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Abstract 

Background  This work delves into the relationship between cardiovascular health (CVH) and aging. Previous studies 
have shown an association of ideal CVH with a slower aging rate, measured by epigenetic age acceleration (EAA). 
However, the causal relationship between CVH and EAA has remained unexplored.

Methods and results  We performed genome-wide association studies (GWAS) on the (12-point) CVH score and its 
components using the Taiwan Biobank data, in which weighted genetic risk scores were treated as instrumental 
variables. Subsequently, we conducted a one-sample Mendelian Randomization (MR) analysis with the two-stage 
least-squares method on 2383 participants to examine the causal relationship between the (12-point) CVH score 
and EAA. As a result, we observed a significant causal effect of the CVH score on GrimAge acceleration (GrimEAA) (β 
[SE]: − 0.993 [0.363] year; p = 0.0063) and DNA methylation-based plasminogen activator inhibitor-1 (DNAmPAI-1) (β 
[SE]: − 0.294 [0.099] standard deviation (sd) of DNAmPAI-1; p = 0.0030). Digging individual CVH components in depth, 
the ideal total cholesterol score (0 [poor], 1 [intermediate], or 2 [ideal]) was causally associated with DNAmPAI-1 (β 
[SE]: − 0.452 [0.150] sd of DNAmPAI-1; false discovery rate [FDR] q = 0.0102). The ideal body mass index (BMI) score 
was causally associated with GrimEAA (β [SE]: − 2.382 [0.952] years; FDR q = 0.0498) and DunedinPACE (β [SE]: − 0.097 
[0.030]; FDR q = 0.0044). We also performed a two-sample MR analysis using the summary statistics from European 
GWAS. We observed that the (12-point) CVH score exhibits a significant causal effect on Horvath’s intrinsic epigenetic 
age acceleration (β [SE]: − 0.389 [0.186] years; p = 0.036) and GrimEAA (β [SE]: − 0.526 [0.244] years; p = 0.031). Further‑
more, we detected causal effects of BMI (β [SE]: 0.599 [0.081] years; q = 2.91E-12), never smoking (β [SE]: − 2.981 [0.524] 
years; q = 1.63E-7), walking (β [SE]: − 4.313 [1.236] years; q = 0.004), and dried fruit intake (β [SE]: − 1.523 [0.504] years; 
q = 0.013) on GrimEAA in the European population.

Conclusions  Our research confirms the causal link between maintaining an ideal CVH and epigenetic age. It pro‑
vides a tangible pathway for individuals to improve their health and potentially slow aging.

Introduction
The American Heart Association defined cardiovascular 
health (CVH) as a combination of three clinical factors 
(total cholesterol level, fasting glucose, and blood pres-
sure) and four lifestyle factors (body mass index [BMI], 
smoking, physical activity, and dietary habits) [1]. Pre-
vious studies have shown that ideal CVH is inversely 
associated with the risk of several illnesses, including 
cardiovascular disease (CVD), chronic diseases, stroke, 
and type 2 diabetes mellitus (T2DM), as well as all-cause 
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mortality [2–5]. Moreover, ideal CVH is associated with 
a longer lifespan and a better quality of life [6].

Epigenetic age is a promising molecular measure of 
biological age. It is constructed by DNA methylation 
(DNAm) levels at critical cytosine–phosphate–guanine 
sites (CpGs) [7–10], and it can dynamically reflect physi-
ological conditions associated with human aging [11–13]. 
By regressing the “DNAm age” (or epigenetic age) on 
chronological age, we may obtain residuals serving as 
epigenetic age acceleration (EAA). With the advance-
ment of epigenetics, EAA gradually becomes a popular 
measure of the human aging rate [14–18].

Epigenetic clocks can be roughly divided into three 
generations. The HannumAge [19] and HorvathAge [8] 
were called the first-generation epigenetic clocks, esti-
mated by 71 and 353 CpGs, respectively. Both highly pre-
dict chronological age [9, 20] but are less related to CVH 
[21]. On the other hand, PhenoAge [22] and GrimAge 
[23, 24] were regarded as the second-generation epige-
netic clocks. PhenoAge [22] was estimated by 513 CpGs 
predictive of a "phenotypic age." GrimAge [23, 24] was 
calculated by 1,030 CpGs associated with several plasma 
proteins and smoking pack-years. The first-generation 
epigenetic clocks focus on estimating chronological age 
[9, 25], while the second-generation counterparts take a 
step further to provide a more comprehensive picture of 
individuals’ physiological well-being [9, 25, 26].

Plasminogen activator inhibitor-1 (PAI-1) is a protein 
regulating the fibrinolytic system, which is involved in 
the breakdown of blood clots. Elevated levels of PAI-1 are 
associated with an increased risk of CVD [27, 28]. PAI-1 
is also involved in cellular senescence and aging [29]. 
Being one DNAm-based surrogate plasma protein of 
GrimAge, DNAm-based PAI-1 (DNAmPAI-1, predicted 
by 211 out of the 1,030 GrimAge CpGs) was shown to be 
more associated with lipid metabolism (such as triglycer-
ide and high-density lipoprotein cholesterol levels) than 
GrimAge [23, 24].

Moreover, a novel pace of aging, DunedinPACE, was 
developed by Belsky et al. recently [17]. It was built based 
on the longitudinal data from the Dunedin Study 1972–
1973 birth cohort [30]. While the above-mentioned four 
epigenetic clocks predict human biological age, Duned-
inPACE estimates the pace of aging based on DNAm lev-
els. DunedinPACE was regarded as the third-generation 
epigenetic clock, and it was shown to be associated with 
more Taiwanese health outcomes than the four above-
mentioned measures of EAA [31].

Recent research has established an association link 
between ideal CVH and “epigenetic age deceleration” 
(EAD) in individuals of European descent [32, 33]. 
It has also been replicated in Asian (specifically, Tai-
wan) populations [21]. However, the causal relationship 

between CVH and EAD (or, inversely, EAA) has not 
been explored. Therefore, in this work, we performed a 
Mendelian Randomization (MR) analysis to confirm the 
causal relationship between CVH and five epigenetic 
clocks. Because DNAmPAI-1 (a DNAm-based surrogate 
plasma protein of GrimAge) is critical to lipid metabo-
lism [23, 24], we included it in addition to the five meas-
ures of EAA.

