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Abstract

Background: A number of clinico-pathological criteria and molecular profiles have been used to stratify patients
into high- and low-risk groups. Currently, there are still no effective methods to determine which patients harbor
micrometastatic disease after standard breast cancer therapy and who will eventually develop local or distant
recurrence. The purpose of our study was to identify circulating DNA methylation changes that can be used for
prediction of metastatic breast cancer (MBC).

Results: Differential methylation analysis revealed ~5.0 × 106 differentially methylated CpG loci in MBC compared
with healthy individuals (H) or disease-free survivors (DFS). In contrast, there was a strong degree of similarity
between H and DFS. Overall, MBC demonstrated global hypomethylation and focal CpG island (CPGI)
hypermethylation. Data analysis identified 21 novel hotspots, within CpG islands, that differed most dramatically in
MBC compared with H or DFS.

Conclusions: This unbiased analysis of cell-free (cf) DNA identified 21 DNA hypermethylation hotspots associated
with MBC and demonstrated the ability to distinguish tumor-specific changes from normal-derived signals at the
whole-genome level. This signature is a potential blood-based biomarker that could be advantageous at the time
of surgery and/or after the completion of chemotherapy to indicate patients with micrometastatic disease who are
at a high risk of recurrence and who could benefit from additional therapy.

Background
A number of clinico-pathological criteria have been
established as breast cancer prognostic markers to deter-
mine risk of recurrence and stratify patients into high-
and low-risk groups. The likelihood of distant metastasis
increases with tumor size, the presence and number of
lymph-node involvement (≥4 nodes have a higher recur-
rence risk), lack of estrogen receptor (ER) expression,
over-expression of Her2, a high proliferative index, lym-
phovascular invasion, and loss of histopathological dif-
ferentiation [1].
Molecular profiles have improved our ability to deter-

mine the need of chemotherapy for those individuals who
are deemed high-risk. The most widely used multigene
classifiers include the 21-gene Oncotype Dx signature

(Genomic Health, USA), the 70-gene MammaPrint sig-
nature (Agendia, Netherlands), the 76-gene Rotterdam
signature, and the PAM50 intrinsic classifier (NanoString,
USA) [2]. Despite the huge quantity of information
gleaned from these gene signatures, none can precisely
predict the clinical course of an individual and rely on the
presence of tissue at a single time point. Therefore, they
are not able to monitor a patient’s risk status after comple-
tion of therapy due to residual disease. Even with the
clinico-pathological features, there are patients deemed
high-risk who do very well with standard therapy and
never experience a recurrence and patients with low-risk
profiles who still die of breast cancer. There also remains
a risk of recurrence even after the most effective chemo-
therapy agents are administered to high-risk patients. We
report a 21-gene DNA hypermethylation signature, detect-
able in the circulation of MBC patients, which maybe use-
ful in the pre-macrometastatic setting to indicate patients
at a high risk of recurrence.
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Results
Clinical characteristics of samples
We characterized the plasma methylome of MBC by
paired-end whole-genome bisulfite sequencing (WGBS)
to identify differentially methylated regions that were
uniquely found in circulating cfDNA of a pool of 40
MBC when compared with a pool of 40 H and a pool of
40 DFS. MBC samples represented metastasis to usual
sites including bone (n = 23), liver (n = 12), brain (n = 3),
lung (n = 17), and soft tissue (n = 6) (Additional file 1:
Figure S1A). All but five samples had involvement of
more than one site. For the DFS cohort, the average
years disease-free equals 9, with a range of 3-27 years
(Additional file 1: Figure S1B). The groups were rela-
tively matched for age at diagnosis and race (Additional
file 1: Figure S1D-E). The median age for H, DFS, and
MBC was 48, 42, and 42, respectively (Additional file 1:
Figure S1D). Furthermore, the DFS and MBC groups
showed comparable hormone-receptor and Her2-receptor
status and prior therapy regimens (Additional file 2: Table
S1).

