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Abstract Epigenetic changes in long interspersed nuclear
element-1s (LINE-1s or L1s) occur early during the process of
carcinogenesis. A lower methylation level (hypomethylation)
of LINE-1 is common in most cancers, and the methylation
level is further decreased in more advanced cancers. Conse-
quently, several previous studies have suggested the use of
LINE-1 hypomethylation levels in cancer screening, risk
assessment, tumor staging, and prognostic prediction. Epi-
genomic changes are complex, and global hypomethylation
influences LINE-1s in a generalized fashion. However, the
methylation levels of some loci are dependent on their
locations. The consequences of LINE-1 hypomethylation are
genomic instability and alteration of gene expression. There
are several mechanisms that promote both of these con-
sequences in cis. Therefore, the methylation levels of
different sets of LINE-1s may represent certain phenotypes.
Furthermore, the methylation levels of specific sets of LINE-
1s may indicate carcinogenesis-dependent hypomethylation.
LINE-1 methylation pattern analysis can classify LINE-1s
into one of three classes based on the number of methylated
CpG dinucleotides. These classes include hypermethylation,

partial methylation, and hypomethylation. The number of
partial and hypermethylated loci, but not hypomethylated
LINE-1s, is different among normal cell types. Consequent-
ly, the number of hypomethylated loci is a more promising
marker than methylation level in the detection of cancer
DNA. Further genome-wide studies to measure the methyl-
ation level of each LINE-1 locus may improve PCR-based
methylation analysis to allow for a more specific and
sensitive detection of cancer DNA or for an analysis of
certain cancer phenotypes.
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Because of the retrotransposition events that have occurred
during evolution, the human genome contains more than
500,000 long interspersed nuclear element-1 (LINE-1 or L1)
copies (Lander et al. 2001). Most LINE-1s are truncated.
More than 10,000 LINE-1s are longer than 4.5 kb and
consist of a 5′ untranslated region (UTR), two open reading
frames, and a 3′ UTR containing a polyadenylation signal
(Penzkofer et al. 2005). The DNA methylation levels of
LINE-1 5′ UTRs in cancer have been extensively evaluated
for potential use as an epigenomic marker for cancer
(Chalitchagorn et al. 2004). The mean level of LINE-1
methylation in most cancer types is lower than in normal
cells (Table 1). The degree of LINE-1 hypomethylation
increases in more advanced cancers (Table 2 and Electronic
supplementary material (ESM) Table 1). The methylation of
other interspersed repetitive sequences (IRSs), such as Alu
elements and human endogenous retrovirus (HERV) sequen-
ces, has been evaluated to a lesser extent (Tables 1 and 2 and
ESM Table 1). LINE-1 and other IRS methylation levels
have the potential to be used as universal tumor markers for
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Table 1 Interspersed repetitive sequence hypomethylation in cancer

Type of cancer Repeated
sequence

Hypomethylation Reference

Abdominal
paragangrioma

LINE-1 Yes Geli et al. (2008)

Breast cancer Alu Yes Cho et al. (2010)

LINE-1 Yes Cho et al. (2010)

Cervical cancer LINE-1 Yes Shuangshoti et al. (2007)

Cholangiocarcinoma LINE-1 Yes Kim et al. (2009a)

Colorectal cancer Alu Yes Kwon et al. (2010; Rodriguez et al. (2008)

LINE-1 Yes Chalitchagorn et al. (2004; Suter et al. (2004); Matsuzaki et al. (2005); Estecio
et
al. (2007); Iacopetta et al. (2007); Ogino et al. (2008a); Nosho et al. (2009a,
b);
An et al. (2010); Baba et al. (2010); Ibrahim et al. (2011); Irahara et al.
(2010);
Kawakami et al. (2011); Kwon et al. (2010)

Ependymoma Alu Yes Xie et al. (2010)

Esophagus cancer LINE-1 Yes Chalitchagorn et al. (2004)

Gastric cancer Alu Yes Yoo et al. (2008); Park et al. (2009); Hou et al. (2010); Xiang et al. (2010);
Yoshida et al. (2011)

LINE-1 Yes Chalitchagorn et al. (2004; Yoo et al. (2008); Park et al. (2009); Yoshida et al.
(2011)

Germ cell tumor LINE-1 Yes Alves et al. (1996)

Fibrolamellar carcinoma
of liver

LINE-1 No Trankenschuh et al. (2010)

Head and neck
squamous cell
cancer

LINE-1 Yes Chalitchagorn et al. (2004); Hsiung et al. (2007); Smith et al. (2007);
Subbalekha
et al. (2009)

Hepatoma Alu Yes Lee et al. (2009)

LINE-1 Yes Takai et al. (2000); Chalitchagorn et al. (2004); Tangkijvanich et al. (2007);
Lee et
al.
(2009); Kim et al. (2009b); Formeister et (al. 2010); Trankenschuh et al.
(2010)

Leukemia (acute
promyelocytic
leukemia)

Alu Yb8 No Choi et al. (2009)

LINE-1 No Choi et al. (2009)

Leukemia (chronic
myelogenous
leukemia)

Alu Yes Roman-Gomez et al. (2008); Fabris et al. (2011)

LINE-1 Yes Roman-Gomez et al. (2008); Roman-Gomez et al. (2005); Fabris et al. (2011)

Leukemia (plasma
cell leukemia)

LINE-1 Yes Bollati et al. (2009)

Lung cancer (non-small cell
lung
cancer)

Alu Yes Daskalos et al. (2009)

LINE-1 Yes Chalitchagorn et al. (2004); Daskalos et al. (2009); Jin et al. (2009); Saito et
al.
(2010)

Lymphoma LINE-1 No Chalitchagorn et al. (2004)

Malignant
peripheral
nerve sheath
tumor

LINE-1 No Feber et al. (2011)

Melanoma LINE-1 Yes Tellez et al. (2009)

Multiple myeloma Alu Yes Bollati et al. (2009)

LINE-1 Yes Bollati et al. (2009)

Neuroendocrine
tumor

Alu Yes Choi et al. (2007)

LINE-1 Yes Choi et al. (2007)

Neurofibromatosis LINE-1 No Feber et al. (2011)
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the detection of cancer DNA and to predict prognosis
(Watanabe and Maekawa 2010).

