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Abstract

Background: The prevalence of chronic diseases such as cancer, type 2 diabetes, metabolic syndrome (MetS), and
cardiovascular disease increases with age in all populations. Epigenetic features are hypothesized to play important roles
in the pathophysiology of age-associated diseases, but a map of these markers is lacking. We searched for genome-wide
age-associated methylation signatures in peripheral blood of individuals at high risks for MetS by profiling 485,000 CpG
sites in 192 individuals of Northern European ancestry using the Illumina HM450 array. Subjects (ages 6–85 years) were
part of seven extended families, and 73% of adults and 32% of children were overweight or obese.

Results: We found 22,122 genome-wide significant age-associated CpG sites (Pα=0.05 = 3.65 × 10−7 after correction for
multiple testing) of which 14,155 are positively associated with age while 7,967 are negatively associated. By applying a
positional density-based clustering algorithm, we generated a map of epigenetic ‘hot-spots’ of age-associated genomic
segments, which include 290 age-associated differentially methylated CpG clusters (aDMCs), of which 207 are positively
associated with age. Gene/pathway enrichment analyses were performed on these clusters using FatiGO. Genes
localized to both the positively (n = 241) and negatively (n = 16) age-associated clusters are significantly enriched
in specific KEGG pathways and GO terms. The most significantly enriched pathways are the hedgehog signaling
pathway (adjusted P = 3.96 × 10−3) and maturity-onset diabetes of the young (MODY) (adjusted P = 6.26 × 10−3) in
the positive aDMCs and type I diabetes mellitus (adjusted P = 3.69 × 10−7) in the negative aDMCs. We also identified
several epigenetic loci whose age-associated change rates differ between subjects diagnosed with MetS and those
without.

Conclusion: We conclude that in a family cohort at high risk for MetS, age-associated epigenetic features enrich
in biological pathways important for determining the fate of fat cells and for insulin production. We also observe that
several genes known to be related to MetS show differential epigenetic response to age in individuals with and
without MetS.
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Background
Chronic diseases such as cancer, type 2 diabetes (T2D),
metabolic syndrome (MetS), cardiovascular disease, and
dementia constitute the most common health problems
seen in developed societies (and increasingly, in develop-
ing societies), and their prevalence increases with age in
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all populations [1-4]. It is well established that environ-
mental exposures, especially in early life, can alter the
risk of various chronic diseases later in life [5,6], and
while the mechanisms involved in this ‘programming’ of
future risk are not yet understood in detail, epigenetic
changes are believed to play an important role in this
process [7,8].
Epigenetic mechanisms mediate the interaction be-

tween gene and environment throughout the lifespan;
while the underlying genetic sequence does not change,
environmental influences can alter epigenetic marks and
thus alter gene expression and induce long-term changes
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in phenotype and disease susceptibility [9]. The gradual
accumulation of epigenetic changes in critical genes may
contribute to the observed age-related increase in the
prevalence of various chronic disorders [10-13]. Epigen-
etic changes are known to be heritable across more than
one generation of offspring in plants and mammals
[14-19], and there is evidence that transgenerational epi-
genetic inheritance also occurs in humans [20-23]. Such
transgenerational inheritance of epigenetic states may
contribute to the observed inherited risk of various
chronic disorders, including metabolic disorders [24].
DNA methylation is one of the most extensively stud-

ied epigenetic mechanisms and plays an important role
in the process of development and differentiation [25].
There is evidence from both human and animal sources
that prenatal nutritional deprivation can permanently
alter DNA methylation at multiple loci, and these
changes play a role in the observed alteration of future
risk of chronic diseases like obesity, insulin resistance,
and diabetes [26-32]. It is also known that DNA methy-
lation patterns continue to change after birth, at least
partly in response to environmental influences [33-35].
For example, studies show that identical twins have
broadly similar epigenetic profiles in utero but these pro-
files gradually diverge as they get older [36-38]. Several
studies have looked at the effect of aging on genome-
wide DNA methylation in adults, and these studies show
that age-dependent methylation changes are found in a
variety of tissues and correlate well enough with age that
the methylation status of selected loci can be used to
predict the age of a subject [35,39-41].
These age-related methylation changes may play a

role in the observed age-related risk of various chronic
diseases. For example, studies show that the hyper-
methylation of certain CpG loci is associated with increased
cancer risk via reduced expression of cancer-suppressor
genes [41,42]. It has been proposed that age-related
changes in DNA methylation play a similar role in increas-
ing the risk of obesity, T2D, and MetS, but the specific
genes involved and the specific changes in their functioning
are yet to be determined [43-45].
Studies of genome-wide DNA methylation can be con-

ducted using various populations, and each design has
its advantages and disadvantages. For example, monozy-
gotic twins are genetically identical, so epigenetic differ-
ences found in twin pairs are likely to be either
stochastic or environmentally induced, rather than gen-
etically inherited [46]. In studies using both mono- and
dizygotic twins, it is possible to estimate the relative ef-
fect of genetic versus environmental influences to some
extent. But since twin pairs are of the same age, the dif-
ferential effect of age cannot be compared within the
pairs and the comparison of twins of different ages does
not offer any special advantage over comparing two
unrelated individuals of different ages. Studies using un-
related subjects have the advantage that large numbers
of subjects are relatively easy to recruit, but the epigen-
etic landscape of unrelated subjects can be influenced by
population structure and systematic differences in envir-
onmental exposures that may not be easy to identify and
that may thus confound the results. In a family-based
cohort, we can reduce the confounding effect of genetic
variation and population structure and, when large ex-
tended families live close to each other and follow simi-
lar traditions, they share many environmental factors as
well, thus reducing the confounding effect of group differ-
ences such as in diet and geographical location. Because
such family-based cohorts include related individuals of
different ages in the same cross-sectional study, it is pos-
sible to examine changes associated with age against a
relatively stable genetic and environmental background.
Another advantage of using large extended pedigrees is
that it may be possible to identify epigenetic patterns that
are associated with disease risk specifically within that
family and not in the general population. A family-based
cohort can thus be an especially powerful tool for identify-
ing age-related methylation changes, including changes
that are universally associated with aging and those that
are specific to families with shared genetic and environ-
mental risk factors for particular chronic diseases.
While no epigenome-wide study of extended, multi-

generational families has yet been published, a recent
study on a combination of twin and their nuclear family
members examined the role of genetic features on DNA
methylation [23]. These authors suggest that the major-
ity of transgenerational similarity in DNA methylation
can be explained by shared genetic effects and that epi-
genetic inheritance (incomplete erasure of epigenetic
modifications across generations) has a relatively limited
role in the observed inherited risk of various chronic
disorders. This observation still needs to be confirmed
in other studies and in populations at high risk for par-
ticular chronic disorders.
We assembled a cohort comprising several large ex-

tended families of Northern European descent that is
enriched for obesity, central adiposity, and obesity-
associated MetS traits. To identify genomic regions whose
methylation status changes with aging, we conducted a
genome-wide survey of peripheral blood DNA methyla-
tion and interrogated more than 485,000 CpG sites in 192
subjects from seven extended families living in two US
Midwestern states, Wisconsin and Illinois.

