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Abstract This study examined molecular (DNA hyper-
methylation), clinical, histopathological, demographical,
smoking, and alcohol variables to assess diagnosis (early
versus late stage) and prognosis (survival) outcomes in a
retrospective primary laryngeal squamous cell carcinoma
(LSCC) cohort. The study cohort of 79 primary LSCC
was drawn from a multi-ethnic (37% African American),
primary care patient population, diagnosed by surgical
biopsies in the Henry Ford Health System from 1991 to
2004 and followed from 5 to 18 years (through 2009).
Of the 41 variables, univariate risk factors of p<0.10
were tested in multivariate models (logistic regression
(diagnosis) and Cox (survival) models (p<0.05)). Aber-
rant methylation of estrogen receptor 1 (ESRI; p=0.01),
race as African American (p=0.04), and tumor necrosis
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(extensive; p=0.02) were independent predictors of late
stage LSCC. Independent predictors of poor survival
included presence of vascular invasion (p=0.0009), late
stage disease (p=0.03), and methylation of the hyper-
methylated in cancer 1 (HICI) gene (»p=0.0002). Aberrant
methylation of ESRI and HICI signified independent
markers of poorer outcome. In this multi-ethnic, primary
LSCC cohort, race remained a predictor of late stage
disease supporting disparate diagnosis outcomes for
African American patients with LSCC.
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Introduction

Laryngeal cancer represents the largest subgroup of head
and neck cancers (Clayman et al. 2000). Roughly 12,250
new cases of laryngeal cancer are diagnosed each year in
the USA (Horner et al. 2009). Given the fundamental role
the larynx plays in human speech and communication,
determining the optimal management of laryngeal cancers
is critical. Treatment options comprise radiotherapy, sur-
gery, chemotherapy or a combination of modalities. Despite
refinement of multimodal therapies over the last 20 years,
5-year survival rates of 40% have remained static since the
mid-1980s (Parkin et al. 2001).

Although the importance of genetic alterations in cancer
has long been recognized, the appreciation of epigenetic
changes is more recent and growing. The term “epigenetics”
defines all meiotically and mitotically heritable changes in
gene expression that are not coded in the DNA sequence itself
(Egger et al. 2004). Establishment and maintenance of
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epigenetic control (gene silencing) has several aspects, which
include promoter region hypermethylation, methyl-binding
proteins, DNA methyltransferases (DNMTs), histone deace-
tylases (HDAC), and chromatin state.

DNMTs are enzymes that catalyze the methyl-transfer
reaction. Global cytosine methylation patterns in mammals
appear to be established by an interplay of three DNMTs:
DNMT1, DNMT3A, and DNMT3B. The role of DNMTs is
evolving from mere enzymes that copy methylation patterns
after replication to being regarded as components of larger
complexes actively involved in transcriptional control and
chromatin structure modulation (Robertson 2001).

In addition to DNMTs, HDACs play a role in
repressing DNA transcription. The HDACs deacetylate
core histone tails resulting in tighter packaging of the
DNA, making it difficult for transcription factors to
access their binding sites (Robertson and Wolffe 2000).
Following DNA methylation, methyl-CpG-binding pro-
teins are recruited along with HDACs. This link between
DNA methylation and histone deacetylation has been
demonstrated by treating cells with a combination of the
DNMT inhibitor 5-aza-2'-deoxycytidine (5-azaCdR) and
the HDAC inhibitor trichostatin A (TSA). Treatment with
5-azaCdR alone resulted in low-levels of re-expression
and minimal demethylation of hypermethylated genes, but
a combination of 5-azaCdR and TSA resulted in robust
activation of the same genes (Cameron et al. 1999),
revealing that DNA methylation and histone deacetylation
work together to silence transcription but also that DNA
methylation was dominant over histone acetylation status.

