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Abstract

analysis was performed.

progression.

Background: The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19
locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome
(SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were
analyzed. Cell proliferation, IGF-Il secretion, and IGF2 and H19 expression were measured, and a microarray expression

Results: Single-cell expansion established severely ICRT hypomethylated clones (SRShypo) and normomethylated
clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the
quantitative real-time PCR (gRT-PCR) assay, whereas H19 expression was detectable, without differences between
fibroblast clones. Cell count-related IGF-Il release was comparable in SRShypo and Cnormo supernatants. Cell proliferation
was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes
in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis.

Conclusions: The analysis of severely ICRT hypomethylated clonal fibroblasts did not reveal functional differences
compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones
from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle
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Background

Silver-Russell syndrome (SRS, OMIM 180860) is a
sporadic, clinically, and genetically heterogeneous dis-
order characterized by severe intrauterine and postnatal
growth failure, a typical triangular face, asymmetric
growth of the body, relative macrocephaly, and under-
weight [1]. SRS is basically associated with two different
epigenetic defects. Approximately every tenth SRS patient
inherits both copies of chromosome 7 from the mother
(maternal uniparental disomy 7, matUPD7), though the
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biological mechanism by which matUPD7 causes the
phenotype remains unclear. The other approximately half
of SRS patients carry a hypomethylation of the paternal
imprinting center region 1 (ICRI) on chromosome 11p15;
these patients exert the most severe phenotype. The hypo-
methylation is of different severity in individual patients,
individual tissues, and even individual cells of the same pa-
tient [2], indicating a mosaic distribution. Additionally, an
association with the hypomethylation of other imprinted
loci, called multilocus imprinting defect, has been ob-
served in approximately 10% of SRS patients with ICR1
hypomethylation on 11p15 [3-6].
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The expression of the genes IGF2 and HI19 is allele-
specific due to imprinting. /CRI on 11p15 controls the
expression of the imprinted genes IGF2 and HI9.
Physiologically, H19 is only expressed from the maternal
unmethylated allele, whereas IGF2 is only expressed
from the fully methylated paternal allele. It is thought
that hypomethylation of the paternal ICRI allele might
result in the reduced production of the important fetal
growth factor IGF-II [7]. In contrast, hypermethylation
on the maternal allele in Beckwith-Wiedemann syn-
drome might result in increased IGF-II production and a
predisposition toward tumor growth [8]. H19 encodes a
capped, spliced, and polyadenylated noncoding 2.3-kb
RNA with unclear function [9,10]. HI9 is highly
expressed from the early stages of embryogenesis to fetal
life in many organs including the fetal adrenal, liver, and
placenta tissues but is nearly completely downregulated
postnatally [11].

IGF-II is the essential growth factor for intrauterine
growth. IGF2 knockout mice showed impaired growth
kinetics and nearly 36% loss of weight in comparison to
wild-type animals [12]. Children with SRS and ICR hy-
pomethylation had normal or even high serum IGF-II
levels [13], which may be explained by the biallelic hep-
atic expression of IGF-II after birth.

Two miRNAs are expressed from the IGF2/H19 locus:
miR-675 embedded within the first exon of HI19 [14-17]
and miR-483 derived from the second intron of IGF2
[18]. miR-483 was found to be co-expressed with IGF2
in tumors [19] and was identified as a possible regulator
of IGFI expression in human natural killer cells [20]. In
keratinocytes, the accumulation of miR-483-3p blocks
cell cycle progression via the direct repression of
CDC25A and the subsequent disassembly of CCND-
CDK4/6 [21]. It has been hypothesized that the two
miRNAs expressed from the IGF2/HI19 locus may con-
tribute to the etiology of SRS.

The first study on ICRI hypomethylation in SRS re-
ported a decreased IGF2 expression in skin fibroblasts
from SRS children with severe ICRI hypomethylation
[7]. However, we recently did not observe a significant
correlation between ICRI hypomethylation and IGF2/
HI9 expression in skin fibroblasts from children with
SRS [22], though the ICRI hypomethylation of these
skin fibroblasts was significantly milder than in the
blood leukocytes of the same patients and milder than in
the patients studied by Giquel et al. [7]. Furthermore,
the body asymmetry of these children with SRS was not
related to the degree of hypomethylation in the skin fi-
broblasts collected from the two differently growing
arms.

