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Abstract 

Colorectal cancer (CRC) is a common malignant tumor with the third and second highest incidence and mortality 
rates among various malignant tumors. Despite significant advancements in the present therapy for CRC, the major-
ity of CRC cases feature proficient mismatch repair/microsatellite stability and have no response to immunotherapy. 
Therefore, the search for new treatment options holds immense importance in the diagnosis and treatment of CRC. In 
recent years, clinical research on immunotherapy combined with epigenetic therapy has gradually increased, which 
may bring hope for these patients. This review explores the role of epigenetic regulation in exerting antitumor effects 
through its action on immune cell function and highlights the potential of certain epigenetic genes that can be used 
as markers of immunotherapy to predict therapeutic efficacy. We also discuss the application of epigenetic drug sen-
sitization immunotherapy to develop new treatment options combining epigenetic therapy and immunotherapy.
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Introduction
By 2040, it is estimated that there will be 3.2 million 
cases of CRC, making it the third most prevalent can-
cer and the second leading cause of death among can-
cers [1]. In recent years, immunotherapy has achieved 
remarkable accomplishments. Over the past few years, 
immunotherapy has achieved remarkable accomplish-
ments in the treatment of CRC with dMMR/MSI-H, 
such as Checkmate142 and Keynote177 [2, 3]. The FDA 

has also approved nivolumab (a PD-1 antibody) for 
treating dMMR/MSI-H CRC. Nevertheless, most CRC 
(approximately 85%) features proficient mismatch repair 
(pMMR)/microsatellite stability (MSS) tumors, which do 
not exhibit any response to immune checkpoint inhibi-
tors (ICIs) [4]. Several clinical trials suggest that the 
combined regimen with ICIs may be promising for these 
patients. In addition, it is vital to differentiate between 
those who can benefit from immunotherapy and those 
who do not respond, and biomarkers are a key factor in 
this process. Biomarkers have been used to guide CRC 
immunotherapy, such as MSS status, MMR expression, 
PD-L1 expression, POLD1/POLE mutations and tumor 
mutation burden (TMB) [5, 6]. However, these markers 
can only screen out a small number of applicable popu-
lations. Hence, there is an urgent need to carry out new 
combination therapies and establish new biomarkers to 
enhance the effectiveness of immunotherapy in CRC.

The development of various cancers, including CRC, 
is significantly influenced by epigenetics. Epigenet-
ics involves modifications in gene function that do not 
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change the DNA sequence but ultimately result in phe-
notypic changes [7, 8]. Epigenetic modifications includes 
DNA methylation, histone modifications (such as his-
tone methylation, acetylation and lactylation), chroma-
tin remodeling and epitranscriptomic modifications 
(such as N6-methyladenosine modification, m6A). 
These modifications primarily rely on the coordinated 
action of "writer," "reader," and "eraser" enzymes (Addi-
tional file 1: Table S1), which add, recognize and remove 
chemical modifications on DNA, histones or RNA, ena-
bling cells to dynamically regulate gene expression [9, 
10]. For instance, TET1 (DNA demethylase) participates 
in DNA demethylation to activate silenced genes. Con-
versely, EZH2 is part of the Polycomb repressive complex 
2 (PRC2), which mediates trimethylation of lysine 27 on 
histone H3 (H3K27me3) to suppress transcription of cer-
tain genes. KMT2D (histone methyltransferase) modifies 
histone H3 lysine 4 (H3K4) to promote gene activation. 
ARID1A is a component of the SWI/SNF chromatin 
remodeling complex, regulating gene expression by alter-
ing chromatin structure. Additionally, histone lactylation, 
as a novel histone modification, primarily involves adding 
lactyl groups to specific histone lysine residues, thereby 
modulating gene expression and cellular metabolism [11, 
12]. These epigenetic regulatory mechanisms and their 
key enzymes are crucial in the development of tumors, 
immune evasion and drug resistance (Fig. 1).

In this review, we focus on the connection between 
epigenetic regulation (DNA and histone modifications) 
and the tumor microenvironment in CRC patients and 
emphasize the application of epigenetic drug-sensitizing 
immunotherapy. We also discuss some epigenetic genes 
as immunotherapeutic markers to guide better immuno-
therapy in CRC patients. Finally, we summarize the clini-
cal trials of epi-immunotherapy that have been reported 
or are ongoing in CRC. Through this review, we hope 
clinicians or researchers will pay attention to the great 
potential of epigenetic mechanisms in enhancing the 
effectiveness of immunotherapy in CRC and provide new 
ideas for immunotherapy for CRC.

The full names of the proteins involved in the epige-
netic modifications are provided in Additional file 1.