Summary of WGBS statistics
For quality control assurances, we confirmed that cfDNA-
fragment sizes were near equal between samples pre- and
post-fragmentation, and the DNA library yields and
percent-alignment rates were nearly equal for the three
sample pools (Additional file 3: Figure S2). A total of ap-
proximately 504, 625, and 948 million reads were obtained
for H, DFS, and MBC, respectively, using ten lanes of se-
quencing on an Illumina HiSeq 2500 (Additional file 4:
Table S2). Among these reads, a mean of 64.3 % of reads
were nonduplicated. A final read count of ~227 (H), ~295
(DFS), and ~518 (MBC) million reads were used for
downstream analyses. The average depth of coverage after
deduplication was 7.4 (H), 9.6 (DFS), and 16.9 (MBC).
The number of CpG sequenced was 28,162,972. Of these
CpGs, 61.9, 74.8, and 85.7 % were included in further ana-
lysis in H, DFS, and MBC, respectively. The increased
coverage in MBC was not due to global copy number al-
terations as captured by SVDetect (data not shown).

WGBS demonstrated global hypomethylation and focal
hypermethylation in cfDNA of MBC compared with H and
DFS, which had a high degree of similarity
To assess the similarity of each sample group to the
others, we used methylKit (25) to compute pair-wise
Pearson correlation coefficients, hierarchical clustering
(Ward’s method, correlation distance metric), and Prin-
cipal Component Analysis (PCA) on % CpG methylation
profiles. These analyses demonstrated that the H cohort
closely resembled DFS, evidenced by Pearson correlation
coefficient (0.83) and close proximity by hierarchical
clustering and PCA (Fig. 1). However, MBC varied

dramatically from H and DFS according to each ana-
lysis type, where the Pearson correlation coefficients
were 0.57 and 0.59 and showed a large degree of separ-
ation by clustering and PCA. The percent methylation
values per base for each sample group demonstrated
that the majority of loci in DFS and H were methylated
(major peak close to 1), whereas MBC had a significant
proportion of loci shifted to the left indicating low
methylation states and hypomethylation compared to
H and DFS (Fig. 1a). To rule out a chromosomal bias,
we performed this analysis for each chromosome (exclud-
ing X and Y) and confirmed a similar trend (Additional
file 5: Figure S3).

Identification of 21 CpG island hypermethylated hotspots
in circulation of MBC
We also used methylKit to perform pair-wise differential
methylation analysis at a single base-pair level. The num-
ber of differentially methylated loci (DML) between H and
DFS was relatively small (n = 88,192), again indicating the
similarity between the groups. In contrast, ~6.3 × 106

DML were detected between MBC and DFS and ~5.0 ×
106 DML detected between MBC and H (Fig. 2a). A Venn
diagram (Fig. 2a) showing the overlap of DML from each
comparison demonstrates a high degree of overlap when
MBC is compared to either H or DFS. However, very little
overlap exists with the H vs. DFS DML list when com-
pared to the DML list generated in the two MBC compar-
isons. Greater than 90% of DML were hypomethylated in
MBC compared with either H or DFS, indicating genome-
wide global hypomethylation in the plasma of MBC
(Fig. 2b). To discern the biological impact of differentially
methylated loci, each event was put into a genomic con-
text: CpG island, TSS1500, UTR, Exon 1, and Gene Body
(Fig. 2b). Approximately 9 % of DML were hypermethy-
lated in MBC compared to either H or DFS. The greatest
number of hypermethylated DML occurred in CPGIs
(~70 %). There was also significant (P value <0.05) hyper-
methylation occurring in UTRs (~50 %), Exon 1 (~35 %),
and TSS1500 (~30 %). Hypermethylation occurred least
frequently in gene bodies (~11 %), which were predomin-
ately hypomethylated.
To mine the data for potential biomarkers of MBC, we