Results
Genome‐wide association studies
Table 1 presents the basic characteristics of the 116,525 
Taiwan Biobank (TWB) participants without DNAm 
data and 2,383 participants with DNAm data. The 
characteristics of the 2,383 individuals were similar to 
those of the 116,525 participants. Because only 17% 
(= 19,246/116,525) and 57% (= 1,361/2,383) of partici-
pants provided their dietary information, we calculated 
the CVH scores based on six metrics (without the diet-
type score), i.e., the “12-point CVH score” [34].

With the set of 116,525 individuals, we performed 
genome-wide association studies (GWAS) to identify 15, 
74, 37, 31, 34, 1, and 0 single-nucleotide polymorphisms 
(SNPs) associated with the 12-point CVH score (Table 2), 
total cholesterol (TC) score (Supplementary Table  S1), 
fasting glucose (FG) score (Table  S2), blood pressure 
(BP) score (Table  S3), BMI score (Table  S4), smoking 
(SMK) score (Table S5), and physical activity (PA) score. 
The Manhattan and QQ plots for these seven GWAS 

Table 1  Baseline characteristics of 116,525 TWB participants 
(without DNAm data) and 2383 TWB participants (with DNAm 
data)

Educational attainment is an integer ranging from 1 to 7: 1 represented 
no formal education and illiterate; 2 represented self-study and literate; 3 
represented primary school; 4 represented junior high school; 5 represented 
senior high school; 6 represented undergraduate; 7 represented graduate 
or above; CVH score: the cardiovascular health score calculated based on six 
metrics (without the diet-type score), ranging from 0 to 12

TWB without DNAm 
(N = 116,525)

TWB with 
DNAm 
(N = 2,383)

Age (sd) 49.40 (11.16) 49.79 (11.06)

Male (%) 43,563 (37.39%) 1194 (50.10%)

Drinking (%) 7268 (6.24%) 168 (7.05%)

Educational attainment (sd) 5.56 (0.95) 5.58 (0.92)

Total cholesterol score (sd) 1.46 (0.68) 1.48 (0.67)

Fasting glucose score (sd) 1.74 (0.53) 1.75 (0.52)

Blood pressure score (sd) 1.35 (0.74) 1.39 (0.72)

BMI score (sd) 1.31 (0.80) 1.29 (0.79)

Smoking status score (sd) 1.80 (0.59) 1.75 (0.65)

Physical activity score (sd) 0.82 (0.97) 0.91 (0.98)

CVH score (sd) 8.49 (2.03) 8.57 (2.05)
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are presented in Supplementary Figures S1, S2. The QQ 
plots show that the large observed p-values match the 
expected p-values. Association signals appear at the right 
tail of the QQ plots where the observed p-values differ 
from expected.

We used the 15 CVH-associated SNPs to form a 
weighted genetic risk score (wGRS) for the CVH score 
(denoted as “CVH-wGRS”) by weighting the genotypes 
(of the 2,383 individuals) according to the correspond-
ing effect sizes (estimated from the 116,525 individuals). 
Then, the wGRSs for CVH components were computed 
similarly, generating TC-wGRS, FG-wGRS, BP-wGRS, 
and BMI-wGRS. SMK-associated SNPs (1 SNP) and PA-
associated SNPs (0 SNP) were insufficient to construct 
wGRSs, so we did not include these two components in 
the following one-sample MR analysis.

TWB MR analysis: the CVH score and the CVH components 
on EAA
Before performing MR, we evaluated three MR assump-
tions to verify the validity of instrumental variables (IVs). 
For assumptions (2) and (3), we examined the relation-
ship between CVH-wGRS (or TC-wGRS, FG-wGRS, 
BP-wGRS, BMI-wGRS), four confounding factors 
(chronological age, sex, drinking status, and educational 
attainment) [21] and EAA. Checking assumption (2), 
we found that sex was associated with CVH-wGRS 
(p = 0.0176); chronological age was associated with FG-
wGRS (p = 0.0130); educational attainment was associ-
ated with BMI-wGRS (p = 0.0071); while drinking status 
was not related to any wGRS (Supplementary Table S6).

Checking assumption (3), we identified that DNAm-
PAI-1 was associated with CVH-wGRS (p = 0.0488), 
TC-wGRS (p = 0.0032), and FG-wGRS (p = 0.0414), 
while HannumEAA was associated with BMI-wGRS 
(p = 0.0164) (Supplementary Table  S7). SNPs with the 
lowest p-value were removed until wGRS was independ-
ent of the confounding factors and EAA. The removal 
process can be found in Supplementary Tables S8–S11.

Take CVH-wGRS as an example. After checking 
assumptions (2) and (3), the CVH-wGRS was composed 
of 14 or 13 (for DNAmPAI-1) SNPs (Supplementary 
Table S8). We calculated the F statistic through the first-
stage model to examine assumption (1) and evaluate the 
strength of IVs. As shown in Table  3, all F values were 
larger than 20, suggesting that CVH-wGRS was consid-
ered a strong IV for all measures of EAA [35].