LINE-1s have often been referred to as parasitic or
junk DNA sequences. However, many LINE-1s play a
role in gene regulation, and this control is regulated by
the 5′ UTR methylation level (Aporntewan et al. 2011).
As a result, changes in the methylation status of different
sets of LINE-1 loci may lead to different cellular
phenotypes (Phokaew et al. 2008; Aporntewan et al.
2011). These differences may be an underlying reason
why LINE-1 methylation levels in normal cells show so
much variation (Chalitchagorn et al. 2004). Lower
methylation levels can also be found in many non-
malignant conditions. Current PCR-based techniques were
designed to measure LINE-1 methylation level and cannot
distinguish between malignant- and non-malignant-
associated LINE-1 hypomethylation (Xiong and Laird
1997; Laird 2010; Weisenberger et al. 2005; Yang et al.
2004). Therefore, a technique that measures not only the
level but also the pattern of LINE-1 methylation should
improve detection specificity and sensitivity and broaden
the applications of this tumor marker. The topics of this
review therefore include the following: (1) an up-to-date
review of studies on LINE-1 and other IRS methylation
levels in cancer; (2) the characteristics of LINE-1

hypomethylation in cancer; (3) the locus-dependent roles
of LINE-1 hypomethylation in cancer development; and
(4) the improvement in cancer DNA identification by
LINE-1 methylation classification.

LINE-1 and other IRS methylation levels in cancer

The methylation levels of LINE-1s, Alu elements, and
some types of HERVs have been studied (Table 1). LINE-1
is the IRS element that is most frequently studied, and its
hypomethylation has been found in many cancers. In a few
cancer types, including cancer of the kidney, thyroid, and
lymph nodes; acute promyelocytic leukemia; malignant
peripheral nerve sheath tumor; and parathyroid adenoma,
LINE-1 hypomethylation had not been found (Table 1).
LINE-1 hypomethylation is also found in premalignant
lesions of the cervix (Shuangshoti et al. 2007), extrahepatic
bile duct (Kim et al. 2009a), and stomach (Park et al. 2009).
Unexpectedly, LINE-1 hypermethylation was observed in
some lesions that possess a high potential for malignant
transformation, including lesions associated with myelodys-
plastic syndrome (Romermann et al. 2007) and liver
cirrhosis (Takai et al. 2000). Interestingly, LINE-1 hyper-
methylation is found in partial hydatidiform moles, whereas

Table 1 (continued)

Type of cancer Repeated
sequence

Hypomethylation Reference

Ovarian cancer AluHER Yes Watts et al. (2008)

V-W Yes Menendez et al. (2004)

LINE-1 Yes Menendez et al. (2004); Pattamadilok et al. (2008); Woloszynska-Read et al.
(2008);
Dammann et al. (2010)

Parathyroid
adenoma

LINE-1 No Juhlin et al. (2010)

Pheochromocytoma LINE-1 Yes Geli et al. (2008)

Prostate cancer Alu Yes Kim et al. (2011)

LINE-1 Yes Santourlidis et al. (1999; Schulz et al. (2002); Chalitchagorn et al. (2004);
Florl et al.
(2004); Kindich et al. (2006); Yegnasubramanian et al. (2008); Cho et al.
(2009)

Renal cell
carcinoma

LINE-1 No Florl et al. (1999); Chalitchagorn et al. (2004)

Thyroid cancer
(follicular type)

LINE-1 No Lee et al. (2008)

Thyroid cancer
(papillary type)

LINE-1 No Chalitchagorn et al. (2004)

Urothelial cancer HERV-K Yes Florl et al. (1999)

Alu Yb8 Yes Choi et al. (2009)

LINE-1 Yes Jurgens et al. (1996); Florl et al. (1999); Neuhausen et al. (2006); Choi et al.
(2009);
Wilhelm et al. (2010); Wolff et al. (2010)
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LINE-1 hypomethylation is seen in triploid diandric
embryos. Both lesions originate from dispermic fertilization
of an oocyte, suggesting that LINE-1 hypermethylation in
moles is directly linked to the neoplastic process and is not
a consequence of growth control (Perrin et al. 2007).