Results
The TOPS family study of epigenetics
The TOPS Family Study of Epigenetics (TFSE) was de-
signed to study the role of epigenetic mechanisms in
linking genes and the environment using related subjects
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of large extended pedigrees. The average age of the co-
hort is 36.2 (±18.8) years, 28% of the subjects were
18 years and younger at ascertainment and 55% are fe-
males. As the subjects were selected from families that
are part of a previous genetic study on the metabolic risk
complications of obesity [47], the cohort is enriched for
obesity and MetS traits (Table 1) with 73% of the adults
being overweight or obese (based on body mass index
(BMI)), 52% with waist circumference above MetS
thresholds (>102 cm in men; >88 cm in women), 31.9%
with evidence of insulin resistance (based on homeostatic
model of assessment (HOMA) > 3.5) [48,49], 20.3% with
hypertriglyceridemia (>150 mg/dl), and 65.7% with
high-density lipoprotein (HDL) below MetS thresholds
(<40 mg/dL in males and <50 mg/dl in females). Over-
all, 23.7% of the adults of our cohort met the ATPIII
definition of having MetS [50]. In the pediatric subjects,
Table 1 TOPS Family Study of Epigenetics (TFSE) cohort chara

Childre

(mean

Overweight and obese 32%

Waist over MetS threshold 15%

HOMA over MetS threshold 17%

Hypertriglyceride 9%

HDL-C over MetS threshold 51%

MetS prevalence NA

Phenotype Girls (n

Weight, kg 56.35 ±

Height, cm 157.81

BMI, kg/m2 22.10 ±

BMI% 55.61 ±

Waist circumference (WC), cm 68.15 ±

Subcutaneous fat (SubQF), g 361.49

Visceral fat (VF), g 78.57 ±

VF/SubQF 0.32 ± 0

Total abdominal fat (TAF), g 440.05

Fasting glucose (FG), mmol/l 82.28 ±

Fasting insulin (FI), pmol/l 14.81 ±

Insulin/glucose (IGR) 0.18 ± 0

Homeostasis model assessment insulin resistance (HOMA-IR) 3.03 ± 1

Triglycerides (TG), mmol/l 78.52 ±

Total Cholesterol (TC), mmol/l 152.76

LDL-cholesterol (LDL-C), mmol/l 89.29 ±

HDL-cholesterol (HDL-C), mmol/l 46.95 ±

Systolic blood pressure (sBP), mmHg 105.50

Diastolic blood pressure (dBP), mmHg 66.94 ±

Adiponectin, ng/ml 14.42 ±

Leptin, ng/ml 13.46 ±
the prevalence of overweight and obesity (BMI >85th
percentile) was 32%. All analyses accounted for the re-
latedness of family members by conditioning the fixed
effects of methylation status on the expected genetic
similarity of relatives (Table 2) [51].

The genome-wide autosomal map of age-associated DNA
methylation in the TFSE cohort
We have implemented a data cleaning procedure aiming
to retain only the informative CpG probes for downstream
analyses (see Additional file 1). Of a total of 485,512 CpG
sites that were assayed on the Illumina HM450 panel, a
total of 137,168 autosomal CpG sites passed our data
cleaning procedure and were entered into our statistical
analysis pipeline for age association tests.
Using methylation status represented by M values (see

the ‘Methods’ section), we tested each epigenetic marker
cteristics

n and adolescents Adults

± SD) (mean ± SD)

73%

52%

32%

20%

66%

24%

= 21) Boys (n = 32) Female (n = 85) Male (n = 54)

22.97 58.53 ± 25.15 82.98 ± 19.63 94.60 ± 23.36

± 13.09 159.69 ± 20.93 164.62 ± 6.87 177.31 ± 6.38

7.50 21.80 ± 5.70 30.75 ± 7.66 30.04 ± 6.76

34.20 66.91 ± 26.16 NA NA

14.05 75.16 ± 18.15 93.87 ± 17.89 101.58 ± 16.92

± 263.70 123.31 ± 95.00 319.34 ± 191.59 255.94 ± 131.42

24.02 43.66 ± 25.27 170.84 ± 149.50 265.24 ± 94.95

.20 0.45 ± 0.20 0.56 ± 0.32 1.13 ± 0.40

± 287.49 166.97 ± 114.39 490.18 ± 300.40 521.18 ± 204.41

8.44 86.47 ± 8.54 84.26 ± 13.07 86.58 ± 15.37

5.50 13.73 ± 5.69 16.12 ± 15.67 21.07 ± 22.91

.06 0.16 ± 0.07 0.44 ± 1.66 0.52 ± 1.42

.22 2.94 ± 1.32 3.53 ± 3.79 4.69 ± 5.15

28.11 78.00 ± 45.44 100.07 ± 52.44 117.69 ± 62.38

± 22.71 142.66 ± 25.78 193.06 ± 41.21 194.61 ± 38.77

24.62 85.75 ± 23.15 125.91 ± 38.39 133.82 ± 36.28

9.93 41.31 ± 9.50 46.29 ± 13.46 37.68 ± 9.93

± 5.00 107.55 ± 10.42 127.34 ± 18.56 129.61 ± 13.97

8.30 69.45 ± 9.59 76.79 ± 10.89 81.94 ± 11.39

5.96 10.45 ± 5.01 9.67 ± 5.52 7.95 ± 6.29

11.26 6.66 ± 7.17 23.72 ± 14.15 9.85 ± 7.22



Table 2 Pair-wise relationships within TFSE pedigrees

Number of
relative pairs

Familial relationship Proportion of
alleles shared IBD

196 Parent-offspring 1/2

212 Siblings 1/2

91 Grandparent-grandchild 1/4

439 Avuncular 1/4

1 Half siblings 1/4

13 Great grandparent-grandchild 1/8

275 Grand avuncular 1/8

2 Half avuncular 1/8

454 First cousins 1/8

598 First cousins, 1 rem 1/16

1 Half first cousins 1/16

236 Second cousins 1/32

IBD identical by descent.
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for association with age in linear mixed models that in-
cluded the random effect of kinship using SOLAR [52]
(see the ‘Methods’ section). Our models also accounted
for the fixed effects of sex and blood cell subtype pro-
portions. Figure 1 shows a Manhattan plot of the CpG
sites whose methylation status was associated with age.
Of these, 22,122 age-associated CpG sites in our cohort
LEPR
POMC

