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Abstract

Background: Somatic mutations in epigenetic enzymes are frequently found in cancer tissues. The MLL3 H3K4-specific
protein lysine monomethyltransferase is an important epigenetic enzyme, and it is among the most recurrently
mutated enzymes in cancers. MLL3 mainly introduces H3K4me1 at enhancers.

Results: We investigated the enzymatic properties of MLL3 variants that carry somatic cancer mutations. Asn4848
is located at the cofactor binding sites, and the N4848S exchange renders the enzyme inactive. Tyr4884 is part of
an aromatic pocket at the active center of the enzyme, and Y4884C converts MLL3 from a monomethyltransferase with
substrate preference for H3K4meO to a trimethyltransferase with H3K4me1 as preferred substrate. Expression of Y4884C
leads to aberrant H3K4me3 formation in cells.

Conclusions: Our data show that different somatic cancer mutations of MLL3 affect the enzyme activity in distinct and
opposing manner highlighting the importance of experimentally studying the effects of somatic cancer mutations in

key regulatory enzymes in order to develop and apply targeted tumor therapy.

Background

The mixed lineage leukemia (MLL) family of histone ly-
sine methyltransferases consists of several proteins includ-
ing MLL1-5, SET1a, and SET1b. MLL1 and MLL2 are
related to Drosophila Trithorax (Trx), MLL3 and MLL4
related to Drosophila Trithorax related (Trr), and SET1A
and SET1B are related to dSetl [1]. MLL proteins are
capable of introducing mono-, di-, and trimethylation
of histone H3 at lysine K4. Each methylation state of
H3K4 is associated with a distinguished chromatin state,
for example, H3K4 monomethylation is majorly located at
enhancer elements and H3K4 trimethylation is associated
with the promoters of the active genes. Recent work
has demonstrated that MLL3/MLL4 function as major
H3K4 monomethyltransferases at enhancers [2,3]. MLL pro-
teins function as large complexes that include tryptophan-
aspartate repeat protein-5 (WDR5), retinoblastoma-binding
protein-5 (RBP5), and absent small homeotic-2-like
(ASH2L) as core complex members, which are indispens-
able for the complete methyltransferases activity, plus
variable additional factors [4-7]. The MLL3 (KMT2C)
protein is 4,911 amino acids long, and it contains 8 plant
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homeodomain (PHD) and a suppressor of variegation,
enhancer of zeste, trithorax (SET) domain which con-
tains the catalytic center. Knockout of MLL3 in mice led
to stunted growth, reduced cell proliferation, and lower
fertility [8].

In general, cancer is caused by mutations and epigenetic
alterations. These effects overlap when epigenetic factors
are mutated, for example, EZH2, DNMT3A, or TET2,
which are frequently affected [9,10]. MLL3 is considered
as tumor suppressor gene because it is often deleted in
myeloid leukemia patients [11], and the targeted inactiva-
tion of MLL3 in mice leads to epithelial tumor formation
[12]. Correspondingly, recent studies reported reduced
MLL3 expression in many breast tumors [13,14], and low
expression of MLL3 was correlated with the poor survival
rate in the gastric cancer patients as well [15]. In addition,
MLLS3 is also recurrently mutated in several cancers in-
cluding glioblastoma, melanoma, pancreatic, and breast
cancers, and overall is one of the most frequently mutated
PKMTs in cancers [11,16,17].

Ongoing sequencing studies uncovered a large number
of somatic mutations in cancer tissues, but it is difficult
to discriminate relevant driver mutations from irrelevant
so-called passenger mutations [18]. One approach in
this direction is to study the effect of the mutations and
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investigate if critical properties of the protein are affected,
as done here with three mutations reported to occur in
the catalytic SET domain of MLL3. Two of them led to
massive changes of the enzymatic properties in vitro
and in cells - N4848S abolished the catalytic activity and
Y4884C changed the product pattern of the enzyme lead-
ing to increased generation of H3K4me2 and me3, while
the MLL3 wild-type only deposits H3K4 monomethyla-
tion. Our data indicate that somatic mutations in the SET
domain of MLL3 alter its catalytic properties indicating
that the mutations might contribute to carcinogenesis in a
distinct mutation-specific manner.