As shown in Table 2 and ESM Table 1, LINE-1
hypomethylation is associated with advanced tumor stage,
higher histological grade, and poor prognosis. LINE-1
hypomethylation increases with tumor size (Tangkijvanich
et al. 2007) and with higher tumor stage (Florl et al. 1999;
Kindich et al. 2006; Pattamadilok et al. 2008; Lee et al.
2009; Baba et al. 2010). With increasing histological grade,
according to multistep carcinogenesis, LINE-1 hypomethy-
lation levels are increased in many cancer types (Florl et al.
1999; Shuangshoti et al. 2007; Cho et al. 2007; Park et al.
2009; Iramaneerat et al. 2011; Pattamadilok et al. 2008).
Furthermore, LINE-1 hypomethylation is correlated with
chromosomal aberrations (Schulz et al. 2002; Cho et al.
2007; Choi et al. 2007; Ogino et al. 2008a; Bollati et al.
2009), the hypermethylation of tumor suppressor genes
(Choi et al. 2007; Kim et al. 2009a), mutations of tumor
suppressor genes (Iacopetta et al. 2007; Kim et al. 2009a),
the alternate transcription of oncogenes (Wolff et al. 2010),
and the deregulation of cancer genes (Woloszynska-Read et
al. 2008). Therefore, LINE-1 hypomethylation is associated
with malignant phenotypes in human cells, deregulating
gene expression and accelerating DNA rearrangement.
Interestingly, the LINE-1 hypomethylation level is inversely
associated with microsatellite instability (Estecio et al. 2007;
Iacopetta et al. 2007; Ogino et al. 2008a; Goel et al. 2010;
Kawakami et al. 2011). This finding may indicate that
microsatellite instability and LINE-1 hypomethylation are
characteristics of different genomic instability mechanisms.

From a clinical point of view, LINE-1 hypomethy-
lation is associated with tumor metastasis (Schulz et al.
2002; Choi et al. 2007), the recurrence rate (Formeister et
al. 2010), and the mortality rate (Ogino et al. 2008b; Ahn
et al. 2011). LINE-1 hypomethylation has been reported
to be a prognostic marker in several types of cancer
including the stage IA subgroup of non-small cell lung
cancer (Saito et al. 2010), ovary (Pattamadilok et al.
2008), and colon (Ogino et al. 2008b; Baba et al. 2010).
LINE-1 hypomethylation has been proposed to be used as
a screening tool for cancer detection. LINE-1 hypome-
thylation is observed in blood leukocyte DNA (Hsiung et
al. 2007; Wilhelm et al. 2010), serum (Chalitchagorn et
al. 2004; Tangkijvanich et al. 2007), and oral rinse
samples (Subbalekha et al. 2009). Moreover, LINE-1
hypomethylation has also been demonstrated to be a
surrogate marker for predicting tumor treatment response
and prognosis (Aparicio et al. 2009; Sonpavde et al. 2009;
Bernstein et al. 2010; Fang et al. 2010; Kawakami et al.
2011).

Alu elements and HERV genomes have been studied less
frequently (Table 1). Hypomethylation of Alu sequences
was reported in nine cancers, whereas hypomethylation of
HERV-K and HERV-W genomes was found in urothelial
cancer (Florl et al. 1999) and ovarian cancer (Menendez et
al. 2004), respectively. All of the Alu- and HERV-
hypomethylated cancers also possess LINE-1 hypomethy-
lation. Certain cancer phenotypes are associated with the
methylation levels of certain IRS types. For example,
HERV-K, but not LINE-1 and HERV-E, methylation levels
are associated with poor prognosis and platinum resistance
of ovarian clear cell carcinoma (Iramaneerat et al. 2011).

Characteristics of LINE-1 and global hypomethylation
in cancer

Transgenic mice with hereditary defects in DNA methyl-
transferase show increased risk of developing cancer
(Gaudet et al. 2003). Therefore, global hypomethylation
may be one of the mechanisms that promote carcinogenesis
and is unlikely to be just a consequence of cancer
development. However, lower genome-wide methylation
levels have also been found in many conditions, such as
embryogenesis (Migeon et al. 1991; Kremenskoy et al.
2003), aging (Lutz et al. 1972; Gonzalo 2010), congenital
malformation (Wang et al. 2010), exposure to certain
environments (Bollati et al. 2007), nutrition (Brunaud et
al. 2003), and autoimmune diseases (Richardson et al.
1990). There is no report of increased cancer development
risk in individuals with some of these conditions. There-
fore, it is reasonable to hypothesize that the genomic
distribution of IRS methylation levels is different in global
hypomethylation-related conditions. Interestingly, in some
conditions, the loss of genome-wide methylation is IRS
type-specific. For example, hypomethylation of Alu ele-
ments and HERV-K, but not LINE-1, was found in aging
cells (Jintaridth and Mutirangura 2011). However, LINE-1
hypomethylation has been demonstrated in many other
conditions (Schulz et al. 2006). Because LINE-1 methyla-
tion levels can regulate host gene expression in cis
(Aporntewan et al. 2011), it is reasonable to hypothesize
that the reduction in LINE-1 methylation is the result of
epigenomic heterogeneity. A simpler explanation is that
even though two different cells possess the same number of
LINE-1 loci and methylation levels, each LINE-1 locus
may have a different level of LINE-1 methylation in these
cells (Phokaew et al. 2008). Therefore, LINE-1 hypome-
thylation is a cancer biomarker that may be a diagnostic
tool for many cancer types. However, LINE-1 hypomethy-
lation is not specific to cancer. The inclusion of information
regarding the genomic LINE-1 methylation distribution
pattern should therefore be a promising way to improve and
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Table 2 Interspersed repetitive sequence hypomethylation and cellular, molecular phenotype

Cancer IRS Cellular phenotype Molecular association Reference

Higher
clinical
stage

Poorer
histological
grade

Survival

Cervical cancer L1 NR PE NR NR Shuangshoti et al.
(2007)

Cholangiocarcinoma L1 NR PE NR PE for CIMP and TSG mutation Kim et al. (2009a)

Colorectal cancer L1 NR PE NR NR Chalitchagorn et
al. (2004)

L1 NR NR NR PE for MSS Matsuzaki et al.
(2005)

L1 NR NR NR PE for MSI and CIN Deng et al. (2006)

L1 NR NR NR NE for MSI Estecio et al.
(2007)

L1 PE PE in mucinous
histology

NR NE for MSI and TSG mutation Iacopetta et al.
(2007)

L1 NR NR NR NE for MSI and CIMP Ogino et al.
(2008a)PE for chromosomal alteration in

non-MSI tumor

L1 NR NR PE NR Ogino et al.
(2008b)

L1 NR NR NR NE for SNPSs in one-carbon
pathway genes.

