSA (€10 vs. >10 ng/ml)  2.93 (200-429) <0.001 063 217 (146-324) <0.001 2.17 (146-324) <0.001 0.75
Surgical margin (neg. vs. pos.)  2.86 (204-4.00) <0.001 063 1.99 (1.38-2.86) <0.001 9 (1.38-2.86) <0.001
Tumor stage (pT2 vs. pT3-4) 296 (213-4.13) <0.001 064 191 (1.32-2.76)  0.001 0 (1.32-2.75)  0.001
Gleason score (<6 vs. >6) 267 (1.70-4.17)  <0.001 058 208 (1.30-3.34) <0.002 202 (1.26-3.23) 0.003
ERG status (neg. vs. pos.) 1.06 (0.76-148) 0.732 0.51 1.19 (0.85-1.68) 0314 - -

Significant p values (p < 0.05) are highlighted in bold
?Global multivariate model including all parameters

bFinal multivariate model including significant variables only
Harrell's C-index for final model including 5ShmC
9Harrell's C-index for final model excluding 5ShmC
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Fig. 3 Kaplan-Meier analysis: Association between 5hmC score and time to BCR after RP. a High 5hmC score (>1) was a borderline significant
predictor of time to BCR in the full PC patient set (n=311; p=0.058, log-rank test). b High (>1) 5hmC score was a significant adverse predictor of
time to BCR in ERG— PC (n=133; p=0.003, log-rank test). ¢ 5hmC score did not predict time to BCR in ERG+ PC (n=178; p=0.95, log-rank test)

Kaplan-Meier survival estimates

i p = 0.0580
0 20 40 60 80 100
Time to BCR {months)

145 123 97 69 33 9
166 137 103 70 39 17
Kaplan-Meier survival estimates

p = 0.0034
0 20 40 60 80 100
Time to BCR (months)

77 68 57 40 19 7
56 44 31 19 13 5
Kaplan-Meier survival estimates

| p =0.9520
0 20 40 60 80 100
Time to BCR {(months)
68 55 40 29 14 2
110 93 72 51 26 12
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Table 3 Uni-and multivariate Cox regression analysis of BCR in £RG stratified PC patient subsets

ERG— (n=133, 60 BCR)
Univariate
Variable HR (95 % Cl) p value C-index
5hmC score (cont.) 7 (1.19-3.26) 0.008 0.62
Pre-op. PSA (S10 vs. >10 ng/ml) 266 (144-492) 0.002  0.60
Surgical margin (neg. vs. pos.) 283 (1.69-4.72) <0.001 062
Tumor stage (pT2 vs. pT3-4) 2.26 (1.35-3.78) 0.002 0.62
Gleason score (<7 vs. 27) 222 (1.01-488) 0.048 056
ERG+ (n=178, 83 BCR)
Univariate
Variable HR (95 % ClI) p value C-index
5hmC score (cont.) 2 (0.77-1.94) 0398 052
Pre-op. PSA (€10 vs. >10 ng/ml)  3.19 (1.96-520) <0.001 0.65
Surgical margin (neg. vs. pos.) 291 (1.86-4.54) <0.001 063
Tumor stage (pT2 vs. pT3-4) 365 (2.35-5.68) <0.001 0.65
Gleason score (<7 vs. 27) 3.04 (1.76-5.27) <0.001 061

Multivariate®

Multivariate®

HR (95 % Cl) p value HR (95 % Cl) p value  C-index” C-index?
202 (1.16-3.51) 0.013 208 (1.22-3.52) 0.007 0.73
236 (1.26-444) 0.008 262 (141-487) 0.002 0.68
251 (142-444) 0.001 2380 (1.67-4.68) <0.001
5(0.74-245) 0328 - -
2 (0.81-4.10) 0.147 - -
Multivariate® Multivariate®
HR (95 % ClI) p value HR (95 % Cl) pvalue C-index® C-index‘
44 (0.90-2.30) 0.129 - - NA
3(1.12-332) 0.017 203 (1.26-3.25) 0.004 0.76
3(1.07-282) 0.026  1.94 (1.25-3.01) 0.003
235(141-391) 0.001  2.13(1.36-3.35) 0.001
223 (1.24-401) 0.007 276 (1.63-468) <0.001

Significant p values (p < 0.05) are highlighted in bold

NA not applicable.