Here, we expand our in vitro analysis of skin fibro-
blasts from patients with SRS to monoclonal cultures
with severe ICRI hypomethylation. In addition to
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analyzing cell proliferation rates, we studied the expres-
sion of IGF2, HI19, and miRNAs originating from the
IGF2/H19 locus in normo- and severely hypomethylated
clones. In addition, we performed gene expression profil-
ing by a microarray analysis and compared the results
with healthy controls.

Results

Clone selection by methylation profiling

Single cells from skin-derived primary fibroblast cultures
were picked and expanded in culture for establishing
clonal fibroblast cultures from SRS patients and con-
trols. The quantification of the degree of methylation of
the CpG sites M1-M4 in ICRI by methylation-specific
multiplex ligation-dependent probe amplification (MS-
MLPA) enabled the selection of severely hypomethylated
(methylation <10%, SRShypo) and normomethylated
(methylation 30%-55%, SRSnormo) clones from the pa-
tients as well as of normomethylated clones from the
controls (methylation 39%—45%, Cnormo) (Table 1). The
methylation status of ICRI and ICR2 at the IGF2/HI9
locus was found to be stable between passages 4 and 17
(data not shown). All experiments were performed at
passages 12—18. The MS-MLPA results were confirmed
by bisulfite sequencing (data not shown).

Proliferation analysis

Cell proliferation during the 14 days of culture, as mea-
sured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay, was slightly lower in
the SRShypo group (S1sh_12, S2lo_7, S2lo_1, S5sh_11)
than in the Cnormo group (K2li_17, K3li_3, K3re_12)
after 7 days and significantly lower after 14 days of cul-
ture (Figure 1) (p = 0.035). Cell proliferation slowed after
1 week of culture in the Cnormo clones and stagnated
in the SRShypo clones.

Expression of IGF2 and H19

The expression of IGF2 in the SRShypo, SRSnormo, and
Cnormo groups was below the detection limit of the
quantitative real-time PCR (qRT-PCR) assay, whereas
IGF2 expression of the control HepG2 cell line was de-
tected by the same assay (Figure 2a). In contrast, HI19
was expressed at higher, rather variable levels in all
fibroblast clones, with no significant differences among
the SRShypo, SRSnormo, and Cnormo groups (Fig-
ure 2a). The mean expression in the fibroblast clones
was higher than that in the HepG2 cell line.

Expression of miR-483 and miR-675 and their targets

The two miRNAs of the locus, miR-483 and miR-675,
were expressed at similar levels in all SRS fibroblast
clones (Figure 2b). The expression of miR-675 was sig-
nificantly higher in the Cnormo group than in the
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Table 1 Analysis of the methylation at the imprinting center region 1 (ICR7) and ICR2 on 11p15 in clonal fibroblasts

ICR1 methylation (mean; M1-M4)

ICR1 methylation (single methylation sites)

ICR2 methylation

M1 M2 M3 M4
SRShypo Sish_6 0+0 0+0 0+0 1£1 0+0 50+3
Sish_8 0+0 0£0 0£0 1+0 0x0 52+£6
S5lo_10 0+0 1+0 0+0 1+1 0+0 45+3
S2lo_7 e 0£0 0£0 1+1 2+2 42+7
S2lo_1 12 0£0 0£0 5£2 0x0 48 + 2
Sish_12 142 0£0 0+0 5+2 0+0 55+5
S5sh_11 2+2 0£0 0£0 3£1 5+5 51+4
S3lo_9 8+ 10 1£1 0£0 3+1 28 £1 33£3
SRSnormo S3sh_19 39+ 10 26+ 8 2+1 53+3 46+ 0 49 £+ 1
S5lo_9 33+ 11 13£2 32+£8 46 + 7 41 +2 51+3
S2sh_1 30+ 16 29+ 3 29 +1 45+ 5 47 +0 45+ 7
S1sh_9 43 £ 17 35+6 19+2 60 + 12 60+ 0 52+5
Stlo_7 55+ 16 40+ 3 3742 55+7 86+ 8 46 + 2
Cnormo K3li_3 45 £ 11 27 £4 41 4 50+4 64 + 1 53£3
K2li_17 44 +9 38+2 41+6 53+2 54 +1 60 + 3
K3re_12 39+6 28 +4 46 + 1 39+1 44 + 2 61 +5
K11i_5 44 + 4 28 £2 45+ 6 49 +1 43+ 9 59+6

Numbers represent percentages of methylation (100% = fully methylated) + standard deviation measured by MS-MLPA (n > 2). The following sequences were amp-

lified: M1: 1975955 (start)-1976006 (end), M2: 1976099-1976159, M3: 1976269-1976321, M4: 1976583-1976631.