Hazra et al. (2010)

L1 NR NR NR LINE-1 methylation level
correlated between synchronous
cancer pairs from the same
individuals.

Nosho et al.
(2009a)

L1 NR NR NR NE for DNMT3B- positive tumors Nosho et al.
(2009b)

L1 NR NR NR PE for CIMP An et al. (2010)

L1 NR NR PE in proximal
colon cancer NE
in distal colon
cancer

NR Ahn et al. (2010)

L1 NR NR PE PE for MSI, CIMP, CIN, TSG
mutation and TSG expression

Baba et al. (2010)

L1 NR NR NR NE for MSI and methylation index Goel et al. (2010)
PE for MSS HNPCC

L1 NR PE NR NR Ibrahim et al.
(2011)

L1 NR NR PE NE for MSI and CIMP Kawakami et al.
(2011)

Alu, L1 NE PE NR NR Kwon et al. (2010)

Ependymoma Alu NR PE NR NR Xie et al. (2010)

Gastric cancer Alu NR PE NR NR Park et al. (2009)

L1 NR PE NR NR Park et al. (2009)

L1 NR NR NR PE for folate metabolizing gene
polymorphisms

Hou et al. (2010)

Gastrointestinal
stromal cancer

L1 PE NR NR NR Igarashi et al.
(2010)

Head and neck
cancer

L1 PE NR NR NR Smith et al. (2007)

L1 NR NR PE especially HPV
16 negative SCC

NR Furniss et al.
(2008)

L1 NS NS NR NR Subbalekha et al.
(2009)
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Table 2 (continued)

Cancer IRS Cellular phenotype Molecular association Reference

Higher
clinical
stage

Poorer
histological
grade

Survival

Hepatocellular
carcinoma

L1 PE PE NR NR Tangkijvanich et
al. (2007)

Alu NE PE NR NR Lee et al. (2009)

L1 PE PE NR NR Lee et al. (2009)

L1 NR PE NR NR Kim et al. (2009b)

L1 NR NR PE NR Formeister et al.
(2010)

Multiple myeloma
(MM)

Alu NR PE NR NE for hyperdiploid MM Bollati et al.
(2009)

L1 NR PE NR PE for chromosomal translocation Bollati et al.
(2009)

Nerve tumor L1 NR NE NR NR Feber et al. (2011)

Neuroendocrine
tumor

Alu NR NE PE PE for TSG methylation Choi et al. (2007)

L1 NR NE PE PE for chromosomal alteration and
gene methylation

Choi et al. (2007)

Non-small cell lung
cancer (NSCLC)

L1 NR SCC >
adenocarcinoma
(P<0.001)

NR NR Jin et al. (2009)

L1 NR NR PE NR Saito et al. (2010)

Odontogenic tumor L1 NR Ameloblastoma
> KCOT
(P=0.001)

NR NR Kitkumthorn and
Mutirangura
(2010)

Ovarian cancer L1 NS NE PE NR (Pattamadilok et
al. 2008)

L1 NR NR NR PE with TSG expression Woloszynska-
Read et al.
(2008)

L1 NR NR NR PE for follow-up patients treated
with decitabine (P<0.001)

Fang et al. (2010)

L1 PE NR NR PE for TSG methylation Woloszynska-
Read et al.
(2011)

Ovarian clear cell
carcinoma

L1 PE NR NR NR Iramaneerat et al.
(2011)

HERV-
E

PE NR NR NR Iramaneerat et al.
(2011)

HERV-
K

PE NR PE NR Iramaneerat et al.
(2011)

Pancreatic cancer L1 NR NR NR PE for MTHFR polymorphisms Matsubayashi et
al. (2005)

Prostate cancer L1 PE NR NR NR Santourlidis et al.
(1999)

L1 PE NR PE PE with chromosomal aberration Schulz et al.
(2002)

L1 PE NR NR NR Kindich et al.
(2006)

Alu PE PE NR NR Cho et al. (2007)

L1 PE PE NR NR Cho et al. (2007)

L1 NR NR PE NR Yegnasubramanian
et al. (2008)

L1 NR PE NR NR Cho et al. (2009)
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widen the applications of LINE-1 methylation as a tumor
marker (Pobsook et al. 2011).

Although LINE-1 methylation levels are variable in both
cancer and normal cells, the mechanisms that alter methyla-
tion levels may be different. Normal cells possess several
patterns of LINE-1 methylation levels. The levels of some cell
types are precise and limited to within a specific range. In
other cases, such as in the esophagus and thyroid, the ranges
are expanded (Chalitchagorn et al. 2004). Similar patterns can
be observed when the methylation status of each LINE-1
locus is observed (Phokaew et al. 2008). Different loci
possess different methylation levels. Some are limited in
range and others have wider ranges. Levels of LINE-1 locus
methylation between different cell types are usually different,
but each locus reveals similar patterns regarding the range of
methylation levels (Phokaew et al. 2008).