As shown in Table  3, the two-stage least-squares 
result indicates that the CVH score has a causal effect 
on GrimEAA (β [SE]: − 0.993 [0.363] years; p = 0.0063) 
and DNAmPAI-1 (β [SE]: − 0.294 [0.099] standard 
deviation [SD] of DNAmPAI-1; p = 0.0030). Improving 
one point on the (12-point) CVH score can decrease 
GrimEAA to 0.993  years and 0.294 SD of DNAm-
PAI-1. We then decomposed the CVH score into six 
metrics, each representing the ideal score (0, 1, or 2) 
of a CVH component (TC, FG, BP, BMI, SMK, or PA). 
For the CVH components, we used the false discov-
ery rate (FDR) procedure to correct for multiple met-
rics of CVH. As shown in Table 4, the TC score has a 
causal effect on DNAmPAI-1 (β [SE]: − 0.452 [0.150] 
SD of DNAmPAI-1; q = 0.0102). BMI score has a causal 
impact on GrimEAA (β [SE]: − 2.382 [0.952] years; 

Table 2  15 nearly independent SNPs (r2 < 0.01) associated with the 12-point CVH score (p < 5E-8)

CHR: chromosome; SNP: single-nucleotide polymorphism; MAF: minor allele frequency; BP: base pair

CHR SNP A1 A2 MAF BP BETA SE p-value

1 rs629301 G T 0.07 109275684 0.0941 0.0156 1.59E-09

2 rs13306194 A G 0.14 21029662 0.0672 0.0115 5.61E-09

6 rs4709395 G A 0.24 160057757 0.0522 0.0094 2.85E-08

6 rs73596816 A G 0.05 160596331 -0.1027 0.0180 1.12E-08

7 rs2908286 T C 0.20 44195138 -0.0561 0.0101 2.71E-08

9 rs2519093 T C 0.18 133266456 -0.0620 0.0104 2.47E-09

11 rs662799 G A 0.27 116792991 -0.0735 0.0090 2.57E-16

11 rs72643557 T C 0.41 61811955 -0.0536 0.0082 7.98E-11

12 rs10550903 CAA​ C 0.32 89696509 0.0503 0.0087 8.39E-09

16 rs72805612 A G 0.13 53800696 -0.0972 0.0117 1.25E-16

18 rs11082764 G A 0.41 49593209 -0.0450 0.0082 3.62E-08

19 rs12972970 A G 0.08 44884339 -0.0927 0.0147 2.58E-10

19 rs141622900 A G 0.07 44923535 0.1606 0.0153 1.24E-25

19 rs3745683 A G 0.26 11237845 0.0641 0.0092 2.67E-12

19 rs7246757 G A 0.06 45687273 -0.0960 0.0175 3.95e-08
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q = 0.0498) and DunedinPACE (β [SE]: − 0.097 [0.030]; 
q = 0.0044). In summary, our results suggest that main-
taining an ideal CVH may decelerate the aging rate 
measured by GrimEAA and reduce DNAmPAI-1.

EUR MR analysis: the CVH score on EAA
In addition to the above one-sample MR analysis, we fol-
lowed Kong et  al.’s study [36] to perform a two-sample 
MR analysis using European data. Summary statistics 

Table 3  MR results between the CVH score and different measures of EAA in TWB

IEAA: Horvath’s intrinsic epigenetic age acceleration; bold font indicates significant MR results (p-value < 0.05)

Outcome F IV β (SE) 95% CI p-value

HannumEAA 21.9 CVH-wGRS (14 SNPs) − 0.442 (0.380) (− 1.189, 0.301) 0.2426

IEAA 21.9 CVH-wGRS (14 SNPs) − 0.206 (0.387) (-0.965, 0.552) 0.5938

PhenoEAA 21.9 CVH-wGRS (14 SNPs) − 0.163 (0.503) (− 1.150, 0.824) 0.7461

GrimEAA 21.6 CVH-wGRS (14 SNPs) − 0.993 (0.363) (− 1.705, − 0.280) 0.0063
DNAmPAI-1 24.3 CVH-wGRS (13 SNPs) − 0.294 (0.099) (− 0.488, − 0.100) 0.0030
DunedinPACE 21.9 CVH-wGRS (14 SNPs) − 0.021 (0.011) (− 0.043, 0.001) 0.0637

Table 4  MR results between CVH metrics and different EAA in TWB

TC score: ideal total cholesterol score; FG score: ideal fasting glucose score; BP score: ideal blood pressure score; BMI score: ideal body mass index score; Bold font 
indicates that the MR results are significant after the FDR correction (q < 0.05)

IV F β (SE) 95%CI p-value q-value

HannumEAA

TC score TC-wGRS (74 SNPs) 122.6 0.122 (0.510) (− 0.879, 1.122) 0.8118 0.8655

FG score FG-wGRS (33 SNPs) 43.7 0.180 (1.065) (− 1.908, 2.269) 0.8655 0.8655

BP score BP-wGRS (31 SNPs) 15.5 0.254 (1.273) (− 2.252, 2.743) 0.8417 0.8655

BMI score BMI-wGRS (28 SNPs) 18.6 − 2.541 (1.069) (− 4.636, -0.446) 0.0175 0.0698

IEAA

TC score TC-wGRS (74 SNPs) 121.3 − 0.178 (0.518) (− 1.193, 0.838) 0.7319 0.9759

FG score FG-wGRS (33 SNPs) 44.1 0.605 (1.077) (− 1.507, 2.717) 0.5743 0.9759

BP score BP-wGRS (31 SNPs) 15.1 − 0.011 (1.316) (− 2.594, 2.569) 0.9936 0.9936

BMI score BMI-wGRS (32 SNPs) 21.2 − 1.014 (1.014) (− 3.002, 0.973) 0.3171 0.9759

PhenoEAA

TC score TC-wGRS (74 SNPs) 121.3 0.392 (0.677) (− 0.936, 1.719) 0.5631 0.8429

FG score FG-wGRS (33 SNPs) 43.9 − 0.275 (1.389) (− 3.000, 2.449) 0.8429 0.8429

BP score BP-wGRS (31 SNPs) 15.3 − 0.400 (1.703) (− 3.742, 2.938) 0.8141 0.8429

BMI score BMI-wGRS (32 SNPs) 21.3 − 2.729 (1.322) (− 5.323, -0.136) 0.0392 0.1566

GrimEAA

TC score TC-wGRS (74 SNPs) 121.1 − 0.313 (0.482) (− 1.258, 0.632) 0.5163 0.6884

FG score FG-wGRS (33 SNPs) 44.0 − 0.721 (1.014) (− 2.708, 1.267) 0.4771 0.6884

BP score BP-wGRS (31 SNPs) 15.5 0.331 (1.230) (− 2.084, 2.739) 0.7876 0.7876

BMI score BMI-wGRS (32 SNPs) 21.2 − 2.382 (0.952) (− 4.250, -0.514) 0.0125 0.0498
DNAmPAI-1 (a DNAm-based surrogate plasma protein of GrimAge)