Results

Somatic mutations in the SET domain of MLL3 affect its
catalytic activity

Using the COSMIC database [19], we searched for missense
mutations in the SET domain of MLL3 (4,771 to 4,911) and
selected three mutations (S4757C, N4848S, and Y4884C)
based on their proximity to the peptide or AdoMet binding
sites of the enzyme (Figure 1). The mutations were found in
cancers of the lung (54757C), endometrium, central nervous
system (N4848S), and large intestine (Y4884C). The SET
domain of human MLL3 and the respective mutations
were cloned, and the proteins expressed and purified with
good yield (Additional file 1: Figure S1A). The methylation
activity of the MLL3 variants was tested with and without
complex members (WDR5, RBP5, and ASH2L) using
recombinant H3 protein as substrate and radioactively
labeled AdoMet. The reaction mixture was separated
using sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and the transfer of radiolabeled
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methyl groups to the H3 protein was analyzed by auto-
radiography. The results showed that the S4757C and
Y4884C MLL3 variants exhibit methyltransferase activity
but N4848S is inactive. Similar to wild-type MLL3, the
two active variants (S4757C and Y4884C) showed stron-
ger methyltransferase activity in the presence of the
complex members (Figure 2A). The methylation activity
of the S4757C variant was in par with wild-type MLL3, and
the activity of Y4884C was fourfold reduced (Figure 2B).
We have analyzed the secondary structure composition
of the proteins by circular dichroism spectroscopy indi-
cating that the mutant proteins are correctly folded
(Additional file 1: Figure S1B).

Substrate specificity of MLL3 variants with peptide
substrates

To investigate the substrate specificity and product pat-
tern of the MLL3 protein variants, SPOT peptide arrays
were synthesized with H3 tail (1 to 15) peptides, which
contain either unmethylated H3K4 or different methyl-
ated forms of K4. The K4A variant was used as negative
control. Peptide arrays were methylated with the MLL3
protein variants in the presence of complex members
using radioactively labeled AdoMet (Figure 3). Consistent
with the results of the protein methylation assay, the
N4848S variant was inactive and both Y4884C and
S4757C were active. However, we observed a change in
the substrate specificity of the Y4884C variant when
compared with wild-type MLL3. Wild-type MLL3 pre-
fers the unmethylated H3K4 peptide as a substrate and
no methylation signal was detected with the methylated
forms of H3K4 and on the H3K4A, indicating that it

FIH3 peptide

Figure 1 Structure of the MLL1-SET domain bound to the H3 peptide and cofactor product S-adenosyl-L-homocysteine (AdoHcy) (pdb
code 2W5Y). Note that an MLL3 structure currently is not available. (A) The protein is shown as blue ribbon, and the peptide is shown in orange
in the stick model with the target nitrogen atom colored white. The residues corresponding to Asn4848 and Tyr4884 are displayed in red and
green, respectively, the corresponding alignment of MLLT and MLL3 is shown in Additional file 1: Figure S4. (B) Details of the MLL1-SET structure
showing that N3906 (corresponding to N4848) is involved in an H-bond to AdoMet (shown in stick model with coloring by atom type). (C) Details
of the MLL1-SET structures showing the hydrophobic and aromatic pocket of MLL1 surrounding the target nitrogen atom which consists of
Y3942 (corresponding to Y4884, shown in green) and Y4800, 14847, and Y4885 (all designations refer to MLL3, residues shown in blue).




Weirich et al. Clinical Epigenetics (2015) 7:36

-

A MLL3 $§4757C N4848S Y4884C
Alone Complex Alone Complex Alone Complex Alone Complex
70 = 70 == 70 == 70=
55— 55— 55— 55—
40— 40— 40— 40—
35— 35— 35— 35—
25— 25— 25— 25—
15— .15—» ' 15— 15— ‘ H3
B 1.2
2
£ 1
©
S 08
5
_E 0.6
£
5 04 -
2
k]
- 0.2
4
0