focused on hypermethylated loci specifically in CPGIs
because they tend to be focal in nature and were identi-
fied as the regions that differed most dramatically from
normal or disease-free patterns. We specifically selected
regions with eight or more hypermethylated loci with
differential methylation values (DMVs) ≥50. With these
criteria, we identified 21 CPGI hotspots, which we refer
to as CpG4C™, within the following genes: BEND4, CDH4,
C1QL3, ERG, GP5, GSC, HTR1B, LMX1B, MCF2L2,
PAX5, PCDH10, PENK, REC8, RUNX3, SP8, SP9, STAC2,
ULBP1, UNC13A, VIM, VWC2 (Fig. 3).
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Validation of WGBS using targeted bisulfite amplicon
sequencing with MiSeq
We used bisulfite amplicon sequencing on Illumina’s
MiSeq platform for technical validation of WGBS on an
independent extraction of plasma from each group. This
nascent, deep-sequencing strategy allows for sensitive
detection of DNA methylation in low-input samples
such as plasma. Due to sample limitations, we were not
able to technically validate all 21 CpG hotspots, so we
randomly selected 4/21 genes for technical validation
using MiSeq. We selected GP5, UNC13A, PCDH10, and
HTR1B genes and designed bisulfite PCR primers within
the region of interest. Each amplicon detected between
6–18 CpG loci (Additional file 6: Figure S4A-D). Tar-
geted bisulfite amplicon sequencing on the MiSeq plat-
form showed very good concordance with WGBS and
demonstrated statistically significant (P value <0.05) in-
creased methylation in MBC compared with H and DFS
in GP5, PCDH10, HRR1B, and UNC13A (Fig. 4a, b,
Additional file 6: Figure S4A-D). The MiSeq data also
maintained that H and DFS are virtually unmethylated
within these amplicons (Fig. 4a, b and Additional file 6:
Figure S4A-D). All comparisons between MBC and H or
DFS were statistically significant (P value <0.05) by Fish-
er’s Exact Test and ANOVA, while surviving multiple
test correction (q value ≤0.5). To further assess the de-
gree of correlation between MiSeq and WGBS data for
the amplicons containing the 36 CpG assayed, we per-
formed a scatter plot analysis and a Pearson correlation
analysis to compare the 36 loci, for all groups, between
the two technologies. This analysis demonstrated a high
degree of correlation between MiSeq and WGBS (R2 =
0.768 and Pearson Correlation = 0.88) (Fig. 4c, d). All
loci in H and DFS (green and blue dots, respectively)

clustered to very low methylation states to the lower left
of the graph and CpG loci in MBC (red dots) mostly
scattered to the upper right (Fig. 4c). A summary of the
percent methylation values for each technology across
the groups is shown in Additional file 7: Table S3.
To demonstrate the expected higher coverage of

MiSeq with WGBS, we calculated the mean depth of
coverage for each CpG locus, within each amplicon, for
each group (Fig. 5). The overall average depth of cover-
age for the 36 CpG loci in H, DFS, and MBC by WGBS
was 10, 9.4, and 11. The average number of reads for H,
DFS, and MBC by MiSeq was 3012, 2583, and 2516,
respectively.

Gene ontology implications for CpG4C™
In order to demonstrate the association of the 21 gene
panel to biological processes we performed the Core
Analysis in Ingenuity® Pathway Analysis (IPA®). The top
disease implication was Cancer showing involvement of
17/21 genes (Additional file 8: Table S4A). The Top Mo-
lecular and Cellular Function was Cell-Cell Signaling
and Interaction (Additional file 8: Table S4A). Within
the Cancer disease process, 17 genes were associated
with Digestive System Cancer (Additional file 8: Table
S4B). VIM and CDH4 were implicated in invasive can-
cer (Additional file 8: Table S4B).

Discussion
Cancer metastases arise from disseminated cells of the
primary tumor mass before treatment and/or from min-
imal residual disease (MRD) persisting after therapy (col-
lectively known as micrometastatic residual disease) [3].
Currently, there are still no effective methods to deter-
mine which patients harbor micrometastatic disease

Fig. 1 WGBS reveals that MBC methylation profiles differ from DFS and H, which are similar. a Heat scatterplots show % methylation values for
pair-wise comparisons of three study groups. Numbers on the upper right corner denote Pearson correlation coefficients. The histograms on the
diagonal are frequency of % methylation per cytosine for each pool. MBC demonstrates a shift to the left compared to the DFS and H, indicating
genome-wide hypomethylation. b Hierarchical clustering of methylation profiles for each pool using Pearson’s correlation distance and Ward’s
clustering method. c Principal Component Analysis of the methylation profiles of each cfDNA pool, showing PC1 and PC2 for each sample.
Samples closer to each other in clustering or principal component space are similar in their methylation profiles
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after standard breast cancer therapy and who will even-
tually develop local or distant recurrence. It would be
advantageous to determine the subset of patients who
harbor micrometastatic cells and develop trials that
would evaluate the use of additional therapy for eventual
prevention of metastasis. There is likely a predictive
clinical window of opportunity to detect microscopic
disease in the early disease setting before micrometas-
tases lead to incurable macrometastases years after ini-
tial diagnosis.