TC score TC-wGRS (68 SNPs) 104.6 − 0.452 (0.150) (− 0.745, -0.158) 0.0026 0.0102
FG score FG-wGRS (32 SNPs) 41.2 − 0.123 (0.306) (-0.723, 0.477) 0.6878 0.6878

BP score BP-wGRS (31 SNPs) 15.1 0.186 (0.358) (− 0.520, 0.885) 0.6102 0.6878

BMI score BMI-wGRS (32 SNPs) 21.2 − 0.470 (0.279) (− 1.016, -0.076) 0.0920 0.1840

DunedinPACE

TC score TC-wGRS (74 SNPs) 121.7 0.005 (0.015) (− 0.244, 0.034) 0.7368 0.7368

FG score FG-wGRS (33 SNPs) 43.5 − 0.013 (0.031) (− 0.074, 0.048) 0.6792 0.7368

BP score BP-wGRS (31 SNPs) 15.3 0.031 (0.038) (− 0.044, 0.106) 0.4229 0.7368

BMI score BMI-wGRS (32 SNPs) 20.9 − 0.097 (0.030) (− 0.154, -0.039) 0.0011 0.0044
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for HannumEAA, IEAA, PhenoEAA, GrimEAA, and 
DNAmPAI-1 were provided by a GWAS incorporat-
ing 34,710 Europeans [37]. DunedinPACE, developed in 
2022 [17], was not investigated by this GWAS (published 
in 2021) [37]. Seventeen independent CVH-associated 
SNPs (p < 5E-8) were extracted from a GWAS of the VA 
Million Veteran Program, in which ~ 83% were European 
Americans and ~ 12% were African Americans [5]. Most 
subjects of the EAA GWAS [37] and the CVH GWAS [5] 
were of European ancestry.

Among the 17 independent CVH-associated SNPs [5], 
11 were also investigated in the EAA GWAS [37]. These 
11 SNPs were used as IVs for the two-sample MR analy-
sis. Importantly, we found no evidence of pleiotropy (in 
SNPs) or heterogeneity (for the inverse variance weighted 
[IVW] estimates) in the causal inference of the CVH 
score on the five epigenetic markers (Supplementary 
Table  S12). This validation led us to adopt the result of 
the IVW method.

As shown in Table  5, the IVW result indicates a sig-
nificant negative causal association of the CVH score 
with IEAA ( β [SE]: − 0.389 [0.186] year; p = 0.0360) and 
GrimEAA ( β [SE]: − 0.526 [0.244] year; p = 0.0310). The 
CVH GWAS also provided summary statistics when ana-
lyzing individuals without CVD [5]. The effect sizes of the 
17 CVH-associated SNPs were similar to those obtained 
from the entire cohort [5]. We performed a sensitiv-
ity analysis for the two-sample MR study. The observed 
causal effects remained consistent even if we used the 
summary statistics based on the individuals without 
CVD, i.e., IEAA ( β [SE]: − 0.404 [0.196] year; p = 0.0389) 
and GrimEAA ( β [SE]: − 0.551 [0.258] year; p = 0.0323).

EUR MR analysis: the CVH factors on EAA
The three clinical factors (TC [38], FG [39], and BP [40]) 
and four lifestyle factors (BMI [41], SMK [42], PA [42], 
and dietary habits [42]) have been investigated by several 
GWAS (Supplementary Table  S13). We performed the 
two-sample MR analysis to assess the causal effects of the 
CVH factors on the five epigenetic markers (Table 6 and 
Supplementary Tables  S14–S17; Fig.  1 and Supplemen-
tary Figures S3–S6). Moreover, pleiotropy (in SNPs) and 
heterogeneity (for the IVW estimates) are examined in 
Supplementary Tables S18–S22.

The CVH factor analysis showed that BMI had a sig-
nificant causal effect on GrimEAA (Table 6; Fig. 1; β per 
1-SD increase in BMI [SE]: 0.599 [0.081] years; q = 2.91E-
12), which was in line with the TWB analysis result 
(Table  4; β per 1-point increase in the BMI score [SE]: 
− 2.382 [0.952] years; q = 0.0498).

The BMI score is an integer ranging from 0 to 2; a 
higher score represents a more ideal BMI. Therefore, the 
causal effect of the BMI score on GrimEAA is negative 

(− 2.382  years, Table  4). In contrast, the BMI GWAS 
based on ∼700,000 individuals of European ancestry 
[41] treated BMI as a continuous metric. Hence, the 
causal effect of BMI on GrimEAA is positive (0.599 years, 
Table 6).

Moreover, several lifestyle factors presented signifi-
cant causal effects on GrimEAA (Table  6; Fig.  1). Cur-
rent smoking accelerated GrimAge ( β [SE]: 5.314 [1.658] 
years; q = 8.76E-3), while never smoking decelerated 
GrimAge ( β [SE]: − 2.981 [0.524] years; q = 1.63E-7). 
Moreover, walking for pleasure (not as a means of trans-
port) in the last four weeks ( β [SE]: − 4.313 [1.236] years; 
q = 4.21E-3) and dried fruit intake ( β [SE] per 1-SD: 
− 1.523 [0.504] year; q = 0.0131) (Table  6; Fig.  1) also 
decelerated GrimAge.

Cochran’s Q test suggested possible heterogeneity for 
BMI (p = 0.015) and dried fruit intake (p = 0.049; Supple-
mentary Table S21). The MR pleiotropy residual sum and 
outlier (MR-PRESSO) analysis detected and excluded 
two outlier SNPs from the 941 BMI-associated SNPs 
(Table  6). Nonetheless, the updated result provided by 
MR-PRESSO was similar to those of the IVW method 
(Table 6; β per 1-SD increase in BMI [SE]: 0.598 [0.080] 
years; q = 3.70E-12). On the other hand, no outlier SNP 
was detected from the 43 SNPs associated with dried 
fruit intake.