MLL3 8§4757C N4848S Y4884C

Figure 2 Activity of MLL3 protein variants. Recombinant histone
H3 protein was methylated with radioactively labeled AdoMet by
MLL3-SET wild-type and MLL3-SET mutant proteins either alone or
in the presence of complex member proteins. (A) Example of an
autoradiographic image of the SDS polyacrylamide gel. The methylation
signal of H3 is indicated. (B) Quantitative analysis of the averages
of duplicate experiments. The error bars indicate the standard error

of the mean.

could only introduce a single methyl group on H3K4,
which is in agreement with literature data [2,3]. Strikingly,
Y4884C preferred the H3K4mel peptide substrate and
some methylation activity was even observed on the
H3K4me2 substrates illustrating that this variant can
transfer up to three methyl groups to the target lysine.
At the same time, the variant was less active on the
unmethylated H3K4 substrate, indicating a pronounced
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change in enzymatic properties when compared to the
wild-type enzyme.

To further confirm the change in substrate methyla-
tion state preference and product pattern of the Y4884C
mutant, unmethylated and monomethylated H3K4 pep-
tides were incubated in solution with MLL3 wild-type
and the variants in the presence of unlabeled AdoMet.
The samples were collected at the defined time intervals,
and the methylation was analyzed by mass spectrometry.
Wild-type MLL3 showed fast monomethylation of the
H3K4me0 peptide, followed by weak dimethylation after
long incubation times (Figure 4A, upper panel). No
methylation was detectable with the H3K4mel peptide
even after the long incubation times (Figure 4B, upper
panel) which suggests that the MLL3 wild-type protein
is inactive on the H3K4mel peptide and it is majorly a
H3K4 monomethyltransferase. The weak dimethylation
of the H3K4me0 peptide likely is due to a processive
methylation of bound peptide after the first methylation
cycle. In contrast, the Y4884C variant exhibited only
weak activity on the H3K4meO peptide (Figure 4A, lower
panel). However, this did not result in an accumulation
of monomethylated products indicating that they were
rapidly converted into the di- and trimethylated state.
Strikingly, Y4884C showed strong methylation activity
on the H3K4mel peptide resulting in the generation of
dimethylated and later trimethylated products (Figure 4B,
lower panel).

The methylation data were fitted by numerical integra-
tion and least squares fit to a non-processive kinetic
model. The H3K4me0 data show that MLL3 wild-type has
a high preference for H3K4me0O and conversion rate of
mel to higher methylated forms is almost zero (Figure 5
and Additional file 1: Figure S2). In contrast with the
H3K4me0 substrate, the Y4884C mutant showed highest
activity on the monomethylated substrate. This conclusion
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Figure 3 Substrate specificity of MLL3 protein variants. H3 (1 to 15) peptide arrays containing H3K4 at different methylation states and a K4A
peptide were methylated with MLL3-SET wild-type and mutant proteins in the presence of complex members using radioactively labeled AdoMet. (A)
Example of an autoradiographic image of the methylated peptide SPOT arrays, peptides with the corresponding lysine variants are indicated.
(B) Quantitative analysis of the average methylation signals of two independent experiments. The methylation data were normalized to the
H3K4me0 methylation signal obtained with the individual MLL3-SET variants. The error bars indicate the standard error of the mean.
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Figure 4 Substrate specificity and product pattern of MLL3 protein variants. H3K4 unmethylated (H3; 1 to 19) and monomethylated H3

(1 to 17) peptides were methylated by MLL3-SET wild-type and MLL3-SET Y4884C mutant protein in the presence of complex members using
unlabeled AdoMet. The samples were collected at different time points, and methylation was analyzed by mass spectrometry using the relative areas
of the corresponding unmethylated and methylated peaks. (A) Matrix-assisted laser desorption/ionization (MALDI) spectra of the methylation of the
H3K4me0 peptide with MLL3 wild-type (upper panel) and Y4884C (lower panel). The masses of the corresponding peptides are 2,423.4 Da (H3K4me0),
24374 Da (H3K4me1), 24514 Da (H3K4me2), and 24654 Da (H3K4me3). (B) MALDI spectra of the methylation of the H3K4me1 peptide with MLL3
wild-type (upper panel) and Y4884C (lower panel). The masses of the corresponding peptides are 2,181.2 Da (H3K4me1), 2,195.2 Da (H3K4me?2), and
2,209.2 Da (H3K4me3).

was supported by the methylation of the H3K4mel
substrate which was rapid with the Y4884C variant.
The S4757C variant showed similar preferences and ac-
tivities as the wild-type (data not shown). These results
indicate that the Y4884C variant has an altered substrate
specificity and product pattern and unlike the other two

active variants, Y4884C is a unique H3K4 variant of MLL3
with di- and trimethyltransferase activity.