“Global multivariate model including all parameters

PFinal multivariate model including significant variables only
Harrell's C-index for final model including 5hmC

%Harrell's C-index for final model excluding 5hmC

Finally, we note that despite the significant association
between high 5hmC score and advanced pT stage in
ERG- PCs (Additional file 2: Figure S2), both 5hmC
score and pT stage remained significant predictors of time
to BCR in a bivariate Cox regression model (5hmC score;
HR (95 % CI), 1.67 (1.01-2.81), p = 0.044; pT stage, HR
(95 % CI), 1.96 (1.14-3.35), p =0.014). The C-index for
this model was 0.66, i.e., higher than for either parameter
alone (Table 3). We also performed Kaplan-Meier analysis
separately for pT2 and pT3-4 stage ERG- PCs, respect-
ively. A high 5hmC score (21) was significantly associated
with BCR in the pT2 stage subgroup (p = 0.029, log-rank
test, Additional file 6: Figure S4a) and a similar trend was
observed for the pT3-4 subgroup, although statistical
significance was not reached in this smaller patient subset
(p=0.35, log-rank test, Additional file 6: Figure S4b). In
conclusion, our results indicate that a high 5hmC level is
a significant adverse predictor of time to BCR after RP in
patients with ERG- PC, independent of routine clinico-
pathological variables.

Discussion

The present study is the first large-scale investigation of
5hmC levels in PC, as well as the first study to explore
and demonstrate a prognostic potential for 5hmC in this
common malignancy. By immunohistochemical analysis
of a large RP cohort, we found that 5hmC levels were
significantly reduced in ERG- but not in ERG+ PC as

compared to NM prostate tissue samples. Furthermore,
we identified 5hmC as a significant predictor of bio-
chemical recurrence in ERG- PC, independent of rou-
tine clinicopathological factors. In contrast, 5hmC had
no prognostic value in ERG+ PCs. ERG status was also
not associated with BCR in this RP patient cohort, con-
sistent with previous reports [5].

Our findings confirm and expand on results from two
previous studies [27, 37] that reported loss of 5hmC im-
munoreactivity in PC, but based on analysis of only 30
PC vs. 10 NM and 11 PC vs. 11 NM tissue samples, re-
spectively. The prognostic potential of 5hmC was not
explored in these studies, nor was the association be-
tween 5hmC and ERG status. The small-scale study de-
sign also prohibited an evaluation of 5hmC levels in
relation to routine clinicopathological parameters in these
earlier reports [27, 37]. Correlations between reduced
5hmC levels and mutations in 5hmC regulating enzymes,
such as TETS, have been identified in various other human
malignancies [29, 30, 34, 35], but such mutations are rare
in PC [47, 48]. Thus, further studies are needed to investi-
gate how 5hmC levels are regulated in normal as well as
in ERG- and ERG+ PC cells.

Our results highlight the importance of ERG strati-
fication in PC biomarker studies. Although not under-
stood in detail, the molecular pathways that operate
in ERG+ tumors are relatively better described than
the mechanisms involved in development/progression
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of ERG- PCs [11]. It is becoming increasingly clear
that ERG+ and ERG- PCs represent distinct molecu-
lar subtypes and that subtype-specific markers may be
required for prediction of tumor aggressiveness [14].
Thus, similar to our findings for 5hmC, previous studies
have shown that the prognostic potential of certain PC
biomarker candidates is dependent on ERG status, e.g.,
SPINK1 and SPOP as well as some DNA methylation
marker candidates [6—12].

It is intriguing that while we observed a general loss of
5hmC in ERG- PCs, our results indicated that retaining
a high global level of 5hmC is associated with ERG- PC
progression. Interestingly, hypoxia has previously been as-
sociated with poor prognosis after RP [49] and, together
with reactive oxygen species (ROS), has been shown to in-
duce TETI expression, leading to activation of hypoxia-
inducible genes through conversion of 5mC to 5hmC in
both a global and site-specific manner [50-52]. While we
did not find significant differential expression of TET1 or
common hypoxia response genes (HIFIA, HIF2A, CA9,
PGK1, GPI, VEGFA, BNIP, ENO1) [50-52] in ERG+ vs.
ERG- PCs in publicly available datasets [53-55] (data not
shown), further studies are warranted to investigate
whether high levels of hypoxia may exist in a subset of
ERG- PC and thus potentially could be linked to elevated
5hmC levels and poor prognosis.