The CVH factors’ causal effects on other EAA meas-
ures are presented in Supplementary Tables  S14–S17 
and Supplementary Figures  S3–S6. Compared with five 
significant factors for GrimEAA (Fig.  1, p < 0.05 & FDR 
q < 0.05 under the IVW method), only 2, 1, 0, and 0 sig-
nificant factors for PhenoEAA (Figure  S5), IEAA (Fig-
ure  S4), HannumEAA (Figure  S3), and DNAmPAI-1 
(Figure S6), respectively.

EUR multivariable MR analysis: BMI and lifestyle factors 
on GrimEAA
Our MR analysis observed a significant causal effect of 
BMI on GrimEAA (q = 2.91E-12; Table  6), PhenoEAA 
(q = 1.52E-7; Supplementary Table  S16), and IEAA 
(q = 0.0477; Supplementary Table  S15). After adjusting 
for BMI, we evaluated whether the six significant life-
style factors (p < 0.05) in Table 6 had independent causal 
effects on GrimEAA. Adjusting BMI made the causal 
effects of significant lifestyle factors less remarkable 
(Fig. 2). “Oily fish intake” lost significance (Table 6, before 
adjusting for BMI, p = 0.0321) in the causal relation-
ship (Fig. 2; after adjusting for BMI, 95% C.I. = [− 1.002, 
0.049]). The other five significant lifestyle factors, includ-
ing current smoking, never smoking, pack-years of smok-
ing, walking for pleasure in the last four weeks, and dried 
fruit intake, remained significantly causally associated 
with GrimEAA (Fig. 2). This lends greater robustness to 
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the causal relationship between these five lifestyle factors 
and GrimEAA.

Despite adjusting for these lifestyle variables, BMI still 
presented a significant causal effect on GrimEAA ( β : per 
1-SD increase in BMI: 0.422–0.599  years; Fig.  3). This 
result reassures the causal effect of BMI on GrimEAA.

Discussion
Previous studies have shown that ideal CVH is signifi-
cantly associated with EAD [21, 32, 33, 43–47]. With 
the Taiwanese individual-level data and European sum-
mary statistics, we used the one- and two-sample MR 
approaches to show that maintaining ideal CVH was 
causally associated with GrimAge deceleration. When 
digging into CVH factors, the difference between first-
generation and second-generation epigenetic clocks 
became even more apparent. The number of significant 
CVH factors in GrimEAA (5 significant factors with 
q < 0.05, Table  6) far exceeds that in the first-generation 
clocks (only one significant factor with q < 0.05 in Sup-
plementary Tables S14, S15), indicating that GrimEAA is 
more likely to be affected by CVH than the first-genera-
tion clocks. It also shows that a healthy lifestyle may help 
slow the aging process, including maintaining an ideal 
BMI (q = 2.91E-12 for GrimEAA [Table 6] and q = 0.0477 
for IEAA [Table  S15), never smoking (q = 1.63E-7 for 

GrimEAA [Table  6]), walking for pleasure (q = 4.21E-3 
for GrimEAA [Table 6]), and eating dried fruit (q = 0.0131 
for GrimEAA [Table 6]).

Maintaining an ideal BMI provided the most signifi-
cant causal relationship with GrimEAA (q = 2.91E-12 
[Table 6]). BMI is a convenient measurement for general 
obesity. Obesity increases the risk of age-related condi-
tions such as CVD, hypertension, T2DM, and cancer 
[48]. Additionally, it can reduce life expectancy by as 
much as 20 years [49]. Our previous work has indicated 
the association of obesity with GrimEAA and PhenoEAA 
[16], whereas we here confirm the causal relationship 
between them (BMI on GrimEAA [q = 2.91E-12, Table 6]; 
BMI on PhenoEAA [q = 1.52E-7, Table S16]).

Regarding dietary habits, only dried fruit intake pre-
sented a causal effect on GrimEAA. In the UK Biobank’s 
shortened food frequency touchscreen questionnaire, 
participants were asked, “About how many pieces 
of DRIED fruit would you eat per DAY? (Count one 
prune, one dried apricot, and ten raisins as one piece; 
put ‘0’ if you do not eat any).” [50] The responses had a 
mean of 0.899 pieces and a standard deviation of 1.826 
pieces (https://​bioba​nk.​ndph.​ox.​ac.​uk/​ukb/​field.​cgi?​
id=​1319). We found that an increase of 1 SD (i.e., 1.826 
pieces) in dried fruit intake is associated with a reduc-
tion of 1.523 years in GrimEAA (q = 0.0131; Table 6). The 

Fig. 1  Causal effects of CVH factors on GrimEAA in EUR. For the plot in the left panel, the numbers shown around the blue bars are the causal effect 
sizes. The number of SNPs between the two-panel plots represents the number of IVs. For the plot in the right panel, red boxes indicate significant 
causal effects (p-value < 0.05 & FDR q-value < 0.05). Blue boxes indicate suggestive causal effects (p-value < 0.05 & FDR q-value ≥ 0.05). Gray boxes 
indicate insignificant causal effects (p-value ≥ 0.05). The dark gray box indicates insufficient IVs for the MR analysis. The box numbers represent 
the causal effect sizes achieving significant or suggestive associations

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=1319
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=1319
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beneficial impact of eating dried fruit on slowing aging 
warrants further investigation.

With drying technologies, fresh fruits shrink to smaller 
and energy-dense dried fruits. Dried fruits such as raisins 
and dates provide various nutrients, including vitamins, 
minerals, antioxidants, and dietary fiber [51–54]. These 
elements may help reduce oxidative damage, regulate 
blood sugar, and lower the risk of T2DM and heart dis-
eases [52, 55, 56]. A systematic review of observational 
studies showed that consuming dried fruits was associ-
ated with a lower cancer incidence or mortality. Eating 
raisins and other dried fruits may help prevent cancers 
related to the digestive system [57].