Epigenetic regulation of the tumor immune 
microenvironment
Immune checkpoint
Immune checkpoint expression can be hijacked by tumor 
cells and myeloid cells, leading to the inhibition of the 
antitumor immune response of T cells. Immune check-
points include PD-1, CTLA-4, LAG3, TIM3, TIGIT 
and BTLA [13]. The regulation of immune checkpoints 
and their receptors is significantly influenced by epige-
netic mechanisms. High expression of JMJD2D in CRC 

may indirectly suppress the functional capabilities of 
CD8 + T cells that infiltrate the tumor by enhancing the 
expression of PD-L1, thereby promoting the occurrence 
of CRC. The results show a positive correlation between 
the expression of PD-L1 and JMJD2D expression [14]. 
Studies have shown that ARID3B also enhances phos-
phorylation at STAT3 Y705, leading to the upregulation 
of PD-L1 expression, which promotes immune escape 
[15]. Moreover, a study showed that the upregulation 
of CTLA-4 was associated with DNA hypomethylation, 
as well as the involvement of H3K9me3 and H3K27me3 
[16]. Additionally, multiple histone modifications con-
tribute to the upregulation of PD-1 and TIM-3 genes in 
CRC tumor tissue. Epigenetic alterations are capable of 
having the potential to function as diagnostic biomark-
ers for CRC. Blocking immune checkpoints reactivates 
T-cell functions, enhancing sustained antitumor effects 
and strengthening the host’s  immune response  to  can-
cer [17]. Therefore, in-depth study of epigenetic regu-
latory mechanisms contributes to enhancing  immune 
checkpoint inhibitor effectiveness.

Interferon‑γ pathway (IFN‑γ)
Epigenetic regulation is closely linked to the IFN-γ path-
way, which has an important impact on tumor immu-
nity and immunotherapy. In CRC, the IFN-γ pathway is 
regulated by Polycomb repressive complex 2 (PRC2) and 
switch/sucrose non-fermentable (SWI/SNF) complexes 
[18]. This regulation happens in part through the control 
of chemokines, which help effector T-cell recruitment to 
the tumor microenvironment. In tumors, EZH2, a com-
ponent of PRC2, enhances the trimethylation of histone 
H3 lysine 27 and inhibits the production of chemokines 
[19, 20]. In  contrast, ARID1A (an SWI/SNF complex) 
contributes to the expression of chemokines in CRC 
cells, thereby enhancing immune cell recruitment [21]. 
In CD8 + T cells, DNA methylation was also found to 
negatively regulate IFN-γ expression. Nevertheless, con-
tinuous IFN-γ signaling boosts the programmed PD-L1 
checkpoint pathway to suppress the antitumor immune 
response. Therefore, epigenetic regulation of the inter-
feron response may play a diametrically opposite role at 
different stages of tumor progression.

T‑Cell exhaustion
Throughout the process of T-cell exhaustion, CD8 + T 
cells gradually decrease the generation of effector 
cytokines while simultaneously enhancing the expres-
sion of their inhibitory receptors like PD-1, Tim-3 
and Large-3 [21]. ARID1A loss leads to a decrease in 
the expression of exhaustion-related genes in tumor-
infiltrating T cells [22]. De novo DNA methylation 
by DNMT3A has been demonstrated to play a role in 
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promoting T-cell exhaustion [23]. Thus, the renewal of 
exhausted CD8 + T cells is improved by using 5-aza-
2-deoxycytidine (DNA methyltransferase inhibitor) 
before PD-1 blockade.

Research has indicated that the absence of H3K79me2 
leads to reduced levels of STAT5 expression and com-
promised immune response in T cells. Furthermore, 
the addition of methionine enhances H3K79me2 and 
STAT5 expression in T cells, resulting in heightened 
T-cell immunity in patients with CRC [24]. An addi-
tional study has also indicated that TET2 (demethy-
lase) loss in CAR T cells increases the longevity and 
tumor regulation of CAR T cells, which suggests that 

disrupting TET2 could prevent T-cell exhaustion and 
promote the formation of T-cell memory [25].

Myeloid cells
Tumor-associated macrophages (TAMs) are the main 
immune cells in the context of CRC. Epigenetics affect 
the production, recruitment and exhaustion of TAMs 
and reprogram TAMs to promote or inhibit tumors. 
Studies have shown that in a coculture system of mac-
rophages and CRC cells, the use of EZH2i (an inhibitor 
of EZH2) suppresses the levels of H3K27me3 on the pro-
moters of STAT3, which is a crucial transcription factor 
responsible for M1 macrophage polarization. The tumor 

Fig. 1 Epigenetic modifications
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suppressive effect of EZH2i is achieved by transforming 
M2 macrophages into effector M1 macrophages, thereby 
regulating macrophages [26]. Researchers found that his-
tone lactylation promotes immune evasion by regulat-
ing the immunosuppressive effects of myeloid cells that 
infiltrate tumors. The function of antitumor T cells is also 
inhibited by myeloid-derived suppressor cells (MDSCs). 
Studies have shown that HDAC11 is a key regulator of 
IL-10 gene expression in MDSCs, which suggests that 
histone modifications also contribute to regulating vari-
ous aspects of MDSCs [27, 28].