This study represents one of the first whole-genome
studies describing the plasma methylome and the first
unbiased study reporting the circulating methylome of
MBC, resulting in the identification of a 21-gene hotspot
methylation panel that can potentially be used for pre-
diction of metastasis in the pre-macrometastatic setting.
Also novel to this study is the comparison of the plasma
methylome of MBC to that of both H and DFS, making
the DML hotspots highly unique to patients with clinical
evidence of MBC. While other studies have reported the

Fig. 2 a Venn diagram showing the overlap of DML lists as generated by WGBS for H, DFS, and MBC sample comparisons. b Three pair-wise
comparisons assessing cfDNA differential methylation between H, DFS, and MBC. Pie charts show percentages of differentially hyper- or hypomethylated
CpG loci genome-wide and within the displayed genomic contexts. Greater than 90 % of CpG loci are hypomethylated genome-wide in MBC
compared with Healthy or DFS. The majority of hypermethylated loci in MBC occur within CpG islands. The number of DML and the percentages are
shown within each pie chart
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Fig. 3 a Circos plot graphing methylation state for each locus in the CpG island of 21 target genes. The hotspot region exists within each island.
The inner circle (red) is MBC, middle circle is DFS (green), and outer circle is H (blue). Hypermethylation is evident in MBC for the target genes.
b Vertical scatter plot showing all DML within target CPGIs for MBC versus DFS and H, respectively. Each point represents a CpG locus. Points
plotted on the x-axis display the DMVs
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detection of tumor-associated DNA methylation changes
in cfDNA, targets were usually selected a priori from tis-
sue microarray data and measured using targeted ap-
proaches and not directly associated with MBC [4–9].
Furthermore, we demonstrate that genome-wide DNA
methylation profiles of DFS resemble plasma methylomes
from healthy individuals. This suggests that methylation
patterns in cfDNA can be used to discriminate a true sig-
nal from normal-derived, background noise; the patterns
may be used to detect the presence of micrometastatic re-
sidual disease after therapy. Additionally, we show that the
circulating methylomic landscape of MBC is congruent

with our knowledge of a cancer cell’s DNA methylation
patterns, characterized by global genome-wide hypome-
thylation and focal hypermethylation, found most fre-
quently in CPGIs. Accordingly, the data demonstrate,
as one would expect, that the hypermethylated regions
detected are regions that are generally unmethylated in
the genome. Previously, Chan et al. also observed hypo-
methylation in cfDNA of a variety of cancers; albeit, the
study did not discuss hypermethylation or MBC and
did not report on specific genic events [10].
Of the 21 genes, hypermethylation of RUNX3, PENK,

PAX5, and PCDH10 have been implicated in breast

Fig. 4 Comparison of WGBS to MiSeq (targeted amplicon sequencing). a Box plots representing percent methylation for DMLs in GP5, HTR1B,
PCDH10, and UNC13A as called by both technologies. b Mean-Whisker plots displaying average methylation state of all amplicons assayed by
MiSeq and WGBS. c Scatter plot of percent methylation value for the 36 CpGs assayed in H, DFS, and MBC by both MiSeq and WGBS. The correlation is
reported as R2 = 0.768. d Pearson correlation coefficient for WGBS versus MiSeq for 36 CpGs assayed by targeted amplicon sequencing
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cancer [11–13]. We have previously reported the associ-
ation of PENK hypermethylation in breast cancer metas-
tasis to the brain [14]. RUNX3, GSC, CDH4, BEND4,
PENK, VIM, and PCDH10 have been previously associ-
ated to invasion and metastasis [14–20]. DNA methyla-
tion alterations in UNC13A, SP9, GP5, C1QL3, SP8, and
VWC2 have not been previously reported in cancer.
A potential limitation in our study lies in the pooling