Recently, Kong et al. [36] performed a two-sample MR 
analysis to investigate causal associations of 19 lifestyle 
and metabolic factors with PhenoEAA and GrimEAA. 
Three of the 19 factors were also investigated in this 
work: BMI, diastolic blood pressure, and systolic blood 

pressure. Our results for these three factors were consist-
ent with those of Kong et al. [36]. We also found that a 
larger BMI increased GrimEAA and PhenoEAA, and 
higher blood pressure levels enlarged PhenoEAA (but 
not GrimEAA).

Although the causality between ideal CVH and EAA 
has been demonstrated in this work, the pathways from 
lifestyle through body functions and how they affect 
aging are complicated and require additional investiga-
tion. The limitation of this study is that the power of our 
one-sample MR analysis may be compromised due to 
the relatively small sample size of DNAm data in TWB 
(compared with the EAA GWAS [37] in the two-sample 
MR analysis). Moreover, we did not identify sufficient 
genome-wide significant SNPs for the IVs of the SMK 
and PA scores. As a result, the causal effects of SMK and 
PA on EAA can only be inferred from the European data 
with the two-sample MR analysis.

Fig. 2  EUR Multivariable MR analysis to assess the effects of lifestyle factors on GrimEAA while adjusting for BMI Causal estimates are Beta (95% CI) 
in years. Blue boxes mark the original Beta (95% CI) from the IVW method, while red boxes denote the adjusted Beta (95% CI) from the IVW method. 
“No. of IVs” indicates the number of instruments used in the multivariable MR analysis
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In this work, we investigated the causal effects of car-
diovascular health on five epigenetic clocks and one 
DNAm-based surrogate plasma protein of GrimAge, 
DNAmPAI-1. Although we have analyzed many DNAm 
measures, only GrimEAA and DNAmPAI-1 were found 
to be causally linked with the CVH score (Table 3). The 
subsequent analysis of individual CVH factors may be 
restricted to GrimEAA and DNAmPAI-1 to reduce the 
number of tests. Nonetheless, to provide a more com-
plete analysis, we still put the results of insignificant EAA 
measures in the supplementary materials.

Conclusions
This work looks deeply into the relationship between the 
CVH score and EAA. The findings indicate that the CVH 
score is causally related to the deceleration for GrimEAA 
(Table 3; β [SE] for each point of the CVH score: − 0.993 
[0.363] years; p = 0.0063) and DNAmPAI-1 (Table  3; 

β [SE] for each point of the CVH score: − 0.294 [0.099] 
SD of DNAmPAI-1; p = 0.0030) in TWB, IEAA (Table 5; 
β [SE] for each point of the CVH score: -0.389 [0.186] 
years; p = 0.0360) and GrimEAA (Table 5; β [SE] for each 
point of the CVH score: − 0.526 [0.244] years; p = 0.0310) 
in European populations.

Through further TWB analysis for four CVH compo-
nents, we found that the BMI score presented a causal 
effect on GrimEAA (Table  4; β [SE] for each point of 
the BMI score: − 2.382 [0.952] years; q = 0.0498) and 
DunedinPACE (Table  4; β [SE] for each point of the 
BMI score: − 0.097 [0.030]; q = 0.0044). Furthermore, 
the TC score exhibited a causal effect on DNAmPAI-1 
(Table 4; β [SE] for each point of the TC score: − 0.452 
[0.150] SD of DNAmPAI-1; q = 0.0102), which was in 
line with the abundant research on the relationship 
between TC and PAI-1 [58].

Fig. 3  EUR Multivariable MR analysis to assess the effects of BMI on GrimEAA while adjusting for lifestyle factors Causal estimates are Beta (95% CI) 
in years. Blue boxes mark the original Beta (95% CI) from the IVW method, while red boxes denote the adjusted Beta (95% CI) from the IVW method. 
“No. of IVs” indicates the number of instruments used in the multivariable MR analysis
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In our two-sample MR using the European data, the 
effect of BMI on GrimEAA did not change much after 
adjusting for other lifestyle factors (Fig.  3). This result 
indicates that maintaining an ideal BMI is particularly 
important for slowing aging. Furthermore, lifestyle fac-
tors such as walking for pleasure, smoking status, and 
dried fruit intake have a significant causal effect on 
GrimEAA, even after adjusting for BMI (Fig.  2). This 
result reveals the critical role of a healthy lifestyle in 
slowing aging.

Methods
Study Design
To assess the causality of ideal CVH and EAA, we first 
performed GWAS on the CVH score and individual 
CVH components using the TWB data. Then, a wGRS 
was calculated as an IV, and a one-sample MR analysis 
using a two-stage least-squares method was conducted 
[59]. Here, the CVH score and its components were 
considered “exposures,” whereas measures of EAA were 
regarded as “outcomes.” In the first stage, the exposure 
(i.e., the CVH score [an integer from 0 to 12], the TC 
score [0, 1, or 2], the FG score [0, 1, or 2], the BP score 
[0, 1, or 2], or the BMI score [0, 1, or 2]) was regressed on 
the corresponding IV (i.e., CVH-wGRS, TC-wGRS, FG-
wGRS, BP-wGRS, or BMI-wGRS) using linear regression. 
Through this, we obtained the predicted exposure value 
(i.e., predicted CVH score, predicted TC score, predicted 
FG score, predicted BP score or predicted BMI score). In 
the second stage, we regressed the outcome (i.e., EAA) on 
the predicted exposure value (i.e., predicted CVH score, 
predicted TC score, predicted FG score, predicted BP 
score or predicted BMI score) through linear regression.

To appropriately infer the causality between the expo-
sure (i.e., the CVH score as well as its components) 
and the outcome (i.e., EAA) with the MR analysis, we 
examined the three core assumptions: (1) relevance 
assumption: the IV is associated with the exposure; (2) 
independence assumption: the IV is not associated with 
any factors confounding the exposure-outcome asso-
ciation; and (3) exclusion restriction assumption: the IV 
influences the outcome only through the exposure [60]. 
In addition to the one-sample MR analysis, we performed 
a two-sample MR analysis using summary statistics from 
European GWAS [5, 37–42].