Comparison of methylation levels between LINE-1 loci in
normal cells showed no significant correlation. This result
suggests that the methylation level is locus-dependent (Fig. 1;
Phokaew et al. 2008). In contrast, significant associations of
methylation levels between LINE-1 loci were frequently
found in cancer. Therefore, the mechanism causing LINE-1
hypomethylation in cancer occurs generally and in a
genome-wide manner (Fig. 1; Phokaew et al. 2008).
However, this mechanism may be biased toward some IRS
sequences. Using microarray analysis, Szpakowski et al.
(2009) reported that primate-specific LINE-1 elements and
most of the younger, primate-specific retroelements were
preferentially hypomethylated in samples of squamous cell
carcinoma of the head and neck in comparison to non-tumor
adjacent tissue and normal controls. The association of the
methylation level between two LINE-1 loci was found to be
highest if they were located in the same gene (Phokaew et al.
2008). Therefore, in addition to evolutionarily derived
classifications, LINE-1 hypomethylation in cancer can be
influenced by genomic location.

LINE-1 methylation regulates gene expression in cis

The notion that LINE-1 is methylated to prevent the process
of retrotransposition should be reevaluated. First, in the
human genome, less than 100 LINE-1s are retrotransposi-
tion competent, and only a few LINE-1s have been shown
to be responsible for retrotransposition events during
human evolution (Sassaman et al. 1997). Although a recent
study showed that LINE-1 retrotransposition may be
common (Lupski 2010; Beck et al. 2010), this evidence
fails to explain the methylation of the vast majority of
retrotransposition-incompetent LINE-1s. The human ge-
nome possesses thousands of 5′ UTR-containing LINE-1s,
and most of them are methylated to a certain degree
(Chalitchagorn et al. 2004). It is unlikely that this

Fig. 1 Effect of global hypomethylation in cancer. a Normal genomes
contain hypermethylated, partially methylated, and hypomethylated
LINE-1s. The methylation levels of each locus are regulated in a
location-dependent manner. b The cancer genome contains more
hypomethylated LINE-1s. Global hypomethylation decreases the
methylation status of many LINE-1 loci. However, there are some
loci that are not influenced and some loci that show increased
methylation levels. Local mechanisms are also present in cancer cells,
and some locations are affected by the process of carcinogenesis

Table 2 (continued)

Cancer IRS Cellular phenotype Molecular association Reference

Higher
clinical
stage

Poorer
histological
grade

Survival

Urothelial cancer L1 PE PE NR NR Florl et al. (1999)

L1 PE PE NE NR Neuhausen et al.
(2006)

L1 NR NR NR PE for Met oncogene alternate
transcript

Wolff et al. (2010)

IRS interspersed repetitive sequence, L1 long interspersed nucleotide element-1, NR no report, NS non-significant, PE positive evidence,
NE negative evidence, TSG tumor suppressor gene, CIMP CpG island methylator phenotype,MSS microsatellite stable, MSI microsatellite instability,
CIN chromosomal instability, SNP single nucleotide polymorphism, DNMT3B DNA methyltransferase-3B, HNPCC hereditary nonpolyposis
colorectal cancer, MM multiple myeloma, HCC hepatocellular carcinoma, SCC squamous cell carcinoma, KCOT keratocystic odontogenic tumor,
HERV-E human endogenous retrovirus E, HERV-K human endogenous retrovirus K, MTHFR methylenetetrahydrofolate reductase
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methylation provides a selective advantage to the cells by
preventing retrotransposition. The significant differences in
LINE-1 methylation levels between loci or cell types suggests
that LINE-1methylation may be important to maintain normal
cellular function and that this function may be altered by the
global hypomethylation process that occurs in cancer.

The location-dependent LINE-1 methylation pattern in
normal cells suggests a role for epigenetic regulation.
Currently, there are at least two reported mechanisms for
how LINE-1 methylation regulates gene expression in cis.
Both mechanisms are dependent on the transcriptional
activity of the LINE-1 promoter. Moreover, similar to other
promoters, the LINE-1 5′ UTR promoter is controlled by
DNA methylation, and the transcription activity of a LINE-
1 element is directly correlated with its hypomethylation
level (Aporntewan et al. 2011). The first mechanism is that
LINE-1-mediated control of gene expression is through the
production of unique RNA sequences (Fig. 2). The other
mechanism is that intragenic LINE-1 RNAs repress host
gene expression via the nuclear RNA-induced silencing
complex (RISC; Fig. 3).

There are two ways for the LINE-1 promoter to produce
unique RNA sequences (Fig. 2). The 5′ UTR of LINE-1 is a
promoter that transcribes in both the forward and reverse
directions (Matlik et al. 2006; Weber et al. 2010; Speek
2001; Wolff et al. 2010; Rangwala et al. 2009). If the
transcription is in the forward orientation, then the promoter
produces LINE-1 RNA. However, the poly-A addition
signal of LINE-1 does not always function. Consequently,
many LINE-1 transcripts can continue beyond the end of
the LINE-1 sequence, therefore resulting in 3′ transduction
(Moran et al. 1999; Rangwala et al. 2009). These
transduction sequences are unique RNA sequences gener-
ated by the LINE-1 promoter. On the other hand, LINE-1 5′
transduction that occurs by reverse transcription will also
produce unique RNA sequences. A large number of these
transduction sequences have been reported (Rangwala et al.
2009); however, there are currently only two examples that
prove that these sequences are increased by LINE-1
hypomethylation (Weber et al. 2010; Wolff et al. 2010;
Aporntewan et al. 2011).