In line with our finding that high levels of 5hmC
were associated with early BCR in ERG- PC, high
levels of 5hmC have also been identified as an inde-
pendent predictor of poor prognosis in AML [40].
Furthermore, the same study reported highly variable
5hmC levels between different AML samples [40],
consistent with our observations for both ERG- and
ERG+ PCs. Likewise, 5hmC levels have been shown
to vary between different types of brain cancer, with
oligodendroglial tumors displaying overall high 5hmC
levels, while reduced 5hmC levels were found in adult
glioblastoma and anaplastic astrocytoma and associ-
ated with poor prognosis [29]. Loss of 5hmC has also
been reported to predict adverse outcome in melan-
oma [34], myelodysplastic syndromes [35], and gastric
cancer [38]. Together, results from these previous re-
ports and our current results for 5hmC in PC indi-
cate that potential prognostic implications of 5hmC
are cancer (sub)type-specific, which is also in accord-
ance with the highly tissue-specific distribution of
5hmC in normal cells [33, 43].

There are some limitations to the present study.
First, the prognostic value of 5hmC in ERG- but not
in ERG+ PC needs further validation in large inde-
pendent patient cohorts. Moreover, we used BCR as
endpoint, which is only a surrogate for tumor aggres-
siveness. Thus, the potential prognostic value of 5hmC
should also be assessed in relation to more clinically
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relevant endpoints, such as metastatic progression or PC-
specific and overall mortality. Due to the slowly progressing
nature of PC, analysis of such endpoints would require at
least 15 years of follow-up [2].

Also limiting our study is the lack of 5mC data for our
sample set; thus, we have not investigated the correl-
ation between 5mC and 5hmC levels. However, previous
studies have reported no clear correlation between these
two epigenetic marks [27, 43]. Furthermore, we have not
investigated the expression levels of enzymes involved in
5hmC regulation, such as TETs or isocitrate dehydro-
genases (IDHs) [48], which should be investigated in
future studies.

Another potential limitation of our study is the use of
ERG immunoreactivity as a proxy for ERG gene fusion
status. However, previous studies have demonstrated
that ERG immunoreactivity is highly concordant
(>95 %) with ERG rearrangement status in PC tissue
samples [45, 46]. Moreover, ERG overexpression is
considered a PC “driver” event whether caused by
translocation, copy number alteration, or other mech-
anisms [56]. Furthermore, while ERG status may differ
between distinct cancer foci in multifocal PC [57], we
are confident of the match between 5hmC score and
ERG status in the present study, as these were
assessed on consecutive sections of the exact same
cores. Finally, although this is the first large-scale
evaluation of 5hmC in PC, immunohistochemical ana-
lysis is semi-quantitative and only allows assessment
of global 5hmC levels. Our results warrant further
studies of the genomic distribution of 5hmC in ERG-
vs. ERG+ PC as well as in NM prostate tissue sam-
ples. A number of recently developed NGS-based
protocols allow quantitative genome wide or whole-
genome profiling of the 5hmC methylome [58], which
could be used to increase our understanding of the
epigenetic mechanisms involved in PC development
and progression.

Conclusions

This is the first large-scale study of 5hmC in PC as
well as the first study to demonstrate a prognostic
potential for 5hmC in prostate adenocarcinoma. In
conclusion, we found that the global level of 5hmC
was significantly reduced in ERG- but not in ERG+
PC, as compared to NM prostate tissue samples. Fur-
thermore, we found that a subgroup of ERG- tumors
retained a high 5hmC level that was associated with
early BCR after RP, whereas 5hmC had no significant
prognostic value in ERG+ PC in our patient set. Our
results highlight the importance of ERG stratification
in PC biomarker studies and suggest that epigenetic
mechanisms involving 5hmC are important in ERG-
PC tumorigenesis and development. Future studies,
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using large independent PC patient cohorts, are needed to
confirm our findings. Finally, in order to better under-
stand the role of epigenetic changes in PC development
and progression, it will be important to generate genome
wide maps of the 5-hydroxymethylome in malignant and
NM tissue samples, as well as in specimens from aggres-
sive and non-aggressive PC, while taking ERG status into
account. Such future studies could aid in the identification
of important genes and pathways involved in PC develop-
ment and progression, providing a deeper understand-
ing of epigenomic reprogramming in PC.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article and its additional files.