Hypermethylation is a well-described DNA modification
that has been implicated in normal mammalian development
(Costello and Plass 2001; Li et al. 1992), imprinting (Li et al.
1993), and X chromosome inactivation (Pfeifer et al. 1990).
CpG islands, which are stretches of DNA with a GC content
greater than 55% (Takai and Jones 2002) located in promoter
regions of genes, are mainly unmethylated in normal tissues.
Methylation of these CpG islands causes stable heritable
transcriptional silencing (Egger et al. 2004). This anomalous
hypermethylation has been noted in a variety of tumor-
suppressor genes, whose inactivation has led many cells
down the tumorigenesis continuum (Jones and Laird 1999;
Baylin et al. 1998; Chan et al. 2000). Aberrant methylation
of CpG islands is a hallmark of human cancers and is found
early during carcinogenesis (Egger et al. 2004). Numerous
tumor-suppressor genes have been implicated as targets for
methylation in other cancers (Cairns 2004; Kim et al. 2004;
Roman-Gomez et al. 2004). Promoter hypermethylation of
genes in HNSCC have been reported for p16, pl4, DAPK,
RASSF1A, RARf32, MGMT, a DNA repair gene that functions
to remove mutagenic (O°-guanine) adducts from DNA, and
E-cadherin, a Ca®'-dependent cell adhesion molecule that
functions in cell-cell adhesion, cell polarity, and morpho-
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genesis (Esteller et al. 2001; Sanchez-Cespedes et al. 2000;
Worsham et al. 2006; Zou et al. 2001; Pegg 1990; Hirohashi
1998).

Molecular and genetic prognosticators have been shown
to play a role in the prevention, diagnosis, radiotherapy
outcomes, and appropriateness of adjuvant chemotherapy
for a wide spectrum of cancers (Lazarus et al. 1996),
including laryngeal squamous cell carcinoma (LSCC).
Diagnosis, prognosis, and treatment of these malignancies
are expected to be greatly enhanced by the identification of
tumor markers specific for LSCC.

Prognostic marker systems based on single parameters
have generally proven inadequate. This study incorpo-
rated a multi-parametric platform comprising molecular
(DNA hypermethylation), clinical, histopathological, de-
mographical, and epidemiological risk variables includ-
ing smoking and alcohol to model diagnosis (early
versus late stage) and prognosis (survival) outcomes in
LSCC.

Materials and methods
Cohort

The retrospective study cohort of 79 primary LSCC was
examined for a comprehensive set of 41 variables to
include eight histopathology factors (Sethi et al. 2009):
tumor grade (well, moderate, and poorly differentiated),
lymphocytic response (continuous rim/patchy infiltrate/
absent), desmoplastic response (prominent and diffuse/
patchy and irregular/focal/absent), pattern of invasion
(host/tumor interface with pushing cohesive borders
(mode 1)/solid cords (mode 2)/thin irregular cords(mode
3)/single cells(mode 4)), vascular invasion (identified/
absent), perineural invasion (identified/absent), mitotic
index (<5 mitosis per ten high power fields (HPF) and
>5 mitosis per ten HPF), and necrosis (extensive/minimal/
absent); demographics (four variables: race (as self-
reported), gender, age, and marital status); clinical factors
(three wvariables: comorbidity, pneumonia, and family
history of cancer); smoking and alcohol; and promoter
methylation status of 24 tumor-suppressor genes.

Patient tissue material for this study was obtained
according to the Henry Ford Health System institutional
review board protocols.

DNA extraction

Whole 5-um tissue sections or microdissected LSCC
lesions and adjacent normal when present were processed
for DNA extraction as previously described (Stephen et
al. 2007).
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Methylation-specific multiplex ligation-dependent probe
amplification (MS-MLPA) assay

Archival tissue DNA was interrogated for methylation
status using the multi-gene methylation-specific multiplex
ligation-dependent probe amplification (MS-MLPA) assay.
MS-MLPA (Worsham et al. 2006; Chen et al. 2007), a
modification of the conventional MLPA assay (Schouten et
al. 2002), allows for the simultaneous detection of changes
in methylation status as well as copy number changes of
approximately 41 different DNA sequences in a single
reaction requiring only 20 ng of human DNA.

Briefly, the MS-MLPA panel in the presence of Hhal
detects aberrant promoter hypermethylation by taking
advantage of an Hhal site in the gene probe of interest.
The control gene probes, without an Hhal site, serve as
undigested controls. A normal control DNA sample will
generate 41 individual peaks for all probes in the absence of
Hhal and 15 separate peaks in the presence of Hhal
(Fig. 1). Normal controls for methylation assays are run
using DNA from paraffin-embedded squamous epithelium
from individuals with no evidence of cancer.