Intragenic LINE-1 regulation of host gene expression
was revealed by the finding that in vitro insertion of a full-

length LINE-1 disrupted host gene expression (Han et al.
2004). In vivo, this gene regulation is tuned by LINE-1
methylation levels (Aporntewan et al. 2011). When LINE-1
methylation levels were reduced by chemical treatment or
by carcinogenesis, a significant number of genes containing
LINE-1s were repressed (Fig. 3a–c). The degree of this
repression was inversely correlated with the intragenic
LINE-1 methylation level. The role of LINE-1 methylation
is to prevent the formation of a pre-mRNA–LINE-1–RNA
complex. If the complex is formed, then the RISC protein
AGO2 will bind and prevent mRNA production (Fig. 3;
Aporntewan et al. 2011).

Comparative sequence analysis between intragenic and
intergenic LINE-1s showed multiple conserved nucleotides
in intragenic LINE-1s that are crucial for maintaining
LINE-1 transcription and methylation (Aporntewan et al.
2011). Moreover, many LINE-1s are excluded from
genomic regions containing housekeeping genes (Eller et
al. 2007; Graham and Boissinot 2006). Therefore, locations
of LINE-1s yield a selective advantage for human evolu-
tion. It is important to note that the diploid human genome
contains an extensive amount of structural variation due to
retrotransposition events (Huang et al. 2010; Ewing and
Kazazian 2011). Consequently, variation in the expression of
many genes may be due to the distinctive locations of heritable
LINE-1s, and similar to other DNA polymorphisms, some
LINE-1 insertions are polymorphisms that lead to certain
disease-related phenotypes. LINE-1 hypomethylation may
also control gene expression in trans. In some cancer cells,
inhibition of LINE-1 reverse transcriptase can alter the
expression of many genes (Carlini et al. 2010).

LINE-1 hypomethylation and genomic instability
in cancer

In addition to a number of association studies (Ji et al.
1997; Lu and Randerath 1984; Daskalos et al. 2009), the
high risk of chromosomal abnormalities in individuals with
hereditary mutations in DNA methyltransferase genes
indicates that global hypomethylation promotes genomic
instability (Hansen et al. 1999; Eden et al. 2003). However,
the underlying mechanisms of how DNA methylation

Fig. 2 LINE-1 can produce two
types of unique RNA sequences.
One type of unique sequence is
the result of LINE-1 RNA tran-
scription proceeding beyond the
LINE-1 sequence. The other
type occurs when the reverse
LINE-1 promoter transcribes
unique DNA sequences located
beyond the 5′ end of LINE-1

322 Clin Epigenet (2011) 2:315–330



maintains genomic integrity are not yet known. Current
reports suggest that LINE-1 hypomethylation leads to
several events that promote genomic instability, including
retrotransposition, endogenous DNA double-strand break
(EDSB) repair, and the dysregulation of DNA repair genes.

The process of LINE-1 retrotransposition includes RNA
transcription, protein translation, DNA restriction, reverse
transcription, and integration (Moran 1999). This retrotrans-
position usually produces large DNA rearrangements (Huang
et al. 2010; Gilbert et al. 2002). Recently, an advanced
LINE-1 junction sequencing technique showed that somatic
L1 insertions occur at high frequency in human lung cancer
genomes (Iskow et al. 2010). Therefore, LINE-1 hypome-
thylation in cancer may increase the retrotransposition
activity of some LINE-1s and consequently cause a faster
rate of DNA rearrangement. However, many DNA rear-
rangements occur in cancer cells that are not LINE-1
retrotransposition events. Therefore, LINE-1 retrotransposi-
tion contributes to only a small proportion of mutations in
cancer. Moreover, there are only a few reports that
retrotransposition events can produce clonal expansion
mutations (Miki et al. 1992). Finally, the loss of the
methylation of non-retrotransposable repeats, such as satellite
DNA, also promotes chromosome translocation (Maraschio
et al. 1988; Ji et al. 1997). Therefore, LINE-1 retrotranspo-
sition may not be the major mechanism causing somatic
mutation in cancer by global hypomethylation.

The second mechanism is the differential repair of
methylated and unmethylated replication-independent EDSBs
(RIND-EDSBs; Kongruttanachok et al. 2010). RIND-EDSBs
are different from replication-dependent EDSBs and
environmental- or radiation-induced DSBs. Replication-
dependent EDSBs and radiation-induced DSBs, if unre-

paired, lead to cell death. In contrast, RIND-EDSBs are
ubiquitously present in all cells and always involve hyper-
methylation (Pornthanakasem et al. 2008). This occurrence
indicates a time lag between methylated RIND-EDSB
production and repair (Kongruttanachok et al. 2010).
RIND-EDSBs can be produced within both methylated and
unmethylated genomes. Methylated RIND-EDSBs are selec-
tively repaired by the more precise ataxia telangiectasia
mutated (ATM)-dependent non-homologous end joining
repair process (Kongruttanachok et al. 2010). Therefore, the
RIND-EDSB repair process of hypomethylated genomes is
faster and more error-prone. Because the LINE-1 methyla-
tion levels of each locus are distinct, the mutation rate caused
by RIND-EDSB repair errors is dependent on the methyla-
tion status of the genome near the EDSBs. Currently, there
are only two reports focused onRIND-EDSBs (Pornthanakasem
et al. 2008; Kongruttanachok et al. 2010). Further studies are
needed to explore the causes and roles of RIND-EDSBs and to
determine how genomic hypomethylation promotes instability.