approach we used to conduct our analysis. In the ab-
sence of individual sample analysis, and given the dy-
namic range of circulating DNA [21], one cannot be
certain that a few samples are not overshadowing the
other samples, thus reducing the complexity of the pool.
However, the expense of such a large-scale analysis such
as WGBS remains prohibitive. In addition, other studies
have reported that bisulfite-based epityping on pooled
genomic DNA provided accurate estimates of average
group DNA methylation [22, 23]. Still, the importance of
individual sample and alternate cohort validation are crit-
ical to future development of this potential biomarker. In
this study, we have demonstrated cross-platform valid-
ation using targeted bisulfite sequencing on MiSeq; this
validated the results of WGBS for our hotspots selected
within GP5, HTR1B, PCDH10, and UNC13A. More ex-
tensive validation could not be completed due to sample
limitations and study scope. However, we are currently
working on determining the sensitivity and specificity of
CpG4C in additional samples that we are acquiring.
Various types of DNA alterations have been reported

in cfDNA including point mutations, microsatellite in-
stabilities, loss of heterozygosity, and DNA hyperme-
thylation [24, 25]. The essentiality of proper DNA

methylation maintenance is highlighted in cancer, where
normal patterns are lost. Aberrant DNA methylation is
among the earliest and most chemically stable molecular
alterations in cancer, making it a potentially useful bio-
marker for early detection or risk prediction [8, 26]. The
high degree of detection sensitivity of aberrantly methyl-
ated loci is afforded by the frequency of the occurrence
(for example, compared to somatic mutations) and be-
cause bisulfite modification provides detection of hyper-
methylated targets in large excess of unmethylated ones
(1:1000) [26]. Still, important issues like temporal stability
of DNA methylation in biological fluids need to be better
assessed. A study by Byun et al. demonstrated that that
degree of short-term DNA methylation stability is marker
dependent and associated with sequence characteristics
and methylation levels [27]. Such factors will be of the ut-
most importance when designing and conducting future
clinical tests using circulating epigenetic markers.
Early reports suggesting that the simple presence or

absence of cfDNA itself, or its concentration was diag-
nostic [8], have been scrutinized; high levels of cfDNA
are not specific to neoplastic lesions and are also
observed in several other pathologies, including pro-
inflammatory and neurological disorders [24]. In
addition, cfDNA has also been found in healthy individ-
uals in the same concentration range of some cancer
patients. Our lab has corroborated this finding by dem-
onstrating a fairly equal distribution of DNA yields in
plasma from H, DFS, and MBC patients (Additional file 1:
Figure S1C). This argues that the presence of tumor-
specific alterations is the best criterion to assess the tu-
moral origin of cfDNA.

Fig. 5 Read coverage in DMLs of interest. Box plots show the depth of sequencing as determined by WGBS and MiSeq for 36 DMLs specific to
GP5, HTR1B, PCDH10, and UNC13A in all pools of H (blue), DFS (green), and MBC (red). Coverage is shown as log10

Legendre et al. Clinical Epigenetics  (2015) 7:100 Page 7 of 10



Conclusions
In summary, this unbiased analysis of cfDNA identified 21
DNA hypermethylation hotspots associated with MBC,
and demonstrated the ability to distinguish tumor-specific
changes from normal-derived signals at the whole-
genome level. We anticipate that a DNA hypermethyla-
tion signature, involving rationally selected CpG hotspots
detectable in circulation, can be used to indicate microme-
tastatic disease in the pre-macrometastatic setting and
predict patients at a high-risk of recurrence who could
benefit from additional therapy. Future studies, involving
targeted bisulfite amplicon sequencing on individual sam-
ples, and in samples from early stage breast cancer, will
further validate the predictive power of this signature and
may further help define its association to varying breast
cancer subtypes.