Gene probe panels

The 41 gene probe panel (MEOO1B, www.mlpa.com) used
in this cohort interrogates 38 unique genes (24 tumor-
suppressor genes) implicated in squamous head and neck
cancer (HNSCC) for methylation status in two separate
reactions (one in the absence of the methyl-sensitive
enzyme Hhal and one in the presence of the Hhal enzyme).
There are two probes each for MLHI, RASSFI, and
BRCA2, and a normal control DNA sample will generate
41 individual peaks in the absence of Hhal and 15
individual peaks in the presence of Hhal (Fig. 1).

a Normal

Data analysis

Logistic regression and Cox regression models were
used to determine risk factors for diagnosis (early vs.
late stage) and for prognosis (survival), respectively.
Univariate analysis was followed by multivariable
modeling. Variables with p<0.10 in the univariate
analysis were tested as independent predictors in the
multivariable modeling process. The final multivariate
logistic regression (diagnosis) and Cox (survival) models
included variables with p<0.05. In order to address the
issue of multiple comparisons, the multivariable stage
model was selected by following the ten observations/
events for each variable guideline (Harrell et al. 1984).
Kaplan—Meier curves were generated to illustrate survival
outcomes for independent risk factors.

Results

Of the 79 primary LSCC, 45 were Caucasian American
(CA), 32 (41%) were African American (AA), and 2 were
other race; 38 were with early stage, 40 late stage, and 1
unknown stage. There were 59 males and 20 females. Other
cohort characteristics including age, smoking status, and
alcohol use are presented in Table 1.

Of the 24 tumor-suppressor genes, 17 were aberrantly
methylated in at least one case to include TIMP3, APC,
CDKN2A4, MLHI, RARB, CDKN2B, hypermethylated in
cancer 1 (HICI), CHFR, BRCA2, RASSFI, DAPKI,
estrogen receptor 1 (ESRI), TP73, IGSF4, CDHI13, GSTP1,
and CDKNIB. The most frequently methylated genes were
GSTPI (34/79), CDH13 (27/79), TP73 (18/79), RARB (17/
79), APC (13/79), CHFR (12/79), DAPKI (11/79),
CDKN2A4, and ESRI (10/79).

ol bk

DAPK1 ESR1

Fig. 1 a A normal control DNA sample generates 41 individual
peaks for all probes in the absence of Hhal (red) and 15 separate
peaks in the presence of Hhal (blue). b Aberrant methylation

identified in tumor sample as the appearance of a signal peak that is
otherwise absent in normal DNA samples, seen here for APC,
CHFR, DAPKI, and ESRI
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Table 1 Cohort characteristics
Variable Response
Race African American
Caucasian American
Other
Gender Male
Female
Age Less than 50 years
51-65 years
Over 65 years
Smoking Current smoker

Past smoker
Never smoker
Alcohol use®  No

) Yes
# Missing for ten LSCC

11 20 1
27 18 -
_ 2 _
29 29 1
9 11 —
18 16 1
14 17 _
6 7 -
21 26 1
16 11 -
1 3 -
1 1 -
31 35 1

Four variables, ESR1, APC, tumor necrosis, and race, with
univariate effects for late stage (p<0.10) were included in the
first multivariable model. After modeling, aberrant methyl-
ation of ESRI (p=0.014, OR=16.35; 95% ClI, 1.75, 152.5),
race (p=0.035, OR=3.17; 95% CI, 1.08, 9.26), and
extensive tumor necrosis (p=0.018, OR=5.15; 95% CI,
1.33, 20.01) remained in the final model as independent
predictors of late stage LSCC (Table 2). The area under the
curve, a measure of the model's predictive ability, was 0.78.

The median survival for patients in this cohort was
4.40 years (range, 0.04 to 16.21). Five variables, HICI,
DAPK]I, vascular invasion, comorbidity, and stage, with
individual effects (p<0.10) for poor survival were included
in the initial multivariable model. The final multivariate
survival (Otterson et al. 1995) model indicated vascular
invasion (p=0.0009, HR=4.51; 95% CI, 1.86, 10.93), late
stage disease (p=0.029, HR=2.16; 95% CI, 1.08, 4.32),
and methylation of the HI/CI gene (p=0.0002, HR=9.52;
95% CI, 2.92, 31.01) as independent predictors of poor
survival (Table 3). Kaplan—Meier curves, generated for
each risk variable retained in the final multivariable model,
are illustrated in Figs. 2, 3, and 4. LSCC patients with
vascular invasion (n=8, adjusted p<0.01) had a signifi-
cantly shorter survival time as compared to patients without
vascular invasion (n=69, Fig. 2). LSCC patients with late
stage disease (n=40, stages 3 and 4, adjusted p=0.029) had
poorer survival as compared to those with early stage
disease (n=38, stages 0, 1, and 2, Fig. 3). LSCC patients
without HIC1 methylation (»=74) had a median survival of

4.40 (range, 0.04 to 16.21) as compared to a median
survival of 1.02 years (range, 0.044 to 2.88) for patients
with HICI methylation (n=5, adjusted p<0.01, Fig. 4).