Treg cells
Treg inhibitory activity requires the expression of FoxP3. 
The regulation of FoxP3 expression in T cells is con-
trolled by DNA methylation of the CpG island located 
in the enhancer region. Additionally, researchers have 
found that the transcriptional program and epigenetic 
characteristics of Treg cells are diminished when TET2 
and TET3 are lost. Conversely, vitamin C (TET activator) 
alters the epigenetic landscape to closely resemble Treg 
cells produced in  vivo and enhances the expression of 
Treg signature genes [29, 30]. EZH2 activity plays a key 
role in the suppression of antitumor immunity by Treg 
cells. Furthermore, using drugs to inhibit EZH2 resulted 
in enhanced CD8 + T-cell responses inside tumors, 

which hindered tumor advancement and correlated with 
decreased FOXP3 expression in Tregs. Thus, inhibiting 
EZH2 activity remolds the TME and leads to enhanced 
tumor immunity [31, 32] (Fig. 2).

Epigenetic alterations facilitate cancer development 
by influencing multiple pathways in a wide range of his-
tologies and by affecting the activation, differentiation 
and function of immune cells. Gal-9: Galectin-9, Tim-3: 
T cell immunoglobulin and mucin domain-containing 
protein 3, PD-L1: Programmed death-ligand 1, PD-1: 
Programmed cell death protein 1, Tn: naive T cells, 
Tpex: exhausted T cells, Tex: exhausted T cells, IFN-γ: 
Interferon-γ pathway, MHC-1: Major Histocompatibility 
Complex class I, CXCL-9/10: C-X-C motif chemokine 
ligand 9/10, MDSC: Myeloid-derived suppressor cells, 
Treg: Regulatory T cells.

Targeted epigenetic immunoregulation sensitized 
immunotherapy
Epigenetic immune drugs (e.g., DNA methyltransferase 
inhibitors (DNMTis) and histone deacetylase inhibi-
tors (HDACis)) can inhibit the renewal and proliferation 
of tumor stem cells while promoting the reactivation of 
tumor suppressor genes, thus leading to cycle arrest or 
apoptosis [33–39]. These drugs also activate endogenous 
retroviruses (ERVs) and cancer testicular antigen (CTA), 

Fig. 2 Epigenetic regulation shapes the role of the immune microenvironment in CRC 
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thus activating the virus analog state [40, 41] and increas-
ing immunogenicity [42, 43]. DMNTi inhibits T-cell 
exhaustion and increases early memory T cells. HDACis 
inhibit Treg cells, promote CD4 + T-cell effects [44] and 
regulate the tumor microenvironment [45, 46]. Appar-
ently, epigenetic immune drugs combined with immune 
checkpoint inhibitors will enhance T-cell  infiltration, 
suppress MDSCs and M2-type macrophages [44], and 
reduce TME-mediated immune escape. This suggests 
that targeted epigenetic immunoregulation will sensitize 
cells to immunotherapy.

DNA methylation
Epigenetic modification DNA methylation  plays a key 
role in regulating gene expression, including DNA 
methylation and DNA demethylation. The DNA methy-
lase family consists of five members, namely DNMT1, 
DNMT2, DNMT3A, DNMT3B and DNMT3L [47, 48]. 
DNA demethylases mainly refer to the 10–11 transloca-
tion protein (TET) family, including TET1, TET2 and 
TET3.

According to studies, DNA methylation is associated 
with the tumor microenvironment. DNMT1 suppresses 
chemokines expression, such as CXCL-9/10, which are 
essential for CD8 + T-cell migration [19]. Therefore, 
targeting DNMT1 sensitizes cells to immunotherapy 
and antitumor activities. GHONEIM et  al. [23] discov-
ered that exhaustive formation of T-cell precursors was 
promoted by de novo DNA methylation mediated by 
DNMT3A. However, CD8 + T-cell exhaustion was 
improved after decitabine (DNMTi) treatment. Decit-
abine combined with PD-1 decreases tumor burden and 
alters transcription factor expression. Furthermore, the 
methylation of DNA has an impact on genes related to 
the cell cycle, thereby enabling cancer cells in their early 
stages to avoid checkpoint blockade and senescence [49]. 
TET2 has the ability to facilitate the IFN-γ-JAK-STAT 
signaling pathway, subsequently regulating chemokines 
and PD-L1 expression, enhancing lymphocyte infiltra-
tion and improving the antitumor immune response 
[50]. However, when TET2 is absent, it promotes tumor 
immune escape and produces resistance to anti-PD-L1 
treatment. Two studies [41] showed that azacytidine 
(DNMTi) could induce ERV expression and transcrip-
tion of LTR and activate the antiviral-related interferon 
signaling pathway, which could induce cell cycle arrest 
and apoptosis. Similarly, decitabine (DNMTi) could also 
upregulate MHC-I molecular expression by reversing 
DNA methylation, thus enhancing the immunogenicity 
of tumors. Huang et al. [51] found that decitabine could 
also enhance immune-related gene expression and T cells 
infiltration in CRC. Moreover, they observed a significant 
improvement in the effectiveness of PD-L1 inhibitors 

for immunotherapy. Furthermore, using the cofactor 
TET2 can improve TET2 activity, upregulate chemokine 
expression and increase TIL quantity, thus enhancing 
the immune response against tumors and enhancing the 
effectiveness of immunotherapy [52].