A third possible mechanism is that LINE-1 hypomethy-
lation down-regulates DNA repair genes. One of these
genes is PPP2R2B, which contains intragenic LINE-1s. In
cancer, these LINE-1s are frequently hypomethylated and
PPP2R2B is frequently down-regulated (Aporntewan et al.
2011). One of the functions of PPP2R2B is to increase
nuclear ATM protein (Suyarnsestakorn et al. 2010). ATM is
a serine/threonine protein kinase that is important in the
activation of the DNA damage checkpoint, leading to cell
cycle arrest, DNA repair, or apoptosis (Mavrou et al. 2008).
A lack of ATM promotes genomic instability (Kim et al.
2002). Therefore, LINE-1 hypomethylation may indirectly
promote genomic instability by interfering with ATM
function.

Fig. 3 Intragenic hypomethy-
lated LINE-1s repress host gene
expression via AGO2. The
schematic demonstrates that the
same gene from three different
cells has different levels of
intragenic LINE-1 methylation.
a Hypermethylated LINE-1.
b Partially methylated LINE-1.
c Hypomethylated LINE-1.
LINE-1 RNA is produced when
the methylation of the LINE-1 5′
UTR is reduced. The LINE-1
RNA–pre-mRNA complex is
bound by AGO2, and mRNA
production is prevented
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LINE-1 methylation patterns in normal and cancer cells

It is commonly assumed that LINE-1 elements in normal
cells are completely methylated. Combined bisulfite restric-
tion analysis or COBRA, deep sequencing, and microarray
analysis demonstrated that the genomic distribution of the
methylation of LINE-1s and other IRS loci is not
homogenous (Phokaew et al. 2008; Xie et al. 2009, 2011;
Szpakowski et al. 2009). The methylation levels of LINE-1
loci can be divided into three groups: hypermethylated,
partially methylated, and hypomethylated (Pobsook et al.
2011). Classification is based on the number of methylated
and unmethylated CpG dinucleotides (Fig. 1). In normal
cells, the majorities of LINE-1 loci are hypermethylated or
partially methylated. Few LINE-1 loci are hypomethylated.
Comparisons between normal white blood cells and normal
oral epithelium showed that even though LINE-1 methyl-
ation levels are different, the number of hypomethylated
loci was not distinguishable between the two normal tissues
(Fig. 4). Therefore, the differences in methylation levels
between normal cell types are primarily influenced by the
number of hypermethylated and partially methylated loci.
In cancer cells, the methylation of a majority of LINE-1
loci is decreased, with some loci remaining unchanged and
a few being increased when compared with normal cells.
Thus, the number of hypomethylated loci is increased in
cancer cells (Fig. 4).

A recent report showed distinctive characteristics of
LINE-1 partial methylation that was dependent on malig-
nant transformation (Pobsook et al. 2011). In normal cells,
the number of partially methylated LINE-1 loci in each
sample was directly correlated with the number of
hypomethylated loci, but was inversely associated with
the number of hypermethylated loci. This result suggested
that a dynamic form of LINE-1 epigenetic modification,
between partial methylation and hypermethylation, is
present in normal cells. Because hypomethylated LINE-1s
were not distinguishable between different types of normal
cells, the dynamic between the partially methylated and
hypermethylated forms may be the cause of the variation in
LINE-1 methylation levels between normal cell types.
Moreover, the more partially methylated loci may represent
the lower LINE-1 methylation level. In contrast, in the
cancer genome, the number of partially methylated LINE-
1s was directly correlated with the number of hyper-
methylated LINE-1s. Therefore, in striking contrast to the
normal genome, partially methylated LINE-1 loci represent
a subset of methylated LINE-1s in cancer cells (Pobsook et
al. 2011). Current PCR-based techniques, by real-time
quantitative PCR, COBRA, and pyrosequencing, determine
LINE-1 hypomethylation levels by combining all unmethy-
lated CpG nucleotides from both partially methylated or
hypomethylated loci (Xiong and Laird 1997; Laird 2010;
Weisenberger et al. 2005; Yang et al. 2004). Therefore, the
sensitivity in distinguishing cancer DNA is low. Pobsook et
al. (2011) also showed that excluding partial methylation
loci from the count of hypomethylated LINE-1 loci
improved the sensitivity and specificity of cancer DNA
detection.

From biology to clinical application and future direction
of LINE-1 hypomethylation in cancer

Understanding how LINE-1 methylation levels change
during multistep carcinogenesis has implications for
diagnostic applications. Several LINE-1 and other IRS
methylation studies have shown that global hypomethy-
lation is a common epigenetic change in cancer
(Table 1). Moreover, this process is directly correlated
with cancer progression. Therefore, lower LINE-1 meth-
ylation levels have been shown to be associated with
higher cancer stages and may also be a promising marker
for the prognostic prediction of many cancers (Table 2
and ESM Table 1). Global methylation changes initiate
early, and the genome becomes progressively hypo-
methylated during the process of multistep carcinogene-
sis. Therefore, LINE-1 and other IRS hypomethylation
levels are candidate tumor markers for cancer (Table 2
and ESM Table 1).