SIM1

IGF2BP2

LPP
SDCCAG8

MSR

PCSK1
N

IRS1
TFAP2B

MACF1

MLXIP

Figure 1 Strength of associations of genome-wide autosomal CpG met
the significance level of age association of each CpG locus by chromosomal p
depicts the genome-wide significance threshold after correction for Bonferron
regions belonging to genes previously associated with obesity, T2D, and Met
in children, orange dots obesity related genes in children and adults, green do
found to be within an aDMC are shown in bold and italicized.
surpassed the genome-wide significance threshold
(Pα=0.05 = 3.65 × 10−7 after correction for multiple test-
ing). The characteristics of these age-associated CpG
sites are shown in Figures 2 and 3. The percentage of
genome-wide age-associated sites per probes on each
chromosome is shown in Figure 2A. We observed that
39% of these age-associated sites are located within po-
tential regulatory regions of genes (from 5′ UTR to the
first exon, Figure 2B). The effect of age on DNA methy-
lation at each individual CpG site is shown as regres-
sion coefficients of normalized M value per year of age
in Figure 2C. We found that 14,155 of these genome-
wide significant CpG sites are positively associated with
age while 7,967 sites are negatively associated. This
gives a ratio of 1.8 for epigenetic loci that exhibit in-
creasing methylation over time versus those that show
decreasing methylation. Examples of genome-wide sig-
nificant age-associated sites include CpG loci located in
the promoter region of the obesity gene LEP [53], the
childhood obesity gene OLFM4 [53], the T2D gene
IRS2 [54], and the newly identified MetS gene TFAP2B
[55] (Figure 3A–D).
To validate the methylation results obtained using

the HM450 array, we quantitatively assessed the methy-
lation status of CpG locus cg14956327 in 48 samples
ranging from 6–21 years of age using pyrosequencing
P=3.65 x 10-7

BDNF GIPR

HOXB5

IRS2

PDX1

A

TRK2
DRD2

SLC6A4

HNF4A

OLFM4

L

IRX3

hylation status with age in our TFSE cohort. Manhattan plot shows
osition. Each grey dot represents an individual CpG site. The red line
i multiple testing, Pα=0.05 = 3.65 × 10−7. Colored dots represent epigenetic
S. Blue dots obesity-related genes in adults, red dots obesity related genes
ts T2D genes, yellow dots MetS genes. Selected genes are labeled. Genes



Figure 2 Characteristics of age-associated CpG sites. (A) Methylation sites are shown based on their chromosomal location (x-axis). The percentage
of sites was determined by the number of age-associated sites on each chromosome over the number of sites in the analysis on each chromosome
(n= 137,168). (B) Histogram shows the distribution of genome-wide age-associated sites in relation to gene architecture. ‘Age-related’ sites are the 22,122
sites that were found to be genome-wide age-associated and ‘All’ are the locations of all the sites run in the analysis (n= 137,168). (C) Histogram of
regression coefficients for 22,122 loci with genome-wide significant association with age.
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(Figure 3E). The graph within Figure 3E also shows a
direct comparison of 13 samples between the Illumina
array and pyrosequencing validation.
We also assessed the coverage of our data by compar-

ing our study to several recent studies of age-associated
epigenetic markers (Additional files 2 and 3). We found
that the current study has an exceptionally broad age
range (with subjects ranging from 6 to 85 years in age)
and was able to identify from 38% to 100% of previously
identified age-associated CpG sites depending on the
study in comparison. For example, we have identified
significant age-associations at CpG sites in the genes
ELOVL2, FHL2, KLF14, and PENK that had been repeat-
edly reported as strongly age-associated methylation
markers (Additional file 3) [39,56,57]. Our study also iden-
tified 21,078 additional genome-wide significant CpG sites
that have not been reported in these previous studies.
Bioinformatic analysis of genome-wide significant
age-associated DNA methylation sites in the TFSE cohort
We hypothesized that in our subjects, whose family his-
tory (genetic and environmental) makes them suscep-
tible to developing obesity and MetS, age-associated
DNA methylation is enriched in genes and pathways in-
volved in metabolic homeostasis. Changes caused by
aging in these epigenetic states might lead to the mal-
functions that underlie the increased prevalence of clin-
ical symptoms of obesity and MetS in the aging
population [1,3]. As the subjects we interrogated for
genome-wide DNA methylation profiles were from fam-
ilies at high risk for developing MetS, we looked at genes
with prior evidence for involvement in obesity and T2D
and checked if there were CpG sites above genome-wide
significance level associated with any of them.
Known genes for obesity
We found that 20 genes out of the 36 listed in a gene
list based on genetic studies of human obesity [53] have
one or more methylation sites that is significantly asso-
ciated with age in our families (Figure 1, Additional file
4). These genes include a number of well-studied obes-
ity genes such as LEP, POMC, PPARG, and CNR1, as
well as previous obesity GWAS candidates with unclear
roles in obesity etiology, such as SIM1, IRX3, and
SLC6A11. Furthermore, four genes identified in GWAS
for childhood obesity, such as SDCCAG8, TNKS/MSRA,
OLFM4, and HOXB5, were found to be epigenetically
age-associated as well.
Genes known to be associated with type 2 diabetes
Of the 20 T2D susceptibility loci recently identified in
GWAS [58], ten were found to be epigenetically modi-
fied by age in our analysis (Figure 1, Additional file 5).
These include PPARG, HNF1B(TCF2), TCF7L2,
IGF2BP2, HHEX/IDE , KCNQ1, MTNR1B, ADAMTS9,
THADA, and JAZF1. In one of the most recent studies
of T2D genes using genome-wide trans-ancestry meta-
analysis, seven novel loci were identified [59]. Of these
seven loci, we found evidence for age-associated dif-
ferential methylation at SSR1/RREB1 and LPP. We also
looked for any age-associated epigenetic evidence for
genes established through approaches other than
GWAS and found that the following known T2D
genes are under epigenetic regulation by age: IRS1



Figure 3 DNA methylation changes with age in candidate genes related to obesity, MetS, and T2D. (A) Methylation of CpG site cg12782180 located
in the TSS1500 of LEP with respect to age. (B) Methylation of CpG site cg08119452 located in the TSS1500 of OLFM4 with respect to age. (C) Methylation of
CpG site cg05404236 located in the first exon of IRS2 with respect to age. (D) Methylation of CpG site cg24366557 located in the body of TFAP2B with
respect to age. (E) Pyrosequencing validation of differential methylation with age identified by arrays. Scatter plot shows the overlay of age-associated
methylation changes at CpG site cg14956327 (DDO) probed by the Illumina HM450 array (black dots) and pyrosequencing (green dots). Only children and
adolescents samples were used in validation tests. The insert shows direct comparisons between the Illumina array and pyrosequencing validation.
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[60], IRS2 [54], AKT [61], ABCC8 [62], HNF4A [63],
IPF-1(PDX1) [64], NeuroD1 [65], and GCK [66].

Pleiotropic genes known to be associated with MetS
Of the 25 genes that have been shown to play pleiotropic
roles in MetS and inflammation [55], we found eight
genes with one or more methylation sites significantly
associated with age in our families (Figure 1; Additional
file 6). These genes include GRB14, KIAA0754, MACF1,
MLXIPL, SKIV2L, STK19, TFAP2B, and TRIB1.