Data for the one‑sample MR analysis
From 2012 to 2023, the TWB recruited approximately 
189,132 community-based volunteers from Taiwan’s 
residents. To join the TWB study, participants had 
to provide written informed consent. The TWB per-
formed physical examinations for participants and 
collected their urine and blood samples. Among the 

189,132 individuals, 147,836 had whole-genome geno-
typing data available. Furthermore, the lifestyle fac-
tors of each participant were recorded by a face-to-face 
interview with the TWB healthcare professionals [61].

The TWB performed pre-phasing and genotype 
imputation with SHAPEIT2 and IMPUTE2 (v2.3.1), 
respectively [62–64]. The reference panel included 
504 East Asians (EAS) from the 1000 Genomes Phase 
3 v5 and 1,451 TWB participants undergoing whole-
genome sequencing. After genotype imputation, TWB 
researchers performed quality control procedures, 
including removing SNPs with missing rates > 5%, 
minor allele frequencies (MAF) < 0.01%, and imputa-
tion information scores < 0.3. Through these steps, ~ 9.8 
million genetic variants were left in analysis.

All 147,836 TWB individuals with whole-genome 
genotyping data were kept in our one-sample MR 
analysis because their missing genotype rates were less 
than 10%. We excluded SNPs with the Hardy–Weinberg 
equilibrium test p < 5.7E-7 or genotyping rates < 95%. 
Finally, 9,804,794 SNPs passed the quality control fil-
tering. We analyzed 3,639,571 SNPs with MAFs > 1%, a 
commonly used MAF cutoff in many GWAS [65]. The 
TWB researchers used the software “KING” (Kinship-
based INference for GWAS) [66] to estimate the kin-
ship coefficients between any two TWB individuals. 
We excluded individuals with more missing genotypes 
from each first- or second-degree relative pair. Through 
this procedure, 118,908 TWB participants remained in 
the analysis.

From 2016 to 2021, the TWB randomly selected 2,474 
individuals among all TWB participants to quantify the 
DNAm levels from peripheral blood. This selection was 
based on the overall sex ratio and the population size 
in each region of Taiwan. Our previous work described 
the quality control and normalization of the DNAm data 
[16]. Among the 118,908 individuals with whole-genome 
genotyping, 2,383 had DNAm data.

For the one-sample MR analysis, the base data (used 
to calculate the effect sizes for the wGRS) and the target 
data (where the wGRS is applied) should be independent, 
or there may be a risk of overfitting [67]. Therefore, we 
used the 116,525 (= 118,908–2,383) participants (without 
DNAm data) as the base data and the 2,383 participants 
(with DNAm data) as the target data.

There are two versions of TWB questionnaires: the 
original version and a simplified version. Most individu-
als selected the simplified questionnaire to save time, in 
which dietary information was not collected. Therefore, 
in this work, we investigated the so-called “12-point 
CVH score” [34] based on six aspects, including TC, FG, 
BP, BMI, SMK, and PA. The definition for each factor is 
described in Table 7.
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To calculate epigenetic age, we uploaded the DNAm 
data to the Horvath laboratory’s online DNAm age cal-
culator (https://​dnama​ge.​genet​ics.​ucla.​edu/​new). Five 
measures of epigenetic markers were used in the analysis: 
HannumEAA [19] (column “AgeAccelerationResidual-
Hannum” from the DNAm Age Calculator output), IEAA 
[8] (column “IEAA”), PhenoEAA [22] (column “AgeAc-
celPheno”), GrimEAA [23, 24] (column “AgeAccelGrim”), 
and DNAmPAI-1 levels [23, 24] (column “DNAmPAI1”). 
DunedinPACE was calculated based on the R package 
“DunedinPACE” (https://​github.​com/​danbe​lsky/​Duned​
inPACE) [68, 69]. DNAmPAI-1 ranged from 7,292 pg/
mL to 25,682 pg/mL, with a mean of 15,813 pg/mL and 
an SD of 2,514 pg/mL. To facilitate the interpretation of 
effect sizes, we performed the z-score transformation on 
DNAmPAI-1.

Statistical Analysis for the one‑sample MR analysis
We used PLINK v1.90 [70] to perform the GWAS for 
the CVH score and six CVH components (TC score, FG 
score, BP score, BMI score, SMK score, and PA score) 
under the common assumption of additive allelic effects 
of SNPs. The regression models were controlled for con-
founding factors of CVH-EAA association [21], including 
age (in years), sex (male vs. female), drinking status (yes 
vs. no), educational attainment (an integer from 1 to 7), 
and the first ten ancestry principal components. Then, 
we used the PLINK [70] clumping procedure to iden-
tify nearly independent significant SNPs (p < 5E-8) with 
linkage disequilibrium (LD) measure of r2 < 0.01 within 
10,000 kilobases.

To avoid bias caused by weak IVs and to increase 
power [71], we combined genome-wide significant SNPs 
(p < 5E-8) to build the wGRS. We checked the three MR 
assumptions. F statistic > 10 is considered a strong IV 
for the relevance assumption [35]. Ensuring that the MR 
assumptions (2) and (3) hold is technically impossible. 

However, we can disprove them by testing the associa-
tions between wGRS, confounders, and EAA [60]. The 
MR assumption (2), the independence assumption, was 
tested using a two-sample t-test for binary confounders 
(sex and drinking status) or a Pearson correlation test for 
continuous confounders (chronological age and educa-
tional attainment) [21].

When checking the MR assumption (3), the exclusion 
restriction assumption, we regressed EAA on CVH-
wGRS while adjusting for the corresponding exposure 
(i.e., the CVH score) and the known confounding factors 
(age, sex, drinking status, and educational attainment) 
[21]. We used the Wald statistic to test the significance 
of the CVH-wGRS’s regression coefficient. A signifi-
cant regression coefficient implies that assumption (3) 
is violated because CVH-wGRS can affect EAA through 
paths other than the CVH score. Similar checks were 
performed for TC-wGRS, FG-wGRS, BP-wGRS, and 
BMI-wGRS.