Methods
Sample acquisition and DNA extraction
We obtained 120 retrospectively collected plasma sam-
ples from the Komen Tissue Bank (KTB), IU Simon
Cancer Center representing 3 cohorts of 40 individuals:
cohort 1 is MBC to various organs; cohort 2 is DFS
(range: 3–27 years, average 9 years DFS); cohort 3 is H
with no history of cancer. Samples were obtained under
informed consent following Komen Tissue Bank Institu-
tional Review Board approval. Plasma collection and
processing is critical to the reproducibility of tests in-
volving cfDNA. The KTB uses a highly standardized and
meticulous protocol for processing plasma to ensure
separation from blood and subsequent storage in a
highly time efficient manner. Details on KTB’s plasma
collection SOP can be found on their website (http://
komentissuebank.iu.edu/researchers/standard-operating-
procedures/). A plasma pool for each cohort was created
by mixing 50 μl of a pre-aliquoted plasma sample per in-
dividual, followed by extraction of cfDNA from 1 ml of
each pool using the QIAamp DNA Micro Kit (Qiagen)
according to the manufacturer’s protocol, with the ex-
ception that we used 1 μg of carrier RNA. DNA yields
from four independent 1-ml extractions of each pool
were highly consistent. The manufacturer’s protocol for
“Isolation of Genomic DNA from Small Volumes of
Blood” was followed, with the exception that reagents
were scaled up proportionally, and the sample was seri-
ally extracted on the column to accommodate the in-
creased volume. DNA was eluted in AE Buffer (Qiagen)
and quantified using the Qubit dsDNA High Sensitivity
fluorometric assay (Invitrogen).

DNA methylation analysis by whole-genome bisulfite
sequencing
Directional bisulfite-converted libraries for paired-end
sequencing were prepared using the Ovation Ultralow

Methyl-Seq Library System (NuGen). The manufac-
turer’s suggested protocol was followed. Briefly, this
entailed fragmentation, end repair, adapter ligation, final
repair, bisulfite conversion, and PCR amplification. We
used 27, 14, and 33 ng of DNA for H, DFS, and MBC,
respectively, in 50 μl T low E buffer, which was fragmen-
ted to an average size of 200 bp using the Covaris S2
system (Additional file 3: Figure S2A). Bisulfite conversion
was performed using the EpiTect Fast DNA Bisulfite Kit
(Qiagen) as per manufacturer’s instructions. Post-library
QC was performed with BioAnalyzer DNA 1000 chips
(Agilent) and the Qubit dsDNA High Sensitivity fluoro-
metric assay (Invitrogen). An equimolar pool of the pre-
pared libraries was created at a concentration of 5 nM.
The sample was subsequently diluted and clustered on the
Illumina cBot using TruSeq Paired End Cluster Kit v.3
chemistry. Paired-end sequencing was performed on the
Illumina HiSeq 2500 platform using TruSeq SBS v3 kits
for a total read length of 200 bp.

Targeted bisulfite amplicon sequencing
Targeted bisulfite amplicon sequencing was performed
on the MiSeq (Illumina) using an independent replicate
of the three plasma pools for validation of CpG island
hotspots for GP5, HTR1B, PCDH10, UNC13A. Bisulfite
Primer Seeker 12S (Zymo Research) was used to create
primer-pairs specific for bisulfite-converted DNA, which
produced PCR amplicons ranging in size from 109–235
base pairs. The bisulfite conversion was accomplished
using EZ DNA Methylation-Gold Kit (Zymo Research)
according to the manufacturer’s standard protocol. Forty
cycle PCR reactions were carried out with the Zymo Taq
(Zymo Research) kit and the manufacturer’s recom-
mended conditions using 2 μl of converted DNA tem-
plate per 30 μl reaction. Reactions were purified using
NucleoSpin columns (Macherey-Nagel) as per the manu-
facturer’s suggested protocol. Purified reaction products
were run out on a 2 % agarose gel for visual inspection
and quantified using the Qubit dsDNA High Sensitivity
fluorometric assay (Invitrogen).
A 266-ng equimolar mix of the four amplicons was

used as input for sequencing library preparation using
the Kapa Hyper Prep Kit (Kapa Biosystems). TruSeq
DNA LT adapters (Illumina) were used for indexing. No
post-ligation amplification was performed. Quantitative-
PCR library quantification was carried out using the Kapa
Library Quantification Kit (Kapa Biosystems).
Equimolar library pools were created and diluted to