SRShypo or SRSnormo group (p <0.005), and miR-483
showed a similar trend (p=0.05; SRSnormo versus
Cnormo). In the HepG2 control cell line, the amount of
miR-675 was comparable to that in the SRS fibroblast
clones, though the concentration of miR-483 was higher
than in the SRS fibroblast clones.

The expression of the miR-675 target RB1 (retinoblast-
oma 1) was significantly increased in the SRShypo clones

O SRShypo P=0.035
12 H Cnormo
1
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2
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Figure 1 Proliferation rates of SRShypo clones and Chormo
clones. Fibroblast clones were cultured for 14 days (d) in standard
medium. Proliferation of four different SRShypo clones (S1sh_12,
S2lo_7, S2lo_1, S5sh_11) and three different Cnormo clones (K2li_17,
K3li_3, K3re12) was measured using the MTT assay after 1, 7,

and 14 days.

compared to the Cnormo clones (p =0.007); a similar
trend was observed for the expression of IGFIR (insulin-
like growth factor 1 receptor) as well as for its ligand
and miR-483 target, IGFI (p =0.043) (Additional file 1:
Figure S1).

IGF-II release into the supernatant

The cell number-normalized amount of the IGF-II pro-
tein measured in the supernatants after the incubation
of 25,000 cells for 1, 7, and 14 days was not different in
the SRShypo (S1sh_12, S5sh_11) and Cnormo clones
(K3li_3, K3re_12) (Figure 3).

Gene expression analysis

Microarray gene expression analyses were performed to
profile differentially expressed genes. In total, 587 genes
were found to be differently expressed in SRShypo com-
pared to Cnormo, with 522 genes in SRSnormo compared
to Cnormo (Figure 4a). The number of differentially
expressed genes was significantly lower when compar-
ing SRShypo and SRSnormo (n = 117). In the array, the
expression of IGF2 and HI19 was not significantly
deregulated between groups of SRShypo, SRSnormo,
and Cnormo.

A group comparison (SRShypo, SRSnormo, and Cnormo)
of the differentially regulated genes is shown in a
clustering heatmap (Figure 4b). For confirming the
microarray results, PRUNE2 (prune homolog 2) and
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Figure 2 Expressions of IGF2 and H19 and of miR-483 and miR-675. (a) Expression of IGF2 and H19 in fibroblast clones. gRT-PCR results were
normalized to gene and miRNA expression in HepG2 cells. (b) Expression of miR-483 and miR-675 in fibroblast clones. gRT-PCR results were nor-
malized to gene and miRNA expression in HepG2 cells.

IL6 (interleukin 6) expression was validated by qRT-
PCR (Figure 4c,d). PRUNE2 expression was con-
firmed to be decreased in SRShypo (p=0.017) but
not in SRSnormo, and /L6 expression was confirmed
to be increased in SRShypo (p =0.009) but was not
significant in SRSnormo.
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Figure 3 IGF-Il secretion by SRShypo und Cnormo clones.
SRShypo clones and Cnormo clones were cultured for 14 days (d)
in standard medium. Cell count-based IGF-Il secretion into the
supernatant was measured on days 1, 7, and 14 using IGF-Il RIA.

Pathway analysis

Ingenuity Pathway Analysis (IPA) was performed on the
expression changes between SRShypo and Cnormo and
between SRSnormo and Cnormo. The canonical path-
ways that were negatively affected in the SRShypo and in
the SRSnormo groups are shown in Additional file 2:
Table S1. With respect to these pathways, the most
highly activated upstream regulators identified by IPA
were TPS53 (tumor protein p53), CDKNIA (cyclin-
dependent kinase inhibitor 1A, p21), and CDKN2A (cyc-
lin-dependent kinase inhibitor 1A, p16). As these path-
ways are involved in cell cycle regulation, the changes
found were predicted to decrease cell proliferation and in-
crease the delay of mitosis (Additional file 2: Table S1).

Genes with the most severe change in expression

The genes at top of the list of the most differently
expressed genes (FC>|3|) in SRShypo versus Cnormo
and in SRSnormo versus Cnormo were identified. The
expression of SIPAIL2 (signal-induced proliferation-
associated 1-like 2) and NEDD4L (neural precursor cell
expressed, developmentally down-regulated 4-like) was
significantly decreased in both types of SRS clones (p <
0.026). In contrast, the expression of GADD45B (growth
arrest and DNA-damage-inducible, beta), PIDI (phos-
photyrosine interaction domain containing 1), and
CSRP2 (cysteine and glycine-rich protein 2) was signifi-
cantly increased in both SRS clones (p < 0.022; Table 2).
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Figure 4 Differential analysis results. (a) Venn diagram of differentially regulated genes in the SRShypo, SRSnormo, and Cnormo clones.