The map of genomic locations of dense age-associated
differentially methylated clusters in the TFSE cohort
We then applied a modified ‘bump-hunting’ algorithm
to identify clusters of age-related methylated CpG sites.
Using this algorithm, we generated a map of epigenetic
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‘hot-spots’ of age-associated genomic segments. In our
search algorithm, modified from a previously published
method [67,68], we defined a group of sites as a dense
age-associated CpG cluster when at least 50% of no less
than ten sites are associated with age at genome-wide
significance, and the distance between any pair of age-
associated sites is no greater than 10 kb. Additional file
7 shows the autosomal map of age-associated differen-
tially methylated CpG clusters (aDMCs) throughout the
autosomal genome. We identified 290 aDMCs, of which
207 are positively associated with age, 9 are negatively
associated, and 74 have sites associated in either direc-
tion. The detailed characteristics of these identified
aDMCs are depicted in Figure 4. The distribution of
the sizes of these aDMCs showed one peak in the
aDMCs with sizes around 5 kb and another around
10 kb (Figure 4A). To study the chromosomal distribu-
tion of these aDMCs, we divided the total number of
age-associated clusters on each chromosome by the
total number of clusters that would be generated if the
same algorithm was applied to all loci that survived our
data cleaning procedure. We found that 3.8% of all
clusters generated by this algorithm are age-associated
and they are mostly evenly distributed across the gen-
ome, with a few chromosomes being modestly over-
represented (Figure 4B). The sizes of identified aDMCs
range from 457 to 69,237 bp, and we found that 80 of
these aDMCs span over more than one gene (up to a
maximum of four genes). When we filter genes known
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Figure 4 Characteristics of aDMCs defined in our cohort. (A) Histogram
shown based on their chromosomal location (x-axis). The percentage of aD
over total number of aDMCs on each chromosome (n = 7,590).
for obesity, T2D, and MetS based on our clustering cri-
teria, three obesity genes, two T2D genes, and one
MetS gene each contains at least one aDMC. For in-
stance, we found an aDMC that spans a 2.1-kb region
of the gene insulin receptor substrate 2 (IRS2) on
chromosome 13. This cluster begins within the pro-
moter region (1,500 bp before transcription starting site
(TSS)), 5′ untranslated region (UTR) and ends in the
first exon (Figure 1; Additional file 5).

Gene network and pathway analyses of aDMCs in our
family cohort
To identify pathways that are enriched in aDMCs associ-
ated with age in our cohort in an unidirectional manner,
we utilized FatiGO [69] which queried the vast amount
of knowledge deposited in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [70,71] and Gene Ontol-
ogy (GO) databases [72]. We found a number of KEGG
pathways and GO terms that are significantly enriched
after adjustment in both positively and negatively age-
associated clusters. There are a total of 241 genes in
these 207 positively age-associated clusters and 16 genes
in the 9 negatively associated clusters. As shown in
Additional file 8, three KEGG pathways were found to
be significantly enriched in clusters positively associ-
ated with age, including the hedgehog signaling path-
way (adjusted P = 3.96 × 10−3; Figure 5A) and the
maturity-onset diabetes of the young (MODY) pathway
(adjusted P = 6.26 × 10−3; Figure 5B) and neuroactive
1 3 5 7 9 12 15 18 21

Chromosome

P
er

ce
nt

ag
e 

(%
)

0
1

2
3

4
5

6

B

shows the size distribution (bp) of the 290 aDMCs. (B) aDMCs are
MCs was determined by the number of aDMCs on each chromosome



Figure 5 Top Kegg pathways enriched with aDMCs identified by the FatiGO analysis. (A) The MODY pathway with identified genes of aDMCs
and age-associated DNA methylation sites. Genes found with age-associated sites are shown with a blue background, while genes within an aDMC
are shown with a green background. (B) The Hedgehog signaling pathway with identified aDMCs and age-associated DNA methylation sites. Genes
found with age-associated sites are shown with a blue background, while genes within an aDMC are shown with a green background. (C) Type 1
diabetes pathway with identified aDMCs and age-associated DNA methylation sites.
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ligand-receptor interaction (adjusted P = 1.58 × 10−2). A
total of 387 GO terms for biological processes were sig-
nificantly enriched within the aDMC genes (Additional
file 9), as were 55 GO terms for molecular functions
(Additional file 10). Type I diabetes mellitus was found
to be the most significant pathway enriched in epigen-
etic clusters negatively associated with age (Figure 5C,
Additional file 11). There was no significant enrichment
of biological processes and molecular function GO
terms within the negative clusters. The biological pro-
cesses that were significantly enriched in positively associ-
ated aDMC genes include development of a multitude of
organs and systems from embryonic phases to adulthood,
stem cell development and maintenance, cell recognition,
motility and migration, regulation of cell differentiation
and proliferation and cell cycle, response to temperature
and other abiotic stimulus, response to dietary excess,
cytokine and insulin secretion, metabolism homeostasis,
adult behavior, and aging. The top four GO terms
enriched in age-associated epigenetic loci are all related to
development of the brain/nervous system. The molecular
functions of these genes are also highly enriched in
sequence-specific DNA binding.

Analysis of differential age effects on CpG methylation at
known MetS candidate loci in subjects with MetS and
those without
We tested the hypothesis that the aging rates for CpG
methylation at MetS genes are different in subjects ex-
pressing MetS symptoms as compared to subjects with-
out MetS. There are 127 CpG sites which belong to 11
genes previously implicated in MetS genetics (55) in our
dataset after QC. Of these, 23 CpG loci were genome-
wide significantly associated with age in our cohort. We
examined the aging rate of each of these 23 epigenetic
markers in the two groups of adult subjects that were
separated using the ATPIII definition of MetS (24% with
MetS) and found that four sites of four different genes
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showed nominal differentiation between the two groups
(Table 3). Remarkably, we found that not only do the
aging rates differ in these two groups by 2.6–5.1 fold but
their methylation also changes over time in opposite di-
rections. As shown in Figure 6A, CpG site cg06117072
exhibited increased methylation over age in non-MetS
subjects but decreased over time in MetS subjects. In
other sites such as cg10092878 in the MetS gene MLX
interacting protein-like (MLXIPL), the methylation aging
rates did not show any significant difference between the
two groups of subjects (Figure 6B).