Discussion

Epigenetic mechanisms involve DNA and histone modifi-
cations resulting in the heritable silencing of genes without
a change in their coding sequence. The major form of
epigenetic information in mammalian cells is DNA meth-
ylation, or the covalent addition of a methyl group to the
fifth position of cytosine within CpG dinucleotide predom-
inantly located in the promoter region, which normally
remains unmethylated in normal cells (Jones and Laird
1999; Baylin et al. 1998). The consequence of CpG island
hypermethylation, especially for those islands associated
with tumor-suppressor gene promoters, is the loss of tumor-
suppressor gene function, which contributes to tumorigene-
sis (Worsham et al. 2003). Gene silencing, as a consequence
of promotor hypermethylation, can be partially relieved by
demethylation of the promoter region (Jones and Laird
1999; Baylin and Herman 2000). Recent work has revealed
that DNA methylation is an important player in many
processes, including DNA repair, genome instability, and
regulation of chromatin structure (Jones and Laird 1999;
Jones and Baylin 2002).

Promoter methylation-mediated silencing is a hallmark
of many established tumor-suppressor genes. Aberrant

Table 2 Multivariable stage

model Variable OR 95% confidence limits p value
ESRI: methylation vs no methylation 16.35 1.75 152.5 0.014
Tumor necrosis: extensive vs none 5.15 1.33 20.01 0.018
Race: African American vs Caucasian American 3.17 1.08 9.26 0.035
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Table 3 Multivariable survival ] ] o

model Variable Hazard ratio 95% confidence limits p value
Stage: late vs early 2.16 1.08 4.32 0.029
HICI: methylation vs no methylation 9.52 2.92 31.01 0.0002
Vascular invasion: identified vs not identified 4.51 1.86 10.93 0.0009

methylation of promoter CpG islands, as an alternative to
gene mutation or deletion in tumorigenesis, iS now
recognized as an important mechanism for gene inactiva-
tion (Baylin et al. 1998). Previous studies from our group
and others have demonstrated aberrant DNA methylation
patterns in HNSCC, underscoring a role for epigenetics in
tumor pathogenesis.

Genes found to be methylated in LSCC and HNSCC
include CDKN2A4, CDKN2B, DAPKI1, IGSF2, MLHI, and
RBI. Inactivation of the CDKN2B/p15, CDKN2A/p14, and
CDKN2A/p16 genes is a frequent event in human oral
squamous cell carcinomas (Worsham et al. 2006; Shintani
et al. 2001). The presence of aberrant methylation of p15
and pl6 in precancerous oral tissues (Shintani et al. 2001)
implicates methylation of p15 and p16 as early events in the
pathogenesis of oral lesions.

Aberrant promoter methylation of DAPK/ has been shown
to frequently occur in human head and neck cancers
(Worsham et al. 2006; Sanchez-Cespedes et al. 2000), non-
small-cell lung carcinomas (Esteller et al. 1999), gastric and
colorectal carcinomas (Lee et al. 2002; Satoh et al. 2002), and
uterine cervical carcinomas (Dong et al. 2001). In HNSCC,
DAPKI promoter hypermethylation has been associated with
metastasis to lymph nodes as well as advanced disease stage
(Sanchez-Cespedes et al. 2000). Promoter hypermethylation

of IGSF2, a novel immunoglobulin-like intercellular adhesion
molecule first characterized as a tumor suppressor of non-
small cell lung cancer and termed 7SLC!/ (Kuramochi et al.
2001), has been reported in nasopharyngeal carcinomas (Hui
et al. 2003). In esophageal squamous cell carcinomas, loss of
expression correlated with promoter methylation status and
TSLC1 expression was restored by demethylating agents in
cell lines (Ito et al. 2003).

MLH]I belongs to the group of genes controlling
mismatch repair (Arzimanoglou et al. 2002), and its frequent
methylation in dysplastic lesions of HNSCC samples
indicates MLHI methylation as an early event in HNSCC
tumorigenesis (Ghosh et al. 2010). RBI plays an important
role in cell cycle control (RB pathway) (Sherr 1996;
Yokoyama et al. 1996). RBI has been found to be
methylated in oral squamous cell cancers, where it is highly
correlated with tobacco use and/or alcohol consumption
(Malekzadeh et al. 2009).