Next, we determined the rates of peptide methylation
of MLL3 and the Y4884C variant using un-, mono-, and
dimethylated peptide substrates at variable peptide con-
centrations of up to 40 uM and fitted the initial rates to
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Figure 5 Summary of the analysis of the results of the peptide methylation experiments. Panels (A) and (B) show the average rate constants
of MLL3-SET wild-type and MLL3-SET Y4884C variant for the methylation of H3K4me0 (A) and H3K4me1 (B) substrates determined at a
peptide concentration of 10 uM. Error bars indicate the standard error of mean of two independent experiments. Data in panel (A) were
normalized to k; of MLL3-SET, and data in panel (B) were normalized to k; of Y4884C. Panel (C) shows the v /Ky values for methylation of
the un- (me0), mono- (me1), or dimethylated (me2) peptide substrates by MLL3-SET and Y4884C. These values were determined from methylation
kinetics carried using 5, 10, 20, and 40 uM of peptide (Additional file 1: Figure S5).

the Michaelis-Menten model. While the resulting K, values ~ wild-type MLL3 is more active than Y4884C on the
were too high to allow a reliable fitting of the individual K;;  unmethylated peptide substrate, but it has almost no activity
and vy, values, the v, /Ky values, which represent the on mono- or dimethylated substrates. In contrast, the
most valuable parameter to compare enzyme activities, were ~ Y4884C variant prefers the monomethylated substrate and
well defined (Figure 5C). These experiments confirmed that it can also methylate the dimethylated substrate.
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Figure 6 Product specificity of MLL3-SET wild-type and Y4884C at protein level. (A) Methylation of recombinant histone H3 protein by
MLL3-SET wild-type and Y4884C alone and in the presence of complex members using unlabeled AdoMet as cofactor. After methylation, the
proteins were separated by SDS-PAGE, blotted and the methylation was detected using an H3K4 trimethylated antibody (upper panel). The lower
panel shows the Ponceau S-stained image of the blot. The bar diagram shows the average methylation signal from two independent experiments.
The error bars indicate the standard error of the mean. (B) Global histone H3K4me3 methylation analysis from HEK293 cells. The cells were transfected
with different MLL3 variant plasmids, histones were isolated, and H3K4me3 methylation was probed by Western blot. The upper image shows the
H3K4me3 signal and a Ponceau S stain as loading control. The bar diagram shows the quantification from three experiments. The error bars display
the standard error of the mean. The signal obtained from the MLL3 was set to 1, and the other signals were normalized accordingly.
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Substrate specificity of MLL3 variants with protein
substrates

Next, we aimed to test the substrate specificity and
product pattern of wild-type MLL3 and the Y4884C at
the protein level. Recombinant H3 protein was methylated
using the same concentrations of MLL3 wild-type and
Y4884C variant with and without complex member pro-
teins in the presence of unlabeled AdoMet. The reaction
mixtures were separated on SDS-PAGE, and the methyla-
tion was detected with an H3K4me3 antibody. The results
show a strong trimethylation signal for the Y4884C but
only a very faint signal with the MLL3 wild-type in the
presence of complex patterns (Figure 6A). No methylation
signal was detected with both the variants in the absence
of complex members. This result indicated that the tri-
methylation activity of the Y4884C variant is strongly
increased also with protein substrates. The activity of
the S4757C variant was similar to the wild-type in this
assay as well (Additional file 1: Figure S3).

