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Abstract 

Background The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The 
existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term 
changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless 
of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes 
could play a role.

Methods and results Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed 
genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, com-
paring them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), 
primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/
glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 
infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath’s epigenetic clock showed 
a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochas-
tic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identi-
fied 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, 
hypoxia response, T-cell activation, and endothelin signaling.

Conclusions Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest 
possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked 
to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be cru-
cial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
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Background
In the wake of the COVID-19 pandemic, a remark-
ably high number of individuals worldwide have been 
affected. While the pathophysiology and immune 
response to SARS-CoV-2 (the virus causing COVID-
19) infection have been extensively studied to predict 
acute disease progression and prognosis [1–7], there is 
limited knowledge about the long-term effects caused 
to the host by the infection. The condition of persis-
tent clinical symptoms after the acute phase of infec-
tion is common to many viruses—e.g., Epstein–Barr 
virus (EBV) [8, 9]; cytomegalovirus (CMV) [10, 11], and 
human herpesvirus 6 (HHV-6) [12]—but in the case of 
COVID-19, this condition takes on great significance 
as it appears to affect a large percentage of individu-
als. The persistence of COVID-19 clinical symptoms for 
at least 12  weeks or more (several months) is referred 
to as post