Histone methylation
Histone methylation is an important mode in which his-
tone modifications regulate chromatin structure and 
gene expression. Histone methylation involves two types: 
protein arginine methyltransferase (PRMT) and histone 
lysine methyltransferase (HKMT). Histone demethylases 
are broadly divided into the LSD family and the JMJD 
family [53].

As  a histone lysine methyltransferase,  EZH2  contrib-
utes to the proliferation of CRC cells and regulates vari-
ous pathways related to CRC. Many immune cells express 
EZH2 [54]. EZH2 inhibits Th1 and Th2 differentiation, 
while EZH2 functions as a coactivator of BCL6 tran-
scription, thereby promoting T follicular helper cell 
(Tfh) differentiation. EZH2 assists in maintaining the 
stable functional phenotype of activated Tregs, promotes 
CD8 + T memory cell generation and silences the dif-
ferentiation and activity of CD8 + T effector cells [55]. 
EZH2 enhances tumor cell viability, decreases tumor 
antigen expression, reduces the release of chemokines 
by recruited T cells and reduces NKG2D expression, 
thus generating tolerance to immune cells (Fig.  2). In 
some studies, EZH2i has been found to potentially revive 
the immunogenicity of certain tumors and enhance the 
reaction to ICIs [56]. LSD1, in the histone demethylase 
family, is the first histone lysine demethylase. Studies 
have shown that the loss of the H3K4 demethylase LSD1 
or KDM5B could enhance T-cell infiltration and PD-1 
inhibitor efficacy. Furthermore, LSD1 deficiency also 
enhances the immunogenicity of tumors and T-cell infil-
tration in low-immunogenicity tumors [57, 58]. In CRC 
cells, knockdown of JMJD2D inhibited the Hedgehog 
signaling pathway, which attenuated CRC cell growth 
and metastasis [59]. The regression of human tumors has 
been demonstrated with the use of EZH2i. Research has 
indicated that EZH2i has the potential to diminish the 
impact of Tregs within the TME, enhance the manifes-
tation and introduction of antigens, and stimulate the 
secretion of chemokines (such as CXCL 9 and CXCL10) 
by tumor-infiltrating DCs [56, 60]. Currently, tazemeto-
stat is approved for use in follicular lymphoma and meta-
static or refractory epithelioid sarcoma (Fig. 3).

EZH2i: EZH2 inhibitor, CXCL-9/10: C-X-C motif 
chemokine ligand 9/10, Teff cell: Effector T cells, Treg: 
Regulatory T cells, MDSC: Myeloid-derived suppressor 
cells, NK cell: Natural Killer cells.
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Histone acetylation
The regulation of histone acetylation involves histone 
acetyltransferases (HATs) and histone deacetylases 
(HDACs) [61]. Through reversible mechanisms, these 
two enzymes modify the lysine side chains of histones 
in chromatin to control gene expression.

There are three general categories of HATs: GNAT, 
MYST and p300/CBP subfamilies, which regulate basic 
cell biological processes. Aberrant HATs are closely 
related to cancer. P300-mediated acetylation of lysine 
(K) at position 240 increases the stability of TRIB3 
which may reduce T-cell infiltration into tumor tissue 
by inhibiting signal transduction in CRC and promot-
ing immune rejection [62]. Tumors often exhibit high 
levels of HDAC expression, which is typically linked to 
reduced acetylation of histones in chromatin, an inac-
tive chromatin structure for transcription and a decline 
in gene expression [63, 64]. HDAC inhibitors induce 
antitumor effects via various mechanisms, including 
triggering cell cycle arrest and apoptosis, regulating cell 
autophagy, inhibiting tumor blood vessel formation and 
regulating the immune system. Kim et al. [65] showed 
that HDAC is promoted IL-2 and IFN-γ expression in 
tumor tissues and increased the infiltration of cytotoxic 
T cells and NK cells while concurrently suppressing the 
proliferation of Treg cells and M2 macrophage polari-
zation and reducing MDSCs. CG-745 (HDACis) can 
also inhibit Treg proliferation and regulate the TME, 
enhancing the activity [44] of PD-1 therapy. Through 
polarization, TMP195 (an HDACi) increases the pro-
portion of M1 macrophages. Furthermore, TMP195 
also enhanced the effects of PD-1 inhibitors PD-1. 
Therefore, combining TMP195 with PD-1 inhibitors 
may offer a potential approach for treating CRC [66].