To study the effect of the MLL3 variants on global H3K4
trimethylation levels in cells, we transiently expressed the
MLL3 wild-type SET domain and each of the variants in
HEK293 cells. Histone proteins were purified from these
cells, and global H3K4me3 levels were determined with
the H3K4me3 antibody. As shown in Figure 6B, the ex-
pression of the Y4884C mutant protein resulted in a
considerable increase of cellular H3K4me3 levels when
compared with the histone proteins isolated from the
cells transfected with the other MLL3-SET variants,
which is in agreement with the in vitro result that
Y4884C has a trimethylation activity. Although H3K4me3
levels from the cells expressing the other variants (MLL3
wild-type, S4757C, N4848S) were little higher than those
of untransfected cells, these differences were not sig-
nificant. We conclude that the Y4884C somatic cancer
mutant of MLL3 exhibits different enzymatic properties
than the wild-type protein and it functions as H3K4 tri-
methyltransferase both in vitro and in cells.

Discussion

It has recently been reported that the somatic mutations
in the SET domain of PKMTs, for example, in EZH2
and NSD2, lead to carcinogenesis by altering the global
chromatin methylation levels (review [17]). We show
here that the N4848S and Y4884C somatic mutations of
MLL3 have remarkable and specific effects on the cata-
lytic properties of the enzyme, because the N4848S ex-
change renders MLL3 inactive and the Y4884C exchange
converts MLL3 from a monomethyltransferase to a di-
and trimethyltransferase. These pronounced changes of
the catalytic properties of both variants strongly suggest
that the mutations have a direct role in carcinogenesis.
The lack of effects of the S4757C exchange does not ex-
clude that other properties not covered by our assay may

Page 6 of 8

be altered. Alternatively, it may indicate that this is a pas-
senger mutation, which has no role in carcinogenesis.

The loss of methyltransferase activity due to the
N4848S mutation is not surprising from a structural
point of view, as this residue is located in a catalytically
important NHXC motif which is highly conserved in
PKMTs [20,21]. N4848 in MLL3 is directly located in
the AdoMet binding pocket of MLL3 (Figure 1) and the
exchange of asparagine to serine affects a hydrogen bond
between the cofactor and the protein, which could ex-
plain the loss of activity. This result is in agreement with
a tumor suppressor role of MLL3, because many cancers
were reported to have either reduced expression of
MLL3 or inactive truncated proteins due to frame shift
mutations.

The change in substrate preferences and product pat-
tern of the Y4884C mutant can be explained as well, be-
cause Y4884 is part of an aromatic active site pocket of
MLL3 (Figure 1) and mutations of the aromatic pocket
residues have been shown to alter the product pattern of
PKMTs [20,22]. The MLL3 Y4884C mutant resembles in
its properties the enhancer of zeste homolog 2 (EZH2)
mutations at Y641, which is the most frequently mutated
residue in this enzyme [23]. EZH2-Y641 mutated proteins
show different substrate preference and higher H3K27 tri-
methylation activity than the EZH2 wild-type both in vitro
and in the tumor cell lines [24-26]. By this, they strongly
influence the expression of polycomb repressive complex
2 (PRC2) target genes [27], and EZH2 inhibitors have been
successfully used in tumors with these mutations [27,28].
The MLL3 Y4884C variant could lead to similar changes
of the global chromatin regulation.

Conclusions

We report here the effect of somatic mutations in the
catalytic domain of MLL3. Our data show that mutations
in the SET domain of MLL3 may lead to tumorigenesis
through two converse mechanisms. The N4848S mutation
leads to a loss of the catalytic activity of MLL3, which re-
sembles the effect of other loss of function mutations in
MLL3, like frame shifts or loss of expression. Such muta-
tions may lead to the loss of H3K4 methylation at target
genes and inhibit the expression of tumor suppressor
genes. The Y4884C mutation leads to a change in the sub-
strate specificity and product pattern of MLL3. This may
result in the deposition of aberrant H3K4 trimethylation
at enhancers leading to their conversion to promoters and
the expression of oncogenes similarly as observed after
knockdown of the Kdm5c H3K4me3 demethylase [29].
Hence, MLL3 inhibitors are promising therapeutic options
for cancers containing Y4884C mutations, but they might
even be harmful in cancers with N4848S mutations. These
data illustrate that individual cancer mutations even in
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one protein need to be functionally studied in order to de-
velop and apply individual treatments.