Discussion
We report here the first survey of age-associated periph-
eral blood DNA methylation in a cohort of Northern
European origin comprised of large extended families.
Using families with extended pedigrees to study the as-
sociation between age and epigenetic modifications of
each interrogated CpG locus can be more powerful than
designs using unrelated [34,73], identical and fraternal
Table 3 MetS status on aging rate in known MetS genes

CpG site Page Beta
(age, all)

Beta
(age, no MetS)

Beta
(age, Me

cg06117072 1.62 × 10−15 0.030 0.027 −0.010

cg04926134 5.73 × 10−14 0.029 0.031 −0.006

cg14683125 1.04 × 10−16 0.028 0.023 −0.005

cg22697325 2.64 × 10−18 −0.031 −0.020 0.004

cg23485738 5.24 × 10−09 −0.023 −0.006 −0.032

cg20069688 4.22 × 10−11 −0.026 −0.005 0.015

cg24641186 5.72 × 10−23 0.036 0.027 0.011

cg00207280 2.59 × 10−10 0.016 0.010 −0.001

cg07570723 1.53 × 10−12 0.024 0.013 0.002

cg09247060 3.22 × 10−27 0.037 0.024 0.014

cg27260772 1.03 × 10−16 0.032 0.031 0.020

cg24161652 2.25 × 10−10 0.026 0.020 0.008

cg02244386 4.45 × 10−08 −0.020 −0.007 −0.017

cg07737781 2.39 × 10−22 0.036 0.031 0.022

cg19620724 2.11 × 10−24 0.038 0.027 0.018

cg10092878 6.05 × 10−25 0.038 0.031 0.039

cg24366557 2.51 × 10−32 0.040 0.034 0.028

cg22282405 3.01 × 10−24 0.036 0.032 0.027

cg07103129 7.92 × 10−28 0.040 0.031 0.026

cg21317965 5.58 × 10−12 0.026 0.019 0.014

cg23015341 4.29 × 10−24 0.035 0.023 0.021

cg13824302 2.01 × 10−07 0.021 0.010 0.009

cg08876103 3.17 × 10−19 −0.028 Convergence
failure

Pdiff is the significance value between the betas in the MetS and non-MetS groups.
twins [36,37], or small nuclear pedigrees [74]. It has
been shown that genetic effects determine the majority
of transgenerational similarity in DNA methylation in
humans [23], and by using extended pedigrees, we may
have more power to detect age-affected epigenetic sig-
nals as compared to designs using unrelated subjects be-
cause these families will have less of the epigenetic
variation that can be caused by differences in the genetic
makeup of unrelated individuals (Additional file 2). By
comparing our study with several recent genome-wide
age-association studies, we found that the current study
has one of the broadest age sample ranges, including
children and adolescents, and we were able to identify
the majority of previously identified age-associated CpG
sites [35,39-41,56,57,75-77] as well as more than 20,000
novel age-associated CpG sites.
Since our study utilized an obesity-prone cohort, it is

possible that some of the methylation changes we see in
the older subjects are due to the effect of obesity and
not due to aging per se. We cannot exclude this
tS)
Pdiff Chr Position (bp) Gene Gene region

0.004 6 50899344 TFAP2B Body

0.005 2 165186498 GRB14 First exon

0.023 8 126510565 TRIB1 TSS1500

0.046 1 39391972 MACF1 Body

0.068 6 32044171 SKIV2L Body

0.134 6 32049028 STK19 Body

0.188 6 50912106 TFAP2B Body

0.231 8 126510575 TRIB1 TSS1500

0.338 1 39647825 KIAA0754 5′UTR

0.409 6 50895762 TFAP2B Body

0.422 6 50899161 TFAP2B Body

0.433 6 50921818 TFAP2B 3′UTR

0.434 2 165182240 GRB14 Body

0.437 7 72676802 MLXIPL 1stExon

0.461 6 50918811 TFAP2B Body

0.472 7 72676795 MLXIPL First exon

0.569 6 50895609 TFAP2B Body

0.686 6 50918641 TFAP2B Body

0.703 6 50895923 TFAP2B Body

0.720 6 50911809 TFAP2B Body

0.843 6 50921300 TFAP2B 3′UTR

0.929 7 72677002 MLXIPL TSS200

1 39344910 MACF1 Body

Italicized CpGs are nominally significant by Pdiff.



Figure 6 MetS status and aging rate of candidate CpG site methylation. (A) Methylation of CpG site cg06117072 located in the gene body
of TFAP2B, a known MetS gene, with respect to age, in subjects with MetS and those without. (B) Methylation of CpG site cg10092878 in the
MetS gene MLXIPL with respect to age, in subjects with MetS and those without.
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possibility, but since we found a large number of loci
that have also been discovered in other studies of age-
related methylation changes (Additional file 2) that were
not related to obesity, we believe that our findings are
more likely to be age-related than obesity-related.
We examined the age-associated methylation loci that

surpassed genome-wide significance level (after Bonfer-
oni correction, Pα = 0.05 = 3.65 × 10−7) in genomic regions
densely packed with age-associated CpG sites. We have
named these clusters as aDMCs (Additional file 7). We
found a total of 290 aDMCs across the autosomal gen-
ome with the majority of clusters containing unidirec-
tional, positively associated CpG sites. Only nine clusters
were found with CpG sites all negatively associated with
age. The sizes of these clusters range from less than 0.5
Kb in a transcription promoter to a nearly 70 Mb region
that can span up to four genes.
The families used in the current study all live in rural

or semi-urban regions of the states of Wisconsin (six
families) and Illinois (one family) and are mostly catego-
rized as working and/or middle class families (TOPS
Club Inc., personal communication). There are likely to
be broadly similar household routines of dietary intake
and activity within these large families. We therefore ex-
pect that by using these families to study epigenetic
changes over age, we reduce systematic differences in
external environmental factors such as geographical lo-
cation and dietary and lifestyle patterns.
The probands of our TFSE cohort were recruited

based on the presence of at least two obese and one
never-obese sibling(s) in each family, thus raising the
likelihood of having obesity-prone genetic patterns in
these families. We hypothesize that since our subjects
have an obesity-prone genetic background and live in an
obesity-inducing environment, the genomic regions that
are strongly associated with age are also enriched in
gene groups and pathways involved in metabolism-
related cascades.
To find these loci, we first searched in our list of age-

associated differentially methylated CpG sites and clus-
ters for any gene(s) previously characterized for a role in
the etiology of obesity, T2D, or MetS and inflammation.
We found that the majority of previously established
obesity, T2D, or MetS and inflammation genes overlap
with one or more of our age-associated differentially
methylated clusters (Figure 1, Additional files 4, 5, and
6). When we filter these genes based on our clustering
criteria, three obesity genes, two T2D genes, and one
MetS gene each contains at least one aDMC (Figure 1,
Additional files 4, 5, and 6). Some of these genes have
been well-characterized previously. For example, the
product of gene IRS2 works as a signaling mediator be-
tween cytoplasmic receptor kinases and downstream ef-
fectors including PI3 Kinase, Akt, and mTOR [78] and is
an important adaptor in cascades regulated by insulin,
insulin-like growth factor 1, interleukin 4 (IL-4), and
other cytokines [79]. Diseases associated with disrupted
functions of IRS2 include fatty liver disease and glucose
intolerance, which is a precursor to MetS [80,81].
Single-minded 1 (SIM1) is a helix-loop-helix PAS do-