We tested assumptions (2) or (3) at the standard sig-
nificance level 0.05. Violations of assumptions (2) or (3) 
indicated that wGRS is associated with some confound-
ing factors or the outcome. We used the Cochran-Armit-
age trend test [72] to assess the association between each 
SNP constructing wGRS and categorical confounders. 
For each continuous confounder, the analysis of variance 
was conducted to evaluate its association with SNPs. 
SNPs with the lowest p-value were removed until the 
wGRS met assumptions (2) and (3). Finally, the F statistic 
for checking assumption (1) was calculated.

With wGRS as an IV, we performed the one-sample MR 
using the two-stage least-squares method [59, 73]. The 
data came from the 2,383 TWB individuals with DNAm 
data. In the first stage, the exposure (CVH score or CVH 
components) was regressed on the IV (the correspond-
ing wGRS). In the second stage, the outcome (EAA) was 
then regressed on the predicted exposure from the first 

Table 7  Definition for the 12-point CVH score

DBP: diastolic blood pressure; SBP: systolic blood pressure

Poor: 0 point Intermediate: 1 point Ideal: 2 points

Lifestyle factors

BMI (kg/m2) BMI ≥ 27 24 ≤ BMI < 27 BMI < 24

SMK: Smoking status Current Former (quit < 6 months) Never or former (quit ≥ 6 months)

PA: Physical activity (Regular exercise) Never Between never and regular At least 30 min thrice 
a week (Regular exercise)

Clinical factors

TC: Total cholesterol (mg/dL) TC ≥ 240 200 ≤ TC < 240 TC < 200

FG: Fasting glucose (mg/dL) Fasting Glucose ≥ 126 100 ≤ Fasting Glucose < 126 Fasting Glucose < 100

BP: Blood pressure (mmHg) SBP ≥ 140 or DBP ≥ 90 (120 ≤ SBP < 140 and DBP < 90) 
or (80 ≤ DBP < 90 and SBP < 140)

SBP < 120 and DBP < 80

https://dnamage.genetics.ucla.edu/new
https://github.com/danbelsky/DunedinPACE
https://github.com/danbelsky/DunedinPACE
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stage. The coefficient of the predicted exposure from the 
second-stage regression was the causal effect of the expo-
sure on the outcome.

Data for the two‑sample MR analysis
The summary statistics for the CVH score were obtained 
from a published GWAS based on the VA Million Vet-
eran Program [5], in which the diet component was not 
considered because only 0.4% of the VA people had an 
ideal diet. Therefore, the CVH score ranged from 0 to 
12, the same as our one-sample MR analysis using the 
TWB data. The GWAS identified 17 independent CVH-
associated SNPs with p < 5E-8. The associations persisted 
even when individuals with CVD were excluded from the 
analysis [5].

Factors related to the three CVH clinical and four 
lifestyle factors were sourced from the MRC IEU Open 
GWAS Project (https://​gwas.​mrcieu.​ac.​uk/) [74]. Defi-
nitions of the CVH factors and the GWAS are shown in 
Supplementary Table  S13. We extracted the summary 
statistics of EAA GWAS from a contemporary GWAS 
meta-analysis involving 34,710 European participants 
from 28 cohorts (Edinburgh DataShare https://​datas​hare.​
ed.​ac.​uk/​handle/​10283/​3645) [37].

Statistical Analysis for the two‑sample MR analysis
We used the IVW method to calculate causal estimates 
(β coefficients and SEs) between the CVH score and sev-
eral measures of EAA for the European population. The 
IVW method employs a meta-analytical approach to 
construct a single causal estimate by combining the Wald 
ratio statistics from SNPs in the IV set [75]. To assess 
the robustness of IVW estimates and detect pleiotropy, 
we conducted the following analyses with three different 
assumptions: the Weighted Median [76], MR-Egger [77], 
and MR-PRESSO [78] methods.

The Weighted Median method ensures consistent 
causal predictions when more than half of the analytic 
weights are derived from valid IVs [76]. The MR-Egger 
method allows for intercept estimation; it can detect plei-
otropy bias with limited precision [77]. The MR-PRESSO 
method identifies potential horizontal pleiotropy by 
identifying outlier SNPs. It corrects horizontal pleiotropy 
according to the impact of outliers on the causal estimate 
[78]. Cochran’s Q test was utilized to assess the hetero-
geneity of IVW estimates [79], and horizontal pleiot-
ropy was identified using the p-value of the intercept in 
the MR-Egger model [77]. When the heterogeneity was 
present, a random-effects IVW model was utilized [80, 
81]. Then, we did the same procedure to assess the causal 
effects of each CVH factor on EAA.

All analyses were performed using R (version 4.2.0). 
The two-sample MR analyses were conducted with the 

TwoSampleMR [82, 83] and MR-PRESSO [78] pack-
ages. In our selection criteria for independent genetic 
variants in European populations, we prioritized SNPs 
with a significant association exposure at a genome-wide 
level (p < 5E-08). We used the clump_data function in the 
TwoSampleMR package to prune dependent SNPs with a 
stringent LD measure of r2 < 0.01 within 10,000 kilobases. 
Multiple testing corrections were performed on CVH 
factors using the FDR strategy. The FDR q-values were 
calculated by the R command “p.adjust” with the Benja-
mini–Hochberg procedure [84].

To ensure the robustness of our results, we further con-
ducted multivariable MR analysis to evaluate whether 
the causal effect of BMI on GrimEAA is independent 
of other lifestyle factors and whether the causal effect 
of lifestyle factors on GrimEAA is affected by BMI [85]. 
For example, to assess the impact of current smoking on 
GrimEAA while adjusting for BMI, we extracted SNPs 
associated with current smoking or BMI (p < 5E-8) as 
instruments. Then, we kept the independent SNPs in the 
sense that the LD measure of r2 < 0.01 within 10,000 kilo-
bases and harmonized them to be on the same strand. 
These procedures were performed with the “mv_extract_
exposures” and “mv_harmonise_data” functions in the 
TwoSampleMR [82, 83] package.
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