Histone lactylation
Lactylation, as a new histone modification, has been 
reported. In 2020, researchers [67] described a different 
biological activity of lactate in tumors compared to normal 
tissue, which contributes to the establishment of specific 
immune states. Cancer cells secrete lactate into the sur-
rounding environment, which facilitates the advancement 
of cancer. Research shows that the buildup of lactate in 
metabolism can serve as a substrate for inducing lactylation 
modification of histone lysine, which regulates gene expres-
sion and participates in the homeostatic regulation of M1 
macrophages [68]. Studies have also revealed that altera-
tion controls the immunosuppressive role of tumor-infil-
trating myeloid cells (TIMs) to facilitate immune evasion 
from tumors [69]. Mechanistically, lactate promotes the 
expression of METTL3 in TIMs through histone H3K18 
lactylation. METTL3, as an m6A methyltransferase, plays 
a crucial role in epigenetic regulation by affecting mRNA 
stability, splicing, nuclear export, translation and degrada-
tion through m6A modification. Specifically, METTL3-
mediated m6A modification of Jak1 mRNA interacts with 
YTHDF1. YTHDF1, as an m6A "reader" protein, recog-
nizes and binds to m6A-modified mRNA, increasing its 
translation efficiency and consequently enhancing the acti-
vation of the JAK1-STAT3 signaling pathway. The activa-
tion of the JAK1-STAT3 signaling pathway further initiates 
the expression of downstream immunosuppressive mol-
ecules, thereby resulting in immunosuppression [70, 71] 
(Table 1).

Fig. 3 EZH2i reshapes the TME to enhance the antitumor immune effect
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Epigenetic genes serve as potential biomarkers 
of immunotherapy
Epigenetic alterations in tumor cells can affect the 
immune response. First, the epigenetic histone modifi-
cations of the PRC2 and SWI/SNF complexes affect the 
tumor immune response through regulation of IFN-γ 

signaling [18, 19]. In addition, defective expression of 
some epigenetic genes will unsilence ERV expression, 
activate the IFN-γ pathway, increase T-cell infiltration 
and sensitize cells to immunotherapy [18, 41]. Further-
more, some epigenetic regulatory genes, such as ARID1A 
and KMT2D, maintain genomic stability. However, when 

Table 1 Targets and mechanisms of epigenetic drug-sensitizing immunotherapy

Drug Drug targets Indication Mechanism

Decitabine DNMT1 Acute myeloid leukemia
Chronic myeloid leukemia
Myelodysplastic syndromes

Upregulate MHC-1 expression by reversing DNA methylation
Mass infiltration of T lymphocytes

5-Azacytidine DNMT1 Acute myeloid leukemia
Chronic myeloid leukemia
Myelodysplastic syndromes
Chronic lymphocytic leukemia
Primary myelofibrosis

Inducing viral mimicry
Activates the IFN-γ pathway
Inducing apoptosis and cell cycle arrest

Temozolomide EZH2 Glioblastoma
Meningioma

Inhibition of the histone methylation
Reprograming the function of TI-Tregs
Promoting T-cell recruitment

Chidamide HDAC1-3/10 Diffuse Large B-Cell Lymphoma
Triple-negative breast cancer

Inhibition of the histone deacetylation
Increasing cytotoxic T cells and NK cells infiltration
Depressing MDSCs
Cell invasion and migration are inhibited
Promoting apoptosis and cell cycle arrest

Fig. 4 Epigenes influence the immune response through endogenous interferon response pathways, immunogenicity and genome stability
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these genes are absent, the genomic stability of tumor 
cells will decrease. Meanwhile, the tumor mutational 
load or tumor neoantigen load will increase, thus activat-
ing the antitumor immune response (Fig. 4).

IFN-γ: Interferon-γ pathway, Interferon alpha/beta 
receptor 1/2: Interferon alpha/beta receptor 1/2, JAK-
1: Janus kinase 1, JAK-2: Janus kinase 2, STAT1: Signal 
Transducer and Activator of Transcription 1, CXCL-
9/10: C-X-C motif chemokine ligand 9/10, MHC-1: 
Major Histocompatibility Complex class I, ERV: Endog-
enous retroviruses, TLRs: Toll-like receptors, dMMR: 
deficient mismatch repair.

DNA methylation status
DNA methylation biomarkers hold significant potential 
in early screening, prognosis and predicting treatment 
responses in colorectal cancer. Currently, early diag-
nosis of colorectal cancer involves detecting abnormal 
tumor DNA methylation in both blood and stool sam-
ples [72]. The US Food and Drug Administration (FDA) 
has approved a fecal-based screening test for colorectal 
cancer, including detection of KRAS gene mutations as 
well as NDRG4 and BMP3 gene methylation [73]. Addi-
tionally, the methylation biomarker SEPT9 in plasma has 
demonstrated high sensitivity and specificity for early-
stage colorectal cancer [74, 75]. Methylation of the VIM 
(Vimentin) gene in stool can also serve as a screening 
method [76]. DNA methylation patterns can further pre-
dict prognosis in colorectal cancer patients. For instance, 
the high methylation of the SEPT9 and SFRP2 genes is 
associated with poorer prognosis [61]. DNA methyla-
tion also serves as a predictive biomarker for treatment 
responses. The methylation status of the MGMT gene 
can predict how patients respond to treatment with 
temozolomide [77]. CpG island methylation phenotype 
(CIMP) can also predict responses to certain chemother-
apy drugs such as 5-fluorouracil (5-FU) [78].