Methods

Radical prostatectomy TMA

A tissue microarray (TMA) was generated using
formalin-fixed paraffin-embedded tissue samples from
552 radical prostatectomies of histological verified
clinically localized PC, surgically removed with cura-
tive intent between 1998 and 2009 at Department of
Urology, Aarhus University Hospital, Denmark. In all
cases, Gleason scores were reassigned according to
International Union Against Cancer and WHO/Inter-
national Society of Urological Pathology criteria [59].
For each patient, a trained pathologist with extensive
experience in prostate histopathology (SH) identified
a representative malignant tissue area in a hematoxylin
and eosin-stained section from the original prostatectomy
specimens. Likewise, a representative area of adjacent NM
prostate tissue was selected in parallel for a subset of the
patients (7 =301, chosen at random). For each patient,
three cores (1 mm diameter) were punched from the se-
lected malignant tissue area and two cores were punched
from the NM tissue area. The cores were mounted in a
total of 16 individual TMA blocks using the TMA master
(3DHISTECH, Hungary).

The most recent clinical follow-up of time to PSA
recurrence after RP was conducted in May 2015 for all
552 patients on the TMA. At this time, 6 patients had
withdrawn consent, while another 101 patients were
excluded due to either pre- or post-operative endocrine
or radiation treatment, short (<3 months) follow-up, or
BCR within 3 months from RP (Additional file 7: Figure
S5). Clinical data for all patients included on the
TMA, except for the six who withdrew consent, is
listed in Table 1.

This study was approved by the regional ethical com-
mittee and the Danish Data Protection Agency. All
patients provided written informed consent.
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IHC

5hmC staining and evaluation

TMA tissue sections (4 um) were deparaffinized (Tissue-
Tek Tissue-Clear Xylene Substitute, Sakura) and re-
hydrated according to standard protocols and antigen
retrieval was carried out in two subsequent steps, as
described previously [27]. Briefly, heat induced epitope
retrieval with citrate buffer (pH 6.0) was performed,
followed by incubation in 3.5 N HCI for 15 min at room
temperature. The subsequent procedure was performed
on the Autostainer Link48 (DAKO, Denmark) at room
temperature: rabbit polyclonal 5-hmC specific antibody
(Active Motif, Carlsbad, CA, cat. no 39769) was applied
at a 1:1000 dilution and incubated for 60 min. Horse
radish peroxidase (HRP) conjugated rabbit secondary anti-
body (Envision) was applied for 30 min. TMA sections
were subsequently counterstained with hematoxylin. As a
negative control, the primary antibody was omitted. This
primary antibody and IHC staining protocol has been
shown to be highly 5hmC specific in multiple previously
published reports [21, 27-29, 37, 38, 41-44], including
several antigen competition experiments, thus proving the
sensitivity and specificity of this antibody for 5hmC.

For each core on the TMA, 5hmC immunoreactivity
was scored individually by two independent observers
(SH and SHS) using the Pannoramic Viewer software
(3DHISTECH, Hungary). In cases of disagreement, cores
were reassessed to reach a consensus score. Kappa statis-
tics showed very high inter-observer agreement (Kappa
index = 0.95; p < 0.0001). Nuclear 5hmC staining intensity
in malignant or NM prostate epithelial cells was evaluated
and given a numerical grade (0, no staining; 1, moderate
staining; 2, strong staining). Due to progressive TMA
slicing (sections used for other projects), some cores had
changed status from malignant to NM from the time of
TMA construction. Thus, for 70 patients, all malignant
cores were lost during TMA processing and 64 patients
had less than two malignant cores that could be evaluated
for 5hmC staining. Patients for whom we could not evalu-
ate 5hmC staining intensity in at least two NM or at least
two PC cores were excluded from further analysis. Then,
for each patient, a 5hmC score was calculated as the mean
grade of at least two malignant cores or two NM cores, re-
spectively (score <1, weal; 1, moderate; >1, strong). In
total, a 5hmC score was calculated in malignant tissue
from 311 patients (Additional file 7: Figure S5) and a
5hmC score was calculated in NM tissue from 228
patients (Additional file 8: Figure S6).