(b) Differentially requlated genes in the SRShypo, SRSnormo, and Cnormo groups. Clustering heatmap based on multigroup comparison using
the statistical parameters 0=0.174, p = 0.05, and g =0.529103 in Qlucore Omics Explorer 3.0. Ninety-two genes were significantly differentially
expressed between the three groups. The analysis of the SRSnormo clone S1lo_7 is not shown. (c) Differentially expressed PRUNE2 in the
SRShypo, SRSnormo, and Cnormo groups, as validated by gRT-PCR. gRT-PCR results were normalized to HepG2 cell gene expression. PRUNE2 is
expressed at a significantly lower level in SRShypo compared to Cnormo (p =0.017). (d) Differentially expressed /L6 in the SRShypo, SRSnormo,
and Cnormo groups, as validated by gRT-PCR. gRT-PCR results were normalized to HepG2 cell gene expression. IL6 is expressed at a significantly
higher level in SRShypo compared to Cnormo (p = 0.009).

In addition, SRShypo gene expression was compared
to that of SRSnormo (FC > |3]), and PROCR (protein C
receptor, endothelial) was the only gene found to be
downregulated in SRShypo compared to SRSnormo (p =
0.009). The expression of CCDC85A (coiled-coil domain
containing 85A), FOSB (FB] murine osteosarcoma viral
oncogene homolog B), and NR4A2 (nuclear receptor
subfamily 4, group A, member 2) was all upregulated in
the SRShypo group (p < 0.04; Table 2).

Discussion

In most of the known human imprinting disorders,
the biological link between the epigenetic mutation
and its biological and clinical manifestation remains
missing. Indeed, the significant progress in the under-
standing of genetics and of clinical characteristics has
not yet contributed to bridging the gap between the
areas of genotyping and of phenotyping in imprinting
disorders.



Heckmann et al. Clinical Epigenetics (2015) 7:5

Table 2 Differentially expressed genes in SRShypo, SRSnormo, and Chormo

Page 6 of 10

SRShypo/ SRSnormo/ SRShypo/
Gene RefSeq Cnormo Cnormo SRSnormo
symbol Gene title transcript ID Column ID pvalue FC pvalue FC p value FC
SIPATL2 Signal-induced proliferation-associated 1-like 2 NM_020808 11757924 _s_at 0017 -82 0019 -10.7 0.738 13
NEDD4L Neural precursor cell expressed, developmentally NM_001144964 11722423_a_at 0.015 -50 0026 -53 0936 1.0
down-regulated 4-like NM_001144965
NM_001144966
NM_001144967
NM_001144968
PROCR Protein C receptor, endothelial NM_006404 11737798_a_at 0011 —-30 0925 1.0 0.009 =31
NR4A2 Nuclear receptor subfamily 4, NM_006186 11725632_at 0.034 33 0.943 1.0 0.040 32
group A, member 2
FOSB FBJ murine osteosarcoma viral oncogene NM_001114171 11717345_a_at  0.029 39 0.983 -10 0.027 40
homolog B NM_006732
GADD45B  Growth arrest and DNA-damage-inducible, beta  NM_015675 11757865_a_at  0.001 42 0.007 34 0.535 12
CSRP2 Cysteine and glycine-rich protein 2 NM_001321 11729239_x_at  0.001 43 0001 46 0.869 =11
PID1 Phosphotyrosine interaction domain NM_001100818 11721983_a_at 0.005 46 0.022 39 0.706 12
containing 1 NM_017933
CCDC85A  Coiled-coil domain containing 85A NM_001080433  11744318_at 0.005 54 0977 1.0 0.005 53

FC fold change.

Hypomethylation of the paternal ICRI of the IGF2/
H1I9 locus on chromosome 11p15 is the most frequent
finding observed in SRS. It is thought that this hypome-
thylation enables the binding of the insulator protein
CTCEF to the paternal allele. The physiological binding of
CTCF to the maternal allele suppresses IGF2 expression
and promotes HI9 expression via the relocation of en-
hancer elements. Therefore, hypomethylation of the pa-
ternal allele is likely to introduce the same expression
regulation to the paternal genome and, consequently, a
decrease in IGF2 expression and an increase in H19 ex-
pression [23,24].