The methylation status of DNA in tumor cells or 
immune cells may become a marker for early screening 
and efficacy prediction in CRC. Recently, studies have 
reported DNA methylation markers related to CRC diag-
nosis, such as the methylation levels of cg13096360 and 
cg12993163 in feces and blood and the combination of 
both can be used as diagnostic markers for CRC [79]. 
Researchers then expanded the sample size to validate 
the finding that it was also progressively upregulated in 
colorectal cancers of different stages.

In addition, the DNA methylation-derived signa-
ture of CD8 + TILs could function as a marker of the 
immune response and prognosis in CRC. By analyzing 
DNA methylation patterns across the entire genome 
in immune cells [80] and colonic epithelial cells, 
the researcher identified specific sites (DMPs) with 

differential methylation in CD8 + T cells and found that 
most of the genes were enriched for immune-related 
functions. The authors used these DMPs to construct 
a CD8 + MeTIL assessment system to assess the cor-
relation between CD8 + TIL and survival outcomes in 
CRC. In addition, MSI-H tumors were found to have 
a correlation with low CD8 + MeTIL scores (enriched 
CD8 + tumor-infiltrating lymphocytes), which in turn 
were predictive of improved survival among those 
patients. A previous study published in the Journal 
Frontiers in Immunology explored the development of 
a machine learning model to generate forecasts on the 
effectiveness of immunotherapy by analyzing the meth-
ylation profiles of tumor DNA. The authors also used 
a screened ensemble of methylation features to predict 
pancancer immunotherapy response, which was vali-
dated in an independent immunotherapy cohort [81]. 
All these findings indicate that DNA methylation could 
become a potential biomarker for diagnosing CRC and 
evaluating the effectiveness of immunotherapy.

ARID1A
ARID1A mutations were shown to be significantly and 
positively associated with mutations in the MSI and 
MMR genes in three GI cancer cohorts [82–85]. This 
finding confirms that the absence of ARID1A is linked 
to the genomic characterization of MSI and impaired 
MMR in cancer. In addition, the combined data from 
clinical studies of multiple CRC patients concluded that 
ARID1A mutant tumors are characterized by higher 
genomic instability such as high MSI or TMB, height-
ened PD-L1 expression and increased cytotoxic T lym-
phocyte infiltration [86]. To confirm the association 
between ARID1A and immunological characteristics, 
the TCGA and MD Anderson Cancer Center databases 
were utilized for DNA sequencing and gene expression 
analysis of CRC patients. The findings indicated that 
the MSS and ARID1A mutation cases exhibited the 
highest rise in the frameshift mutation rate. Compared 
to ARID1A wild type, the mutant phenotype exhibited 
statistically significant expression of important check-
point genes (such as PD-L1 and CTLA4) and gene sets 
(including antigen presentation, cytotoxic T-cell func-
tion and immune checkpoint). Increasing levels of 
neoantigens in ARID1A mutant cases may contribute 
to their immunogenicity, which is possibly caused by 
elevated TMB and code-shift mutations. In the future, 
there may be an increased likelihood of immunother-
apy benefiting patients with ARID1A mutations. Addi-
tionally, this suggests that mutations in ARID1A could 
become a promising biomarker for the application of 
immunotherapy.
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KMT2 family
In tumor cells, the KMT2 family includes KMT2A, 
KMT2B, KMT2C and KMT2D [87, 88]. The research-
ers discovered that KMT2 mutant tumors exhibited 
elevated levels of TMB when comparing the tumor 
immunogenicity between KMT2 mutant and wild-type 
samples. KMT2 gene family mutations can improve 
tumor immunogenicity [89]. By using CRISPR-GEMMs 
in ICB settings, researchers discovered that KMT2D 
plays a key role in regulating the ICB response in vari-
ous types of cancer. They also found that tumors with 
KMT2 mutations exhibit heightened immune infiltra-
tion in humans. Our team discovered that KMT2C/D 
loss-of-function variants are abundant in many can-
cer types and found a significant correlation between 
the abundance of KMT2C/D loss-of-function vari-
ants and elevated TMB levels. Notably, KMT2C/D 
loss-of-function mutations were linked to increased 
levels of PD-L1 expression and TIL in CRC. Signifi-
cantly, there was a correlation of statistical significance 
between KMT2C/D loss-of-function mutations and the 
response to ICIs in CRC [90]. All these studies suggest 
that KMT2 mutation may also be a potential biomarker 
for immunotherapy.

TET1/2
Three homologous proteins were identified in the TET 
enzyme family, named TET1, TET2 and TET3. Research-
ers found that TET1 mutation was prevalent in tumors 
and correlated with clinical response to ICI treatment 
[91]. By comparing the tumor immunogenicity and anti-
tumor immunity of TET1 mutation type with TET1 wild-
type tumors, it was found that both TET1 mutation-type 
tumors were significantly higher than TET1 wild-type 
tumors. Further immune signature analysis showed that 
coinhibition and costimulators of antigen-presenting 
cells and T cells were also significantly elevated in TET1 
mutation-type tumors. Additionally, we compared the 
distinct expression patterns of immune-related genes in 
tumors with TET1 mutation-type and TET1 wild-type 
tumors. The results showed that TET1 mutation-type 
tumors commonly exhibited elevated levels of various 
immune stimulators, including chemokines (CXCL9, 
CXCL10, CCL5). These results suggest that patients 
treated with ICIs have a better clinical response and 
prognosis when they have TET1 mutation type. Another 
study found that knocking down TET2 in colon tumor 
cells decreased chemokine expression and the TIL count, 
enhancing tumor immune escape [52]. This suggests 
that TET1/2 holds the capacity to become a biomarker 
for forecasting the effectiveness of immunotherapy 
intervention.