ERG staining

TMA tissue sections (2.5 pm) were deparaffinized and
epitopes were retrieved using TEG buffer, as previously
described [60]. TMA sections were stained with rabbit
monoclonal ERG antibody (2805-1, Epitomics) in a
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1:150 dilution in TEG. Secondary staining was per-
formed using the EnVision + System (HRP Labelled
Polymer Anti-Rabbit K4003, DakoCytomation). For all
cores, ERG immunoreactivity (0,no staining; 1, moderate;
2, strong) was evaluated and scored by two independent
observers (SH and ASL) as described above. Positive stain-
ing was used as a proxy for ERG fusion status as previ-
ously described [45, 46].

Statistics

All statistical analyses were performed using STATA v.
11.2 (StataCorp, College Station TX, USA). In all cases,
p < 0.05 was considered significant. Associations between
5hmC score and clinicopathological variables were
assessed by the chi® test. Biochemical recurrence (BCR),
defined as PSA >0.2 ng/ml on two consecutive measure-
ments, was used as the clinical endpoint in univariate
and multivariate Cox regression analyses as well as in
Kaplan-Meier analyses. Patients without BCR were cen-
sored at their last normal PSA measurement. Statistical
significance in Kaplan-Meier analysis was evaluated
using two-sided log-rank tests. Predictive accuracy was
estimated using Harrell’s C-index.

Additional files

Additional file 1: Figure S1. Distribution of 5hmC scores by
clinicopathological parameters and BCR in the full PC patient set.
Full PC patient set, n=311. P values: chi’ test. (TIFF 145 kb)

Additional file 2: Figure S2. Distribution of 5hmC scores by
clinicopathological parameters and BCR status in ERG— PC.
FRG— subset: n=133. P values: chi’ test. (TIFF 146 kb)

Additional file 3: Figure S3. Distribution of 5hmC scores by
clinicopathological parameters and BCR status in ERG+ PC. ERG+ subset:
n=178. P values: chi’ test. (TIFF 143 kb)

Additional file 4: Table S1. Uni- and multivariate Cox regression
analysis of BCR after RP in the full PC patient set. 5hmC analyzed as a
dichotomized variable. (DOCX 33 kb)

Additional file 5: Table S2. Uni- and multivariate Cox regression
analysis of BCR after RP in ERG—/ERG+ PC patients. 5ShmC analyzed as a
dichotomized variable. * Global multivariate model including all
parameters. © Final multivariate model including significant variables only.
¢ Harrell's C-index for final model including 5ShmC. ¢ Harrell's C-index for
final model excluding 5hmC. NA: not applicable. Significant p values

(p < 0.05) are highlighted in bold. (DOCX 36 kb)

Additional file 6: Figure S4. Kaplan-Meier analysis: 5ShmC score and
time to BCR in ERG— PC stratified by pT stage. A: High 5hmC score
(>1) was a significant adverse predictor of time to BCR in pT2 stage
ERG— PCs (p=0.029, log-rank test). B: The same trend was seen in
pT3-4 stage ERG— PCs, but this was not statistically significant
(p=0.35, log-rank test). (TIFF 183 kb)

Additional file 7: Figure S5. Flow chart illustrating the sample inclusion/
exclusion process (malignant cores). A total of 552 PC patients were
represented by malignant cores on the TMA. The final sample set used for
all subsequent analyses consisted of 5hmC scores from 311 PC patients for
whom at least 2 malignant cores could be evaluated for 5ShmC staining
intensity (grade). (TIFF 68 kb)

Additional file 8: Figure S6. Flow chart illustrating the sample

inclusion/exclusion process (NM cores). A total of 301 PC patients were
represented by NM cores on the TMA. The final sample set used for all
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subsequent analyses consisted of 5hmC scores from 228 PC patients
for whom at least 2 NM cores could be evaluated for 5hmC staining
intensity (grade). (TIFF 58 kb)
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