In this LSCC cohort, aberrant methylation of ESR/ and
HICI was an independent predictor of late stage diagnosis
and poorer survival outcomes, respectively. ESRI, at
6q25.1, is important for hormone binding, DNA binding,
and activation of transcription (Ponglikitmongkol et al.
1988). ESRI has metastasis-suppressor properties, suggest-
ing a tumor-suppressor role for ESRI (Issa et al. 1994).

Fig. 2 Patients with vascular 1.0
invasion (n=8) had a signifi-
cantly shorter survival time as
compared to patients without
vascular invasion (n=69) 0.8
2
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Fig. 3 Patients with late stage 1.0 4
disease (n=40, stage 3 and 4)
had poorer survival as compared
to those with early stage disease
(n=38, stage 0, 1, and 2) 0.8
2
£ 0.6
L
[
-
£
E 0.4 4
=
w
0.2 4
0.0
1
2

+ Censored

Adjusted p-value = 0.029

6
2

25
15

1
0

o488

T T
10 15

Survival time (years)

Stage Late (3 and 4), N=40

Methylation of CpG sites in the ESR/ promoter, with
concordant loss or downregulation of ESR/ expression, is
the primary mechanism in prostate cancer (Li et al. 2000).
ESRI exhibits age-dependent methylation in colon mucosa
(Issa et al. 1994), the cardiovascular system (Post et al.
1999), ulcerative colitis (Issa et al. 2001), and prostate
cancer, suggesting that ESR/ may be involved in age-
dependent increase in cancer incidence.

Epigenetic silencing of HICI has been shown to
significantly influence tumorigenesis (Rathi et al. 2003).
The underlying mechanism is via HIC!'s regulation of p53-
dependent apoptotic DNA-damage responses through the
HIC1-SIRT1-p53 circular loop (Chen et al. 2004). HICI
encodes a transcriptional repressor with five Kruppel-like
C2H2 zinc finger motifs and an N-terminal BTB/POZ
domain (Wales et al. 1995). SIRT1 is an NAD*-dependent

Fig. 4 Methylation of HICI 1.0 4
was an independent predictor of + Censored
poorer survival. LSCC patients
without HI/CI methylation (n=
74) had a median survival of 0.8 1
4.40 (range, 0.04 to 16.21) as
compared to a median survival = =
of 1.02 years (range, 0.044 to g 06 LIH—H-H—-l"
2.88) for patients (n=35) with = Y
HICI methylation E —+— }
E ol |
= 0.4 L ira
g = — == 1
‘A — o — e b —b—t
0.2
0.0 1 Adjusted p-value <0.01
1 5 0
2 74 41 19 8 1
T T T T
0 5 10 15
Survival time (years)
1: HICI Methylation (N=5); 2: ———~ HICI No Methylation (N=74)

@ Springer



Clin Epigenet (2010) 1:61-69

67

deacetylase, which is important for chromatin silencing,
gene regulation, metabolism, and longevity (Haigis and
Guarente 2006) and is a direct target of H/C/ via the POZ
domain (Chen et al. 2005). Under normal physiological
conditions, actively expressed HICI represses SIRTI
transcription, thereby allowing acetylation of p53 to
enhance its function to control growth arrest and apoptosis
in response to stress, such as DNA damage (Chen et al.
2004). During the course of aging, the HICI promoter
undergoes hypermethylation, and this could set up tran-
scriptional silencing of HIC! and release its repressive
effects on SIRTI resulting in deacetylation of core histone
and non-histone (p53) proteins. Chronic p53 deacetylation
would attenuate its ability to transactivate or repress the
expression of its downstream target genes for growth arrest
and apoptosis, allowing cells to bypass these events and
survive DNA damage (Chen et al. 2004). Deregulation of
HIC1-SIRT1-p53 is a potential prognostic biomarker in
lung cancer (Tseng et al. 2009). In pediatric tumor cell lines
with aberrantly methylated HICI, re-expression of HIC!
mRNA was induced by treatment with demethylating agent
5-aza 2' deoxycytidine (Moscow et al. 1988).

In this cohort, survival of the five LSCC patients with
HIC] methylation of less than 3 years was remarkably
poorer when compared to those without HI/CI methylation
(Fig. 4). LSCC patients without H/ICI methylation (n=74)
had a median survival of 4.40 (range, 0.04 to 16.21) as
compared to a median survival of 1.02 years (range, 0.044
to 2.88) for patients with HICI methylation. As an
independent predictor of poor survival in this LSCC cohort,
an aberrantly methylated HICI gene suggests a potential
demethylating therapeutic target.