DNMT3A/B
Previous studies have shown that enhancement or upreg-
ulation of DNMT3A and DNMT3B can mediate aberrant 
DNA methylation, which is strongly linked to the devel-
opment and advancement of numerous malignancies 
in humans. DNMT3A/B can also be used as potential 
markers of immunotherapy efficacy. One of the advanced 
melanoma patients with a DNMT3A mutation devel-
oped hyperprogression when treated with immunother-
apy, which was 182% compared to the first 2 months of 
immunotherapy.

Clinical study
Epigenetics plays a key role in regulating the immune 
response in CRC. Currently, many clinical studies on 
epigenetic combination immunotherapy are currently 
underway. The MAYA study [92], a phase II trial con-
ducted at multiple centers, used a single-arm design to 
assess the effectiveness and safety of immunosensitiza-
tion approaches. Using temozolomide commenced in 
eligible patients and was subsequently followed by a com-
bination of low-dose ipilimumab and nivolumab. Patients 
reaching stage 2 were evaluated for the 8-m PFS rate, 
which served as the main outcome measure in the study. 
The study was conducted to assess the effectiveness and 
security of the immunosensitization strategy. At the 
end of the study, a total of 12 patients (36%) with > 8 m 
progression-free survival (PFS) had reached stage 2. The 
results showed that temozolomide with low-dose ipili-
mumab and nivolumab induced immunosensitization in 
pMMR/MSS and MGMT-silenced metastatic colorectal 
cancer patients. According to another study, the use of 
epigenetic modulators in MSS CRC enhances responses 
to pembrolizumab (MK-3475) [93]. This research is a 
phase 1b trial conducted at a single institution with an 
open-label design. Enhancing the susceptibility of MSS 
colorectal tumors to MK-3475 can be achieved by admin-
istering an epigenetic agent for either 14 or 21 days. This 
study enrolled 27 patients. The median progression-
free survival (mPFS) and overall survival (OS) were 
2.79  months and 9.17  months, respectively. One indi-
vidual achieved a durable partial response, which lasted 
for approximately 19  months. The study findings show 
that the use of 5-azacitidine and romidepsin, in addi-
tion to pembrolizumab, demonstrated a favorable safety 
profile and was well tolerated among the participants. 
The CAPability-01 study, a randomized, open-label, mul-
ticenter, two-arm, phase II study, explored the efficacy 
and safety of chidamide with sintilimab with or without 
bevacizumab. The study included a total of 48 patients 
who had MSS/pMMR. Both groups achieved a 42.6% 
progression-free survival (PFS) rate at week 18 after 
treatment, which was the primary endpoint of the study. 
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The findings indicated that the effectiveness of this com-
bination regimen was observed in patients with advanced 
CRC with pMMR/MSS. Multiple clinical studies of epi-
genetic drug combination immunotherapies are currently 
underway, and these studies show promise for popula-
tion-screened epigenetic combination immunotherapies 
to achieve desirable results, even in MSS CRC (Table 2).

Conclusions
The immune microenvironment of CRC is significantly 
influenced by epigenetic regulatory mechanisms. The 
mutations of some epigenetic genes also reflect the state 
of the immune response. For example, ARID1A muta-
tions result in an upregulation of PD-L1 expression 
levels  to induce stronger immunogenicity. Therefore, 
epigenetic gene status can be used as a biomarker for 
immunotherapy. Currently, epigenetic therapy focuses 
on two major classes of drugs: HDACis and DNMTis. 
Studies have found that DNMTis and HDACis remodel 
the tumor microenvironment, both of which significantly 
improve the effectiveness of PD-L1 inhibitor immuno-
therapy in preclinical research [94, 95]. The results sug-
gest that the use of epigenetic drugs in conjunction with 
immune checkpoint inhibitors holds significant promise 
in the management of patients with CRC. However, at 
present, we still lack large-scale clinical cohorts or clini-
cal trials to confirm the synergistic therapeutic efficacy 
of epigenetic combination immunization. Therefore, we 
need to conduct more studies in the future.

Perspectives
Epigenetic immunotherapy (epi-immunotherapy) has 
emerged as a promising treatment strategy. This com-
bined approach enhances the effectiveness of immu-
notherapy, provides durable antitumor memory and 
significantly improves prognosis for cancer patients. 
The CAPability-01 study has successfully explored the 

treatment of mCRC patients using a combination of 
chidamide, pembrolizumab ± bevacizumab, offering a 
hopeful new option. SMARCA4-deficient tumors are 
highly aggressive with poor prognosis. The combination 
of HDAC inhibitors (such as vorinostat or romidepsin), 
DNA methyltransferase inhibitors (such as azacitidine) 
and PD-1 inhibitors is expected to benefit patients with 
SMARCA4 deficiency [96, 97]. Currently, guiding colo-
rectal cancer immunotherapy based on DNA methyla-
tion and the mutation status of epigenetic genes remains 
in the academic research stage and has not yet been 
widely adopted in clinical practice. Future efforts will 
focus on further clinical validation and prospective stud-
ies of these biomarkers to ensure their predictive value 
and clinical utility. Understanding precision medicine 
will be key to exploring future combination therapies. 
For patients with epigenetic gene defects, further inves-
tigation into specific gene defect types and potential syn-
ergistic lethal mechanisms will be crucial for developing 
personalized treatment plans. For instance, mutations 
or loss of ARID1A can affect metabolic vulnerability, 
immune evasion and DNA repair pathways, presenting 
opportunities for developing novel combination treat-
ment strategies [98–100]. Epi-immunotherapy can signif-
icantly enhance treatment outcomes for colorectal cancer 
patients, thereby improving long-term prognosis. This 
combined approach aims to improve the current land-
scape of immune therapy for colorectal cancer and paves 
the way for new avenues in its treatment.

Abbreviations
CRC   Colorectal cancer
mCRC   metastatic colorectal cancer
pMMR  Proficient mismatch repair
dMMR  Defective mismatch repair
MSI-H  Microsatellite instability-high
MSS  Microsatellite stability
ICIs  Immune checkpoint inhibitors
TMB  Tumor mutation burden
IFN-γ  Interferon-γ pathway

Table 2 Clinical study of apparent immunotherapy

* The clinical trial was withdrawn due to insufficient funding

Epi‑immunotherapy NCT Identifier Phase Status

Nivolumab + Ipilimumab + Temozolomide NCT03832621 II Completed

Azacitidine + Pembrolizumab NCT02260440 II Completed

Azacitidine + Romidepsin + Pembrolizumab NCT02512172 I Completed

Entinostat + Pembrolizumab NCT02437136 I/II Completed

Azacitidine + Durvalumab NCT02811497 II Completed

Guadecitabine + Nivolumab NCT03576963 I/II Withdrawn*

Sintilimab + Chidamide ± Bevacizumab (IBI305) NCT04724239 II Active

Panobinostat + PDR001 NCT02890069 I Completed

Domatinostat + Avelumab NCT03812796 II Unknown

Decitabine + TQB2450 injection NCT04611711 I/II Unknown
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PRC2  Polycomb repressive complex 2
SWI/SNF  SWItch/Sucrose Non-Fermentable
TAMs  Tumor-associated macrophages
MDSCs  Myeloid-derived suppressor cells
ERV  Endogenous retroviruses
CTA   Cancer testicular antigen
PRMT  Protein arginine methyltransferase
HKMT  Histone lysine methyltransferase
Tfh  T follicular helper cell
HATs  Histone acetyltransferases
HDACs  Histone deacetylases
TIM  Tumor-infiltrating myeloid cells
PFS  Progression-free survival
mPFS  Median progression-free survival
OS  Overall survival
DNMTi  DNA methylation inhibitors
HDACi  Histone deacetylase inhibitors
VIM  Vimentin
CIMP  CpG island methylator phenotype
5-FU  5-Fluorouracil
FDA  Food and drug administration
DNMTs  DNA methyltransferases
TET1-3  Ten-eleven translocation enzymes 1-3
SMARCA2/4  SWI/SNF-related matrix-associated actin-dependent regulator 

of chromatin subfamily A member 2/4
ARID1A  AT-rich interactive domain-containing protein 1A
PBRM1  Polybromo 1
SMARCB1  SWI/SNF-related matrix-associated actin-dependent regulator 

of chromatin subfamily B member 1
ATRX  Alpha thalassemia/mental retardation syndrome X-linked
ISWI  Imitation switch
RSF  Remodeling and spacing factor
NuRD  Nucleosome remodeling and deacetylase complex
CHD1-9  Chromodomain-helicase-DNA-binding protein 1-9
INO80  INOsitol requiring 80
Ac  Acetylation
Me  Methylation
Ub  Ubiquitination
P  Phosphorylation
Lac  Lactylation
Gal-9  Galectin-9
Tim-3  T cell immunoglobulin and mucin domain-containing protein 

3
PD-L1  Programmed death-ligand 1
PD-1  Programmed cell death protein 1
Tn  Naive T cells
Tpex  T cell precursor exhausted
Tex  T cell exhaustion
MHC-1  Major Histocompatibility Complex class I
CXCL-9/10  C-X-C motif chemokine ligand 9/10
Treg  Regulatory T cells
EZH2i  EZH2 inhibitor
Teff cell  Effector T cells
NK cell  Natural Killer cells
JAK-1  Janus kinase 1
JAK-2  Janus kinase 2
STAT1  Signal Transducer and Activator of Transcription 1
TLRs  Toll-like receptors
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