main transcription factor. Sim, its homologue in Dros-
ophila, is a key factor in determining the differentiation
of central nervous system (CNS) midline cells [82]. Los-
ing one functional copy of Sim1 in mice leads to early-
onset obesity, hyperinsulinemia, and hyperleptinemia
[83]. In humans, disruption of SIM1 gene locus has been
found to have caused profound early-onset obesity [84]. In
our analysis, SIM1 has an aDMC that spans 22,914 bp
covering the 5′-untranslated region to exon 8 contain-
ing 44 CpG sites that were significantly associated with
age including five sites situated in the promoter region
(TSS1500 to first exon).
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A number of genes known to work in the regulation of
food intake and energy balance are found to have one or
more CpG markers modifiable by age. These include
leptin and related genes LEP, LEPR, CNR1, DRD2, and
SLC6A4 as well as the hypothalamic factor POMC and
its processor PCSK1 and neurotropic factor BDNF and its
receptor NTRK2 [53]. Clinically, disruption of POMC,
PCSK1, BDNF, and NTRK2 is associated with severe
early-onset obesity [85,86]. PPARG is one of the most rep-
licated diabetes and obesity genes, with sequence variants
strongly associated with obesity [87] and T2D [88]. We
have found two age-associated differentially methylated
sites inside the body of the PPARG gene.
Multiple obesity and T2D candidate genes identified

by the GWAS approach were found to have age-
associated DNA methylation associations in our analysis.
These genes include extensively replicated genes such as
BDNF, which is not only shown to be associated with
adult obesity but also with childhood obesity [89]. Fur-
thermore, our results include four other genes for child-
hood obesity (identified by GWAS) that were differentially
methylated according to age: SDCCAG8 and TNKS/
MSRA [90] were first identified in Northern European
populations for early-onset extreme obesity whereas
OLFM4 and HOXB5 are two recently discovered candi-
date genes for common childhood obesity that were found
by combining 14 existing GWAS datasets [91]. Interest-
ingly, we found that the gene SDCCAG8 contains epigen-
etic markers that alter their methylation more rapidly in
children than in adults (data not shown), suggesting a pos-
sible explanation for these genes having more profound
effect on clinical phenotypes in children than in later life.
Pathway enrichment analysis reveals that in our family

cohort, age-associated DNA methylation sites are densely
packed around genes working in pathways such as the
hedgehog signaling pathway, the MODY pathway, and
T1D pathway (Additional files 8 and 10). These findings
suggest intriguing connections between epigenomic pro-
files and the high risk and high prevalence of obesity and
MetS traits in our study subjects. Hedgehog signaling is
not only a key regulator of development in both inverte-
brate and vertebrate systems but it also plays a critical and
conserved role in fat formation [92], fat storage, and
brown fat and muscle cell metabolism reprograming in
animals [93]. Blocking Hh signaling by an antibody in
adult mice fed on a high fat diet protects them from gain-
ing weight and developing liver steatosis [94]. The mo-
lecular cascade of Hh signaling involves the initial binding
of one of the Hh proteins Sonic Hh (SHH), Indian Hh
(IHH), and Desert Hh (DHH), with receptor PACH1 and
PACH2 that release its inhibition on the membrane recep-
tor Smoothened (SMO). Released SMO then activates a
complex signaling cascade, which leads to nuclear trans-
location of transcription factors of the Gli (GLI) family
and the resultant activation or repression of downstream
genes [95-97]. In our results, age-associated differential
methylation was found to be associated with Hh genes
IHH and DHH, Hh receptor genes PACH1 and PACH2,
and SMO and the downstream effector genes GLI2 and
GLI3, and several other regulators of the Hh pathways in-
cluding SUFU and PKA (Figure 5). Densely packed age-
associated CpG sites, defined as aDMCs, are present in
the regulatory region and/or the body of genes of tran-
scription factors WNT, BMPs, and Zic2 (Figure 5). Our
findings suggest a novel mechanism in which the process
of aging influences genomic regulatory marks of a group
of genes that work in pathways critical for fat cell fate de-
termination, fat storage, cellular metabolism reprogram-
ming, and diet-dependent regulation of mammalian body
weight and lipid metabolism.
Diabetes mellitus, like obesity, is a chronic condition

that increases in its prevalence as people age [1,3], but
the mechanism underlying this age-dependent risk is not
clear. The ‘acquired’ form of diabetes, T2D, is a complex
syndrome whose onset is determined by multiple genes
and their interactions with the environment [98]. T2D
affects an estimated 350 million people in the world
today and is caused by complete or partial malfunction
in a body’s ability to respond to blood glucose through
production of insulin [99,100]. MODY is a type of dia-
betes that is defined collectively by clinical symptoms
caused by mutations in any one of the six genes that
work in the MODY pathway. Five of these six genes
(HNF4A, HNF1A, PDX1, HNF1B, NeuroD1) encode
transcription factors that regulate β-cell homeostasis
and/or insulin production and secretion, and gene GK is
a glucokinase that is involved in beta cell sensing of
blood glucose levels [101]. In our epigenetic study of
obesity-prone families, the MODY gene pathway was the
second most significant pathway with dense enrichment
of DNA methylation CpG sites/clusters strongly associ-
ated with age. This finding suggests a novel mechanism
in which epigenetic changes affect outcomes of acquired
obesity-induced beta-cell and insulin unresponsiveness
that leads to T2D. As the patterns in DNA methylation
of these loci change over age, it may explain the poly-
genic, complex, and subtle features that are observed in
the development of obesity and T2D and their subse-
quent course.
In this study, we demonstrated the first evidence of dif-

ferential methylation aging in MetS genes in MetS sub-
jects as compared with non-MetS subjects. Our results
showed an interesting pattern in which the epigenetic
changes over age are slower in MetS subjects, and its dir-
ectionality is the opposite to that in non-MetS subjects in
all four of these identified loci (Table 3; Figure 6). Our re-
sults suggest that the age effects on epigenetic changes are
both genomic locus- and MetS status-dependent. The
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four nominal MetS-differentiated aging markers are situ-
ated at genes that have been previously shown to be me-
tabolism and MetS traits-relevant in genetic or cell
biology studies. But the epigenetic implications of these
genes in MetS have not been reported. Transcription fac-
tor activating enhancer binding protein 2 beta (TFAP2B)
(cg06117072) encodes a transcription factor from the AP-
2 family. This gene has been implicated in dietary weight
maintenance [102,103]. Growth factor receptor-bound
protein 14 (GRB14) (cg04926134) encodes an adaptor
protein that binds with insulin receptors and insulin-
like growth factor receptors that may have an inhibitory
effect on insulin signaling and may play important roles in
metabolic homeostasis and growth regulation [104-107].
Tribbles pseudokinase-1 (TRIB1) (cg14683125), a mito-
gen-activated protein kinase (MAPK) activation modula-
tor, was found to control migration and proliferation of
smooth muscle cells [108] and has been implicated in
lipid metabolism [109-111]. Microtubule-actin cross-
linking factor 1 (MACF1) (cg22697325) is a member of
protein family that form bridges between different cyto-
skeletal elements [112].
With the size of our sample, we do not have enough

statistical power to detect all existing signals for MetS-
specific aging methylation. We expect that with a larger
sample size, one can discover many more disease state-
dependent epigenetic markers not only for MetS but also
for other aging relevant conditions such as obesity, T2D,
dementia, and cancer. This may eventually lead to new
clinical approaches in screening and diagnosing people
with differential ‘epigenetic risks’ for developing diseases
as they age.
We examined the epigenetic changes associated with

aging in DNA obtained from peripheral blood, a tissue
type that is routinely used as a surrogate for mapping
age-related DNA methylation changes [35] because even
though DNA methylation (unlike the DNA sequence) is
tissue specific, there is a significant portion of the epige-
nome with patterns of DNA methylation common to
multiple tissues [113], and this may be especially true of
age-related methylation patterns [40,75]. In addition, a
study using peripheral blood has the potential to identify
changes in DNA methylation that can be practically used
as a diagnostic test in clinic, where blood is much more
likely to be available for testing as compared to other tis-
sue samples. However, based on our findings, it will be
interesting in a future study to profile some of our age-
associated candidate sites in target tissues such as beta
cells and to relate these patterns with beta cell function
and insulin gene expression.
We conducted our study in a family cohort of Northern