However, in our previous in vitro study on skin fibro-
blasts from children with SRS, this change in gene ex-
pression was not observed [2]. This discrepancy between
theory and the results obtained could have been caused
by the mosaic distribution of hypomethylated cells in tis-
sues from children with SRS and, particularly, by the
comparatively low degree of hypomethylation in our skin
fibroblast cultures [2]. Indeed, the cellular dysfunction of
cells with hypomethylation could be masked by the pres-
ence of a majority of normomethylated cells in the same
culture.

Aiming to overcome this problem, we selected single
cells and established clonal cultures of skin fibroblasts
from children with SRS. The methylation analysis con-
firmed that the technique employed enabled the estab-
lishment of cell lines with severe JCR1 hypomethylation
as well as with normomethylation. Furthermore, the de-
gree of methylation did not change during passaging. In
contrast to our hypothesis, IGF-II secretion and HI9

expression did not reveal any difference between the
hypomethylated and the normomethylated groups of SRS
skin fibroblast clones, in concordance with the results
from non-clonal fibroblast cultures in our previous study
[2]. Although IGF-II was detected by radioimmunoassay
(RIA) in the supernatant of hypomethylated SRS clones
and control clones at a comparable level after 7 days of
culture, our qRT-PCR assay was not sensitive enough to
reliably measure the very low amounts of /GF2 mRNA in
these clones in comparison to a housekeeping gene.

In a very recent paper, Azzi et al. [25] reported on
IGF2 expression in six non-clonal hypomethylated and
one normomethylated skin fibroblast cell lines from pa-
tients with SRS. Although they found a relationship be-
tween [GF2 expression and methylation status within
the group of SRS fibroblasts with a methylation index
ranging from 0% to 45%, IGF2 expression in SRS fibro-
blasts was not significantly different from the control fi-
broblasts. This finding implies that the gene expression
changes found were of minor severity; thus, the bio-
logical meaning is still unclear.

The expression of the miRNAs miR-483 and miR-675,
both expressed from the IGF2/H19 locus, and of their
potential targets varied between the SRS and control
clones. In agreement with the expression of IGF2 and
H19, miR-483 was expressed at a lower level than miR-
675 compared to the HepG2 cell line. Overall, our
in vitro data do not support the notion of a major role
of these miRNAs in the etiology of SRS.

One can speculate that the relevant biological mecha-
nisms in SRS linked to the IGF2/HI9 locus are
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developmental stage-dependent and not traceable after
birth. Within this context, the presence of the so-called
multilocus methylation defects shown in 7% of SRS pa-
tients [5] or more [22,25] may have to be considered. In
a previous study, multilocus methylation defects outside
the 11p15 locus were found in two out of the four SRS
patients reported here [22]. The role of these additional
methylation defects outside the IGF2/H19 locus in the
pathogenesis of SRS is still undefined and needs further
investigations. Our actual approach was not designed to
estimate the effects of multilocus methylation defects.

After excluding a clear effect on gene expression of
the ICR1 hypomethylated IGF2/H19 locus in SRS clones,
we aimed to characterize the total expression of these
fibroblast clones by microarray expression profiling. The
gene expression profiles of the SRS and control clones
were clearly different. We observed a greater degree of
similarity between the two groups of SRS clones (hypo-
methylated versus normomethylated) than between each
of these groups and the group of control clones derived
from healthy patients. Interestingly, the pathway analysis
of the SRS clones showed the aberrant expression of
genes involved in cell proliferation, cell cycle control,
and timing of mitosis. The data implicate a decreased
proliferation of cells and an increased delay in mitosis in
both SRShypo and SRSnormo fibroblast clones. In line
with this genetic observations, our in vitro studies on
these fibroblast clones revealed a slower cell prolifera-
tion of the tested /CRI hypomethylated SRS clones com-
pared to normomethylated control clones.

Specifically, genes of the “mitotic roles of polo-like kin-
ase” pathway were exclusively downregulated in both the
SRShypo and SRSnormo clones, genes of the FAK (focal
adhesion kinase) pathway were downregulated only in the
SRShypo clones, and genes of the pathways “cell cycle:
G2/M DNA damage checkpoint regulation” and “cell cycle
control of chromosomal replication” were downregulated
in the SRSnormo clones. These global pathway changes
were associated with the increased expression of genes in
the signaling cascades of the upstream regulators TP53
and CDKNIA in SRS clones. GADD45B was more highly
expressed in the SRS clones than in the controls. The
encoded protein belongs to the p53-regulated downstream
cascade, and its upregulation was found to arrest primary
human fibroblasts at G2/M [26].