15 pM for denaturation. PhiX Control v3 (Illumina) was
spiked in at a 5.0 % final concentration, and subsequent
cluster generation/sequencing was performed on the
MiSeq using MiSeq Reagent Nano Kits (Illumina). Five
hundred cycles of 2 × 250 paired-end sequencing gener-
ated over 820,000 reads.
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Data processing and analysis
Bisulfite-modified DNA reads from WGBS and MiSeq
were aligned to the bowtie2-indexed reference genome
GRCh37-62 using Bismark tool version 0.12.7 [28]. Bismark
relies on two external tools, bowtie (http://bowtie-bio.-
sourceforge.net/index.shtml) and Samtools (http://
www.htslib.org). We respectively used bowtie2 version
2.0.0-beta6, and Samtools version 0.1.19. Bismark was
used as suggested except for the bowtie2’s parameter N
(number of mismatches in a seed alignment during mul-
tispeed alignment) where the value of 1 was used for in-
creased sensitivity. Next, PCR duplicates were removed
for WGBS using default parameters. Methylation calling
was also processed using a Bismark module called
“Methylation Extractor,” which was used according to
the author’s specifications. Base-pair level differential
methylation analysis was implemented using the R pack-
age methylKit 0.9.2 [29]. Bismark’s sam file output was
used as input to methylKit and data imported using the
embedded function “read.bismark”. The minimum read
coverage to call a methylation status for a base was set
to 5, and the minimum phred quality score to call a
methylation was set to 20. The read.context option was
set to “CpG”. Other options to the read.bismark func-
tion were set to default values. The following pair-wise
comparisons were performed in methylKit using the
Fisher Exact Test: H versus DFS, H versus MBC, and
DFS versus MBC for both WGBS and MiSeq datasets.
Before calling differential methylation, each comparison
was methylKit-reorganized, united, and then underwent
differential methylation analysis using methylKit func-
tions. With a minimum of five reads in each group, a
differential methylation value (DMV) of 20 (in percent
scale) and P values <0.05 were considered DML. For
WGBS and MiSeq, chromosome X and Y reads were re-
moved. MethylKit DML calls were annotated according
to genomic location: Exon 1, Gene Body, TSS1500,
UTR5-prime, and CPGI annotations. For selection of
biomarkers, we identified CPGIs with at least 8 DML
having DMVs greater than 50. All loci of interest were
visually inspected in Integrated Genomic Viewer (IGV).

Additional files

Additional file 1: Figure S1. Analysis of 120 clinically annotated plasma
samples from the Komen Tissue Bank, representing 40 samples from
Healthy (H) individuals, 40 from disease-free survivors (DFS), and 40 from
patients with metastatic breast cancer (MBC). A) Pie chart shows distribution
of involved sites of distant metastases in the MBC group. B) Vertical plot
shows the number of years disease free in the DFS group. Two clusters are
evident. C) Plot shows cfDNA concentrations from three independent
extractions obtained after samples were pooled into three groups.
D) Vertical plot showing distribution of age at diagnosis for DFS and
MBC patients. Age of accrual is represented for H individuals. E) Bar
graph depicting the number of samples by race, for H, DFS, and
MBC. (ZIP 1052 kb)

Additional file 2: Table S1. Summary of clinical patient demographics.
(TIFF 335 kb)

Additional file 3: Figure S2. Library metrics. A) Gel image showing size
distributions of template DNA for library preparation pre and post
shearing. B) Bioanalyzer DNA100 electropherograms of libraries post
preparation. C) Plot showing percent-alignment rates for libraries.
(TIFF 718 kb)

Additional file 4: Table S2. Summary of sequencing statistics.
(TIFF 452 kb)

Additional file 5: Figure S3. Histogram plots of the frequency of %
methylation per cytosine for each sample pool by chromosome. MBC
demonstrates a shift to the left compared to DFS and H for each
chromosome. (TIFF 1958 kb)

Additional file 6: Figure S4. Integrated Genomics Viewer screenshots
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