Methods

Cloning, expression, and purification of proteins and
protein variants

MLL3-SET domain (4,734 to 4,911, Uniprot identifier-
QB8NEZ4-1) was amplified from the cDNA prepared from
HEK293 cells and cloned into pGEX-6p2 vector as GST
fusion protein. For mammalian expression, coding se-
quence of MLL3-SET domain was similarly amplified
and cloned into pEYFP-C1 vector (Clontech, Palo Alto,
CA, USA). The corresponding mutations in the MLL3-
SET domain were generated using megaprimer PCR proto-
col. For expression, Escherichia coli BL21-DE3 codon plus
(Novagen, Madison, W1, USA) carrying the corresponding
plasmid were grown at 37°C until they reached 0.6 to 0.8
ODgp. Cells were then shifted to 20°C for 10 min and
induced overnight with IPTG (1 mM). The cells were
harvested by centrifugation (5,000 g). Protein purification
was conducted as described before [30]. For eukaryotic ex-
pression, the MLL3-SET domain and corresponding
mutant plasmids were transfected in HEK293 cells using
FuGENE HD (Promega, Madison, WI, USA). The cells
were harvested 3 days after transfection. Histones were
isolated by the acid extraction method as described previ-
ously [31]. The WDR5, RBP5, and ASH2L proteins were
expressed and purified as described [32].

Peptide methylation assays

Peptide arrays on cellulose membranes were synthesized
using SPOT method and methylated as described [33].
Peptides used for the in solution experiments were com-
mercially purchased from Intavis AG (K6ln, Germany).
Peptide arrays were washed for 5 min in the methylation
buffer (50 mM Tris-HCI (pH 8.0), 200 mM NaCl, 5 mM
MgCl,, and 3 mM DTT). The arrays were then incubated
for 60 min at room temperature in methylation buffer
containing 50 nM MLL3-SET variants and 0.76 uM radio-
actively labeled AdoMet (PerkinElmer, Waltham, MA,
USA) and treated as described previously [30,34]. In so-
lution peptide, methylation was performed by incubat-
ing the respective peptide in the methylation buffer
(50 mM Tris-HCI (pH 8.0), 200 mM NaCl, 5 mM MgCl,,
and 3 mM DTT) supplemented with 50 nM of MLL3-
SET variant protein and unlabeled AdoMet (1 mM). If not
otherwise indicated, 10 pM peptide was used. The reac-
tion was carried out at 25°C temperature. Samples were
collected from the reaction tube at indicated time points,
and the reactions were stopped by diluting 1 ul of the
reaction mixture 9 pl 0.1% TFA, and the methylation
level of the peptides were analyzed by mass spectrometry
as described [35].
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Histone protein methylation assays

The H3 protein was incubated with MLL3-SET in methy-
lation buffer in the presence of either radioactively labeled
or unlabeled AdoMet for 3 h at 25°C. The reactions were
stopped by heating the samples in the SDS loading buffer
at 95°C for 5 min. Then, the proteins were separated on a
16% SDS-PAGE. The methylation signal was detected by
autoradiography in the samples methylated with radio-
active AdoMet cofactor. For the samples methylated
with the unlabeled AdoMet, the methylation signal was
detected by Western blot with a modification-specific
antibody (Active motif, Cat. # 39159, Lot. # 15808002,
which binds to H3K4me3 with very good specificity [36]).

Circular dichroism analysis

Circular dichroism (CD) measurements were performed
using a J-815 circular dichroism spectrophotometer (JASCO
Corporation, Tokyo, Japan). MLL3-SET wild-type or the
mutant variant proteins (20 uM) were diluted in a buf-
fer containing 10 mM Tris pH 7.5 and 200 mM KCl,
and the spectra were collected at room temperature using
a 0.1-mm cuvette in a wavelength range between 195 and
240 nm. For each sample, at least 60 scans were collected
and averaged. The spectra of mutant proteins were scaled
to the wild-type protein to normalize concentration differ-
ences and allow better comparison.

Additional file

Additional file 1: Figure S1. Protein expression and quality. Figure S2.
Fit of the methylation data shown in Figure 4 to a stepwise methylation
model of the corresponding substrate peptide. Figure S3. In vitro methylation
of recombinant H3 protein by MLL3-SET wild-type and S4757C. Figure S4.
Alignment of the amino acid sequences of MLL1 and MLL3. Figure S5. Rate vs.
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