One limitation of our analysis is the lack of proliferation
studies and studies on the IGF-II release from normo-
methylated SRS clones. These experiments were beyond
the scope of our actual study. A second limitation is that
patients and controls were not age- and sex-matched.

Conclusions
In conclusion, a group of severely /ICRI hypomethylated
fibroblasts derived from single cells did not reveal
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differences from a group of ICRI normomethylated fi-
broblasts with respect to IGF-II secretion and to IGF2,
H1I9, and miR-483/675 expression. Interestingly, the nor-
momethylated control clones proliferated faster than the
ICRI hypomethylated SRS clones. These functional find-
ings were corroborated by gene expression changes in
SRS cell clones, predicting decreased cell proliferation
and delayed mitosis. Thus, a more complex network of
genes might be involved in SRS-associated growth im-
pairment than assumed thus far.

Methods

Patients

The protocol of this study was approved by the Ethics
Committee of the Medical Faculty of Tuebingen. All
SRS patients, healthy volunteers, and their parents pro-
vided written informed consent. The SRS patients were
recruited in our endocrine clinic.

The mean age of the SRS patients (S1-S5) was 13.4 years
(range 9.3-16.6) and that of the controls (K1-K3) was
14.6 years (range 14.0-15.0) [2] (Table 3). The three healthy
controls were all male, aged 14, 14.7, and 15 years. All four
SRS patients (three females) had severe intrauterine growth
retardation (birth weight range —5.68 to —3.46 standard de-
viation score (SDS)), a triangular face, body asymmetry, and
relative macrocephaly (Table 3). Growth hormone (GH)
therapy was performed in patients S2, S3, and S5 during
this study. Previous analysis revealed methylation defects

Table 3 Clinical characteristics of the patients with Silver-
Russell syndrome and 11p15 ICRT hypomethylation

Patient
S1? S2 s3? S5
Sex [M/F] M F F M
Duration of gestation [weeks] 40 39 39 39
Birth weight [a] 1,560 1,380 1,960 1,800
[SDS] =57 -54 =35 —4.2
Birth length [cm] 40 38 45 44
[SDS] -6.0 —-6.1 -24 -32
Age [years] 15.0 16.6 92 16.3
Height [cm] 149.1 151.7 129.7 151.5
[SDS] -26 -22 -09 -34
Weight [kg] 30.1 27.1 27.2 61.0
BMI [kg/m?] 135 18 16.2 266
Pubertal stage [Tanner stages] G4PH4  B5PH5  B1PH2  G5PH5
Normal cognitive development + + + +
Asymmetry + + + +
Triangular face + + + +
Bossing forehead + + + +
GH therapy + + +

*Two patients with additional methylation defects outside the 11p15 locus.
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outside of the 11p15 locus in patients S1 and S3 [22]. The
control individuals were recruited in our Pediatric Surgery
Department where they underwent anesthesia for the re-
moval of metals after arm fracture healing.

Establishment of clonal fibroblast cultures and cultivation
of HepG2 cells

Skin biopsies of both arms were obtained from SRS pa-
tients (1 = 4) and healthy volunteers (n = 3), as previously
described [22]. Primary fibroblast cultures (FC) were
cultivated in RPMI (Invitrogen, Karlsruhe, Germany)
supplemented with 10% fetal calf serum (FCS; Biochrom,
Berlin, Germany) and 100 units/ml penicillin/strepto-
mycin (Biochrom) and incubated in a 37°C humidified
atmosphere containing 5% CO,.

Under microscopic control, single cells were picked
from trypsinized FC after passages 4—8 and seeded into
96-well plates. Cell-free medium from the same well
served as the negative control. The clonal fibroblasts
were expanded and yielded suitable amounts of cells at
passages 12—18. The hepatocellular carcinoma cell line
HepG2, which is commonly implemented in studies of
IGF2 signaling [19,27], was used as a technical control
and cultured under the abovementioned standard condi-
tions. The nomenclature of the cell clones refers to the
patient or the control (S=SRS patient, K = control); to
the arm where the skin biopsy was taken, in the case of
SRS patients to the length of the arm (sh =short side,
lo =long side) and in the case of the healthy controls to
the site of the arm (li = left side, re = right side); and to
the number of the specific clone.

Isolation of nucleic acids (DNA, RNA, miRNA)

DNA, RNA, and miRNA were isolated from clonal fibro-
blasts and HepG2 cells using the DNeasy Mini Kit or
miRNeasy Mini Kit (Qiagen, Hilden, Germany), respect-
ively. The concentrations of the nucleic acids were deter-
mined using a Nanodrop spectrophotometer (Thermo
Scientific, Wilmington, DE, USA).