The most frequently methylated genes in this study
cohort were GSTP! (34/79), CDH13 (27/79), TP73 (18/79),
RARB (17/79), APC (13/79), and CHFR (12/79) and
underscore their involvement in the pathogenesis of LSCC.

Glutathione S-transferase pi (GSTPI) encodes for the
glutathione S-transferase pi enzyme which plays an important
role in detoxification. Promoter hypermethylation pattern of
the p16, MGMT, GSTP1, and DAPK genes have been used as
molecular markers for cancer cell detection in the paired
serum DNA, and almost half of the HNSCC patients with
methylated tumors were found to display these epigenetic
changes in the paired serum (Sanchez-Cespedes et al. 2000).

Aberrant methylation of CDHI3 gene was reported in
colorectal, breast, lung cancers, and as a primary event in
HNSCC cell lines (Worsham et al. 2006). In its tumor
suppressor role of maintaining cell adhesion integrity,
methylation-mediated silencing of CDH13 would allow tumor
cells to spread, facilitating metastasis and poorer survival.

TP73 codes a product which has significant structural
homology to the 7P53 gene product in the domains
involving transactivation, DNA binding, and oligomeriza-

tion (Dong et al. 2002). In HNSCC, hypermethylation of
TP73 occurred as a primary as well as a disease progression
event (Worsham et al. 2006).

Promoter hypermethylation of 4PC has been reported in
25% of oral cancers (Uesugi et al. 2005). Aberrant
promoter methylation of APC and RARB in early and late
stage HNSCC suggests these occur as earlier epigenetic
events when compared to methylation of CHFR (Chen et al.
2007). In this LSCC cohort, CHFR methylation occurred in
eight early and four late stage tumors and, unlike HIC/, did
not emerge as in independent predictor of late stage disease.

A current shortcoming in the more rigorous analysis of
racial disparities in HNSCC is a dearth of study cohorts
with adequate representation of minority patients. In this
LSCC cohort, with 41% AA patient representation, AA
were more likely to have advanced stage disease than their
CA counterparts, and this is consistent with previous
HNSCC studies from our group (Sethi et al. 2009).

There is substantial evidence that lack of adequate health
insurance coverage is associated with less access to care
and poorer outcomes for cancer patients (Ward et al. 2008),
supporting insurance and cost-related barriers to high-
quality prevention, early detection, and treatment as
important measures to assess cancer disparities. Patients in
this study cohort were primary LSCC within a primary
health care setting. Of the 79 LSCC, insurance status was
available in 69 (missing in 10/79), and only 1/69 lacked
insurance, presenting a limitation of this variable in data
analyses outcomes for this cohort.

Tumor behavior is dependent on a complex interrelation-
ship between the tumor and patient (Sethi et al. 2009), and
several studies have suggested expansion of the current
TNM staging system to include host factors to augment the
clinical utility and progress in cancer staging. In the present
study, we evaluated the association of a broad spectrum of
tumor histopathology characteristics at primary diagnosis in
a diverse primary care LSCC cohort. Extensive tumor
necrosis (p=0.018) was an independent predictor of late
stage disease and concurs with a highly significant associ-
ation of necrosis and higher node-positive disease in HNSCC
(Kuhnt et al. 2005).

Vascular invasion has been significantly correlated with
cancers of the floor of the mouth (Suzuki et al. 2007), but
there is a lack of information with respect to vascular
invasion and LSCC. In this cohort, presence of vascular
invasion (p=0.0009) was a predictor of poor survival.

Smoking and alcohol abuse are well-established risk
factors for LSCC (Hashibe et al. 2007). In this study cohort,
the majority of patients were either current or past smokers
(75/79) and alcohol users (67/69), reiterating the role of
these risk factors in the pathogenesis of LSCC.

Epigenetic events of promoter hypermethylation are
emerging as promising molecular targets for cancer detection

@ Springer



68

Clin Epigenet (2010) 1:61-69

and represent an important tumor-specific marker in tumori-
genesis. Aberrant methylation of ESR/ and HICI were
independent predictors of late stage LSCC and poorer
survival, respectively. A limitation of this study remains the
relatively small number of patient samples and its retrospec-
tive analysis. Validation of these findings in larger LSCC
cohorts would further support these genes as important DNA
methylation markers with a role in treatment given the
reversible nature of promoter methylation-associated gene
silencing. Race remained a predictor of late stage disease
supporting disparate diagnosis outcomes for African American
patients with LSCC.
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