European descent. Generalization of our findings requires
validation in distinct cohorts with similar pedigree struc-
tures. It will also be a valuable expansion of our cross-
sectional study if we can recall some of our subjects to ob-
tain longitudinal data on the epigenetic changes as well as
on the functional status of metabolic pathways over time
in the same individuals. Due to the scope and the focus of
the current study, we have not looked at the associations
of particular methylation loci with phenotypes in our sub-
jects as this will be approached in the future. The connec-
tion between epigenetic status and gene expression in
blood and certain target tissue types also warrants further
investigation.
Although our mapping utilized one of the array-based

epigenetic platforms that gave the highest available gen-
omic site coverage, it has not nearly exhausted the epi-
genome. A next-generation sequencing-based approach
such on methyl-binding domain-isolated genomic se-
quencing (MiGS), MeDIP-seq, or bisulphite-sequencing
[114] will be a way to improve the coverage of all pos-
sible epigenetic sites with age.

Conclusions
We have conducted one of the first genome-wide sur-
veys of age-associated DNA methylation in a family co-
hort with large extended pedigrees. In families at high
risks for developing obesity-related metabolic disorders,
we found age-associated genomic loci densely situate
near genes that function in the hedgehog signaling path-
way and in MODY. These findings suggest a novel
mechanism underlying the gradual deleterious effects of
multiple genes and their interactions with nutrition over
time, which may contribute to obesity and its complica-
tions. The results from this study shed light on the rela-
tionship between aging and increased prevalence of
obesity, T2D, and related abnormalities and thus may
lead to novel approaches for early detection and preven-
tion of these health-endangering conditions.

Methods
Samples
The study cohort consists of 192 individuals ranging in
age from 6 to 85 years old representing seven families.
Of these, 53 subjects were 18 years and younger at as-
certainment and 106 are females. Details of recruitment
and phenotyping procedures have been described previ-
ously [47,115]. Briefly, each nuclear family was recruited
through an obese proband (BMI ≥ 30) who was a mem-
ber of TOPS Club with the minimal requirement of the
availability of two obese siblings, a least one, preferably
both, of the parents and one never-obese (BMI ≤ 27) sib
and/or parent. A subsequent extension included the as-
certainment of all biologically related members over the
age of 18 including aunts, uncles, grandparents, and
adult children and their accompanying parent(s). Re-
cently, this cohort was further enhanced by the ascer-
tainment of their children and adolescent descendants
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(aged 6–18 years) with their accompanying parent(s).
Clinical phenotypes for all subjects included weight,
height, BMI, waist circumference (WC), hip circumfer-
ence (HC), waist to hip ratio (WHR), fasting glucose
(FG), fasting insulin (FI), insulin to glucose ratio (IGR),
homeostasis model assessment (HOMA), plasma triglyc-
erides (TG), total cholesterol (TC), low density lipopro-
tein cholesterol (LDL-c), high density lipoprotein
cholesterol (HDL-c), systolic and diastolic blood pres-
sure (sBP and dBP), and pulse. Total abdominal fat, vis-
ceral fat (VF), and subcutaneous fat (SubQF) were
measured by computed tomography scans of the fourth
lumbar spine [116] in adults and by magnetic resonance
imaging at the same level in children and adolescents;
circulating levels of adiponectin and leptin were mea-
sured by a double antibody equilibrium radioimmuno-
assay (RIA) (Millipore Corporation, Billerica, MA) and
TNF-alpha, interleukin-1beta (IL-1β), and interleukin-6
(IL-6) levels that were measured as previously described
[117]. Adult Treatment Panel III (ATPIII) criteria was
used to identify adults with MetS. Informed consent was
obtained from the participating subjects. All study pro-
cedures for adults, adolescents, and children were ap-
proved by the Institutional Review Boards of the
Medical College of Wisconsin (HRRC#325-94 and
HRRC#013-00) and Children’s Hospital of Wisconsin
(CHW 04/87), respectively.

Illumina Methylation 450 k data production
Genomic DNA was isolated from peripheral blood after
an overnight fast on the same day when each subject
was assayed for obesity and MetS phenotypes; thus, the
CpG methylation states profiled from these samples re-
flect the epigenetic status associated with that individ-
ual’s current state of body composition and metabolism.
One microgram of human genomic DNA was sodium
bisulfite-treated for cytosine (C) to thymine (T) conver-
sion using the EZ DNA Methylation kit (Zymo Re-
search) according to the manufacturer’s guidelines. The
converted DNA was purified and prepped for analysis
on the Illumina HumanMethylation450 microarray fol-
lowing the manufacturer’s guidelines. The Illumina
HumanMethylation450k microarray measures the methy-
lation levels of more than 485,000 methylation sites. It in-
cludes CpG sites surrounding the transcription start sites
(−200 to −1,500 bp, 5′UTRs and exon 1) for 99% of
RefSeq genes, CpG sites within non-coding RNAs, inter-
genic regions identified in genome-wide association stud-
ies as well as CpG islands/shores/shelves and open sea of
the genome. CpG annotations (chromosomal location, ref-
erence gene, etc.) were identified using the Illumina mani-
fest 1v2.GenomeStudio software and Methylation Module
(Illumina) was used to generate final reports containing
signal intensities and detection P values excluding X and
Y chromosomes. No background subtraction or control
normalization was applied with GenomeStudio.
Genomic CpG methylation data QC and processing
For initial quality control preparation of the Infinium Hu-
man Methylation 450 K data, we used the Lumi: QN +
BMIQ pipeline described previously [118]. Raw signal in-
tensities and detection P values of 22 autosomal chromo-
somes were extracted from GenomeStudio and loaded
into Lumi. Next, quality control of the data resulted in the
removal of CpG sites with detection P value ≥ 0.01 in
more than 5% of the samples (471,473 sites left). All sam-
ples had at least 99% CpG sites with detection P value ≥
0.01; thus no samples were removed. Recently, multiple
groups have reported that this array contains cross-
reacting probes that cannot be distinguished between
multiple chromosomal positions and that therefore need
to be excluded from downstream analysis [119]. Further-
more, studies including ours (Y.Z., unpublished data) have
shown that a significant proportion of genomic CpG loci
are common polymorphic locations where both C or G or
the dinucleotides are changed to a different code, thus
abolishing the ability of being methylated in that genome
[119]. Considering the inaccuracy these single nucleotide
polymorphisms (SNPs) may cause in the quantification of
methylation status of these CpG sites, we therefore ex-
cluded all known polymorphic CpG sites.
Color bias adjustment (Col.Adj) and quantilenormilza-

tion (QN) were performed on signal intensities as imple-
mented in Lumi. Briefly, the QN works on total signal
intensity, assuming that the distributions of the pooled
methylated and unmethylated probes are similar for differ-
ent samples. Intensities were then used to generate Beta
values. Within Lumi, ‘β’ values are defined as follows:

β ¼ Im
IU þ Im þ α

where IM and IU represent the fluorescence intensity
originating from methylated or unmethylated CpG locus
and α is a constant. Beta mixture quantile dilation
(BMIQ) was then performed on β values of QNed data
to account for probe type bias. As the Illumina platforms
have been shown to discriminate beta values that differ
as little as 17% [120,121], we excluded from analysis
probes that ranged <0.17 in β values (n = 243,711) to en-
sure probes analyzed might exert a significant biological
change. After these steps, a total of 137,168 CpG sites
for all 192 samples were imported into data analysis.
BMIQ’ed β values for probes with ≥0.17 variation were
then converted to M values for data analysis. Lumi de-
fines M values as:
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M ¼ log2
Im þ α

Iu þ α

� �

All analyses were run using M values, which are more
statistically valid for analysis of differential methylation
levels owing to its more homoscedastic nature [122].

Peripheral blood cell subtype estimation
To estimate cell-type proportions, we used the R minfi
package and estimateCellCounts function [123,124].
This method estimated the proportions of six cell types
(monocytes, granulocytes, CD8+ T-cells, CD4+ T-cells,
NK cells, and B cells) for each individual based on their
genome-wide methylation signatures, using an external
reference inferred from sample profiles of cell-specific
methylation [125]. For each regression test, five of the
six proportions were used as covariates.

Validation by pyrosequencing
DNA methylation at selected sites was validated in a sub-
set of the original cohort by the bisulfite pyrosequencing.
This subset consisted of 47 male subjects ages 6 to 21.
One microgram of human genomic DNA was sodium bi-
sulfite converted using the EZ DNA Methylation kit
(Zymo Research) according to the manufacturer’s guide-
lines. Pyrosequencing was performed using the PyroMark
MD system (Qiagen, Valencia, CA) according to the man-
ufacturer’s protocol. Briefly, the PCR was performed with
10 μM primers, one of which was biotinylated for later
purification by Streptavidin Sepharose (VWR). The oligo-
nucleotide primers were purchased from IDT and used for
the amplified region of DDO: the forward primer,
TGTTTAGGAGAAAGGAGTAAGTGATT; the reverse
biotinylated primer, ACCCATTATTCACCATACCTA
CAA; and the pyrosequencing primer, TTTTATGGAG
TTGTTTTTGTTAAG. Sepharose beads containing the
PCR product were washed and purified using 0.2 M
NaOH and the Pyrosequencing Vacuum Prep Tool (QIA-
GEN). Five microliters of the PCR products was se-
quenced, and methylation was quantified using the
provided software (QIAGEN).

Statistical analysis
Analysis of age-associated CpG loci
The quantitative genetic analyses program SOLAR [52]
was used to analyze DNA methylation differences associ-
ated with age in the whole cohort. SOLAR is a software
package designed to perform tests of genetic and epigen-
etic association in family data. Parameter estimation by
maximum likelihood is performed for both random and
fixed effects; in the present context, the random effect of
expected allele sharing given pedigree relationships is es-
timated to account properly for the non-independence
of related individuals. For each individual i, the value of
a trait Y is modeled as:

Y i ¼ μþ Xiβþ gi þ εi

where μ is the trait mean, Xi is a vector of fixed effects
measured on individual i, β is a corresponding vector of
regression coefficients, and gi and εi are, respectively, a
random additive genetic effect and an error term. The
covariance of the trait in any two individuals i, j is
decomposed as:

cov Y i; Y j
� � ¼ 2ϕi;jσ

2
g for i≠j

cov Y i;Y j
� � ¼ σ2g þ σ2ε for i ¼ j

where 2ϕi,j is a kinship coefficient (representing the
expected proportion of alleles shared identical by des-
cent for two individuals of a given relationship class)
and σ2g and σ2ε are, respectively, additive genetic and re-
sidual components of variance. Inclusion of the random
effect terms appropriately conditions the estimates of
the fixed effect parameters on the relatedness of study
subjects. Analyses were performed for each CpG site
separately, using M values, where M was modeled as a
linear function of age with models that included the
random effect of kinship. Sex and cell type composition
were included as covariates in all models to account for
systematic differences in methylation between men and
women. Bonferroni correction for multiple testing,
Pα=0.05 = 3.65 × 10−7.

Analysis of MetS status on aging rate in candidate loci
A candidate CpG site-based regression analysis against
MetS status in each subject was performed to determine
if there is differential aging of DNA methylation in sub-
jects with metabolic syndrome compared to those with-
out. In this model, two tests were done: in one, the
slopes and intercepts of the regression lines are allowed
to differ by MetS status, and in another, a null is forced
to be the same. The test of statistically equal intercepts
asks whether methylation differs by MetS status for the
measured span of ages. The test of equal slopes asks
whether MetS impacts change in methylation with age.

Identification of genomic clusters of age-associated CpGs
The R package bump hunter [67] was used to identify
genomic clusters of age-associated CpG sites. The clus-
terMaker function within the bump hunter package was
applied to the genome-wide age-associated CpGs, and
clusters are formed if two positions are within 10 kb of
each other. Each chromosome is clustered independently
from each other.
To account for array bias, we took the minimum and

maximum position of each cluster and looked at the
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total number of probes from that region that were ori-
ginally implemented into the analysis. To further define
our aDMCs, at least ten CpG sites had to be in the ori-
ginal data set which was implemented into the analysis.
At least 50% of those sites had to be genome-wide sig-
nificantly associated with age. Through this method, we
identified a total of 246 aDMCs throughout the auto-
somal genome. We further looked at the direction of ef-
fect age has on each CpG within the identified clusters.
If 100% of the CpGs in the cluster had the same direc-
tion of effect, it was labeled as ‘positive’ or ‘negative’. If
there was variable direction of effects within the cluster,
it was labeled as ‘varying’.
Gene ontologies and pathway analysis of aDMCs
Gene Ontology analysis was done with the FatiGO tool
[69], which uses Fisher’s exact test to detect significant
overrepresentation of GO terms and disease pathways.
FatiGO pools multiple databases, such as the Gene
Ontology (GO) terms [72] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [70,71]. In our study, the
set of one direction cluster genes were analyzed for over-
representation against the rest of the genome. Multiple
test correction to account for the multiple hypothesis
tested (one for each term) is applied to reduce false posi-
tives. GO terms and KEGG pathways with adjusted P
value < 0.05 are considered significant.
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