Methylation analysis

The methylation status of ICRI in the IGF2/H19 locus
(HI9DMR) and of ICR2 in the KCNQI gene (KvDMR)
was measured with MS-MLPA using the Salsa MS-
MLPA kit ME030-C1 (MRC-Holland, Amsterdam, The
Netherlands) [28]. In brief, DNA was digested with a
DNA methylation-sensitive enzyme (Hhal) specific for
the CpG-containing sequence GCGC. Protected methyl-
ated DNA was subsequently ligated and PCR amplified.
For each of the four investigated CpG sites (M1-4), a
PCR product of a specific length surrounding the site
was obtained. For each reaction, 200 ng of genomic
DNA was used. The extent of methylation at a specific
site (expressed in %) was calculated from reference PCR
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reactions for genomic sequences lacking a GCGC tetra-
nucleotide and from a parallel reaction of the same, but
undigested, genomic DNA sample.

MS-MLPA results for ICR1 methylation were validated
by bisulfite sequencing. Bisulfite conversion of fibroblast-
derived DNA from two clones (S1sh_8 and S5sh_11) was
performed using the EZ DNA Methylation-Gold™ Kit
(Zymo Research, Irvine, CA, USA). Primers flanking the
methylation sites M1-4 in ICRI were designed comple-
mentary to the bisulfite-converted sequence (SRSBSfor3,
5'-TTATGGGAATAGAGGGTTTG-'3, and SRSBSrevl,
5'-CCACTATCTCCCCTCAA-"3). The PCR conditions
consisted of an initial period of denaturation at 95°C for
5 min, followed by 40 cycles of 30 s of denaturation at
95°C, 30 s of annealing at 57°C, and 1 min of extension at
72°C, and a final period of extension at 72°C for 6 min.
Gel electrophoretic analysis of the PCR product revealed a
band of 712 base pairs. The PCR products were subcloned
into pGEM-T easy (Promega, Mannheim, Germany)
and sequenced by Sanger sequencing (GATC, Konstanz,
Germany).

Microarray analysis

After RNA extraction from fibroblast clones in the ex-
ponential growth phase of similar passages (P12-18),
microarray gene expression analyses were performed
using Affymetrix GeneChip HT HG-U219 PM 96-array
plates at the Microarray Facility Tuebingen (MTF Ser-
vices, Medical Genetics, Tuebingen, Germany). This
array measures the expression of more than 36,000
transcripts and variants, representing more than 20,000
genes mapped through UniGene or via RefSeq v36 an-
notation. For this purpose, hypomethylated clones from
patients (<10%, named SRShypo) and normomethylated
clones from patients (30%—55%; named SRSnormo) as
well as control fibroblasts (named Cnormo) were se-
lected. For the analysis, 250 ng of total RNA was proc-
essed with the GeneChip IVT Express Kit (Part no.
901229) and hybridized to the GeneChip Human Gen-
ome U219 array plate with specific protocols for the use
of GeneTitan Hybridization, Wash and Stain Kit for
IVT Array Plates (P/N 901530). A GeneTitan instru-
ment was used to hybridize, wash, stain, and scan the
arrays. Affymetrix GeneChip Command Console 3.1
was used to control the process and to summarize the
probe cell intensity data. The hybridization quality was
checked with Affymetrix GeneChip Command Console
and Expression Console™ 1.1 s.

Files containing a single intensity value for each probe
region delineated by a grid on each array image
were imported into Partek Genomics Suite (version 6.6,
Partek, St. Louis, MO, USA) for probe set summarization
and statistical analysis. A model based on Robust Multi-
chip Analysis was performed as the method for probe set
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summarization to obtain a single intensity value represent-
ing the transcript abundance for each probe set and, thus,
to enable comparisons between arrays by normalizing and
logarithmically transforming the array data and stabilizing
the variance across the arrays.