Fig. 4 Examples of LINE-1 methylation patterns in three cells. The
number of LINE-1 loci and the methylation levels were approximated
from the average levels of a previous report (Pobsook et al. 2011).
Type I normal cells (a), type II normal cells (b), and cancer cells (c)
possess LINE-1 methylation levels of 60.87%, 56.52%, and 44.44%,
respectively. Even though different normal cell types contain different
methylation levels, the numbers of partially methylated, hypermethy-
lated, and hypomethylated loci were not different. Cancer cells
showed lower methylation levels and a lower number of partially
methylated loci, but a higher number of hypomethylated LINE-1 loci
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There is a technical advantage to using PCR-based
assays to measure IRS methylation levels. Multiple copies
of IRSs are present in the genome; therefore, this detection
method is highly sensitive even in poor-quality clinical
DNA samples. These clinical samples include paraffin-
embedded sections, plasma, and other fluid or washes, such
as oral rinses (Chalitchagorn et al. 2004; Tangkijvanich et
al. 2007; Aparicio et al. 2009; Subbalekha et al. 2009)
(Vaissiere et al. 2009). LINE-1 hypomethylation was also
detected in the white blood cells of cancer patients
(Hsiung et al. 2007; Wilhelm et al. 2010). The source of
the hypomethylated cells in cancer patients still needs to
be identified to determine whether these cells are from
cancer cells or from normal cells with systemic hypo-
methylated LINE-1s. Nevertheless, this evidence suggests
that LINE-1 methylation is a promising marker in cancer
risk prediction.

Cells must have a correct amount of LINE-1 methylation
to maintain their physiological functions (Aporntewan et al.
2011). Consequently, there is a wide range of LINE-1
methylation levels found in normal cells, depending on cell
type (Chalitchagorn et al. 2004). This methylation range
leads to low specificity when using LINE-1 hypomethyla-
tion as a cancer screening marker. The ability to distinguish
between normal and tumor DNA is low, particularly
because clinical samples, including plasma, mouth washes,
or Papanicolaou smears, are routinely contaminated with
DNA from several normal cell types. LINE-1 methylation
pattern analysis demonstrated unprecedented characteristics
of LINE-1 partial methylation in normal cells and in the
cancer global hypomethylation process (Pobsook et al.
2011). The interchangeable pattern between LINE-1 hyper-
methylation and partial methylation is a mechanism that
may result in different LINE-1 methylation levels in normal
cells (Pobsook et al. 2011). In cancer, global hypomethy-
lation is observed because of the loss of methylation of
previously hypermethylated and partial methylated loci.
Most PCR-based LINE-1 methylation measurement tech-
niques cannot differentiate unmethylated CpG dinucleo-
tides of partially methylated LINE-1s from unmethylated
LINE-1s. There was a recent report using COBRA to
classify LINE-1s into the three classes. This report
showed that the number of unmethylated LINE-1 loci
was a more sensitive and specific marker than LINE-1
methylation level to detect cancer DNA in mouthwash
samples (Pobsook et al. 2011). It may be interesting to
compare the number of unmethylated LINE-1 loci with
LINE-1 methylation levels in other clinical samples.
Moreover, it may be worth exploring whether changes in
partially methylated LINE-1 loci can be observed in, and
are able to predict, malignant transformation in pathological
lesions in the very early stages of carcinogenesis or tissues in
patients at risk of developing cancer.

Although the methylation of a majority of LINE-1 loci is
reduced in cancer, some loci are unchanged. Currently,
there are several advanced genomic techniques, including
deep sequencing (Xie et al. 2009; Xie et al. 2011) and
custom-made microarrays (Szpakowski et al. 2009), that are
capable of measuring the methylation level of each LINE-1
or IRS locus. These approaches identified certain classes of
LINE-1s and IRSs that more frequently show loss of
methylation in cancer. Improved deep sequencing techni-
ques will be able to determine the proportions of the three
LINE-1 methylation classes at each LINE-1 locus. It is
important to reevaluate the clinical significance of LINE-1
methylation by these advanced techniques. These methods
should help define the relevant LINE-1 locations, sequen-
ces, and methylation patterns that are specific to carcino-
genesis. Moreover, some intragenic LINE-1 loci are
methylated cis-regulatory elements of their host genes
(Aporntewan et al. 2011). Altered expression of these
genes may lead to certain cellular phenotypes and clinical
presentations. Genome-wide arrays or deep sequencing
may be used to design promising new sets of methylated
LINE-1 PCR-based techniques specifically aimed for the
classification of the epigenome of the tumor phenotype.

Interestingly, some pathological lesions with increased
potential for malignant transformation, such as myelodys-
plastic syndrome lesions, liver cirrhosis, and partial
hydatidiform moles, possess LINE-1 hypermethylation
(Takai et al. 2000; Romermann et al. 2007; Perrin et al.
2007). Further descriptive studies of other lesions, genomic
distributions, and methylation patterns will clarify in detail
whether this epigenetic process occurs during the early
steps of LINE-1 hypomethylation in cancer. It is important
to note that genome-wide hypomethylation in cancer can
result in hypermethylated LINE-1s at some loci (Fig. 4;
Phokaew et al. 2008). If LINE-1 hypermethylation and
hypomethylation are present at the same loci in premalig-
nant tissues and cancer, this finding would be a break-
through by showing that epigenomic changes precede
genetic changes during carcinogenesis. Detailed molecular
biological approaches to explain how LINE-1 methylation
fluctuates from hypermethylation to hypomethylation will
be important to understand the development of global
hypomethylation in cancer.

Finally, global hypomethylation mechanisms may be
crucial for future cancer prevention and treatment. Genome-
wide hypomethylation is common, occurs at an earlier stage
of carcinogenesis, and is still an active process in most
cancers (Tables 1 and 2 and ESM Table 1). Global
hypomethylation is an epigenomic process that leads to
cellular phenotypic changes. LINE-1 hypomethylation in
cancer alters the expression of a large number of genes.
Therefore, this epigenomic alteration should be an impor-
tant target for future cancer prevention strategies. More-
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over, unlike mutation, hypomethylation is reversible.
Therefore, global hypomethylation in cancer is a candidate
for new cancer treatments in the future.
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