cDNA synthesis and qRT-PCR analyses and gene and
miRNA expression analyses

Reverse transcription of total RNA was performed using
the miScript RT PCR Kit (Qiagen). Mimics (miR-483-3p
and miR-675-5p) used as standards for absolute quantifica-
tion were reversely transcribed following the manufacturer’s
instructions (Qiagen). For the determination of gene ex-
pression, qRT-PCR was performed with 2.5 ng reversely
transcribed total RNA per sample. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) and SNORD72 were
used as the reference for cONA normalization. The qRT-
PCR reactions were performed with the following primers:
IGF2for, 5'-CAGTGAGACCCTGTGCGGCG-'3; IGF2rev,
5'-TCCCTCTCGGACTTGGCGGG-"3; H1%or, 5'-TGAG
CTCTCAGGAGGGAGGATGGT-'3; Hli9rev, 5'-TTGTC
ACGTCCACCGGACCTG-'3; GAPDHofor, 5'-TGCACCA
CCAACTGCTTAGC-'3; GAPDHrev, 5'-GGCATGGACT
GTGGTCATGAG-'3. QuantiTect Primer Assays (IGFI,
IGFIR, RB, IL6, PRUNE), miScript Primer Assays (miR-
483-3p, miR-675-5p), and the SYBR Green PCR Kit
(Qiagen) were utilized. The amplifications were carried
out in triplicate using a CFX96 cycler (Bio-Rad, Munich,
Germany) with the following thermocycling conditions:
95°C for 15 min, followed by 40 cycles of 15 s at 94°C,
15 s at 55°C, and 30 s at 70°C for Primer Assays; or 95°C
for 5 min, followed by 40 cycles of 15 s at 95°C, 15 s at
60°C, and 60 s at 72°C for the IGF2, H19, and GAPDH
primers. Gene and miRNA expression was quantified
relative to GAPDH or SNORD?72, respectively, using the
ddCt method.

Cell proliferation assay and IGF-Il RIA
In 12-well plates, 2.5 x 10> clonal fibroblasts were cul-
tured under standard conditions. After 1 (d1), 7 (d7),
and 14 days (d14), proliferation of the plated cells was
measured using MTT (Sigma-Aldrich). Briefly, plated
clonal fibroblasts were incubated with 100 ul MTT for
4 h at 37°C, and 100 pl per well of 10% sodium dodecyl
sulfate solution in 0.01 M hydrochloric acid was added.
After overnight incubation at 37°C, the absorbance of
the solubilized formazan crystals was measured (Victor,
Perkin Elmer, USA). The mean values of two to three wells
per culture were determined, and the experiments were
performed with four different SRShypo clones (S1sh_12,
S2lo_7, S2lo_1, S5sh_11) and three different Cnormo
clones (K2li_17, K3li_3, K3re_12).

After 1 (d1), 7 (d7), and 14 days (d14) of culture, su-
pernatants were collected to quantify IGF-II production
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and secretion by the clonal fibroblasts using RIA [2].
The mean values of three wells per culture were deter-
mined, and the experiments were performed with two
different SRShypo clones (S1sh_12, S5sh_11) and two
different Cnormo clones (K3li_3, K3re_12). The IGF-II
amount measured was corrected for the cell number by
extrapolation using a standard curve.

Statistical analyses

The data are presented as the mean and standard devi-
ation. The data from the qRT-PCR, protein, and prolifera-
tion assays were compared using the two-sided unpaired ¢
test, and the microarray data were analyzed using
ANOVA. A p value was calculated by evaluating the sig-
nificance of the difference observed in the mean transcript
abundance for each probe set between the SRShypo,
SRSnormo, and Cnormo groups. When necessary, the p
values were corrected for multiple testing with the 5%
FDR-based method of Benjamini and Hochberg [29]. A p
value below 0.05 was considered statistically significant.
The probe sets exhibited significant, greater than 1.5-fold,
differences in mean transcript abundance among the de-
scribed cultures. A hierarchical cluster analysis was per-
formed with Qlucore Omics Explorer 3.0 (Qlucore AB,
Lund, Sweden). Possible biological pathways and the inter-
relationships between network genes in the subsets of can-
didate genes that had particularly interesting patterns were
analyzed using IPA® (QIAGEN). The microarray data have
been deposited at the NCBI Gene Expression Omnibus
(accession number GSE61120).

Additional files

Additional file 1: Figure S1. Differential expression of the miR-675
targets RBT and IGF1R and the miR-483 target IGF1 in SRShypo,
SRSnormo, and Cnormo groups. gRT-PCR results were normalized to
HepG2 cell gene expression. RBT and IGF1 are expressed at a significantly
higher level in SRShypo compared to Cnormo (p < 0.043).

Additional file 2: Table S1. Ingenuity Pathway Analysis. The
differentially regulated pathways, upstream regulators, and functions are
shown. The data comprise the comparisons of SRShypo versus Cnormo
and of SRSnormo versus Cnormo. *p < 0.001; | All genes in this pathway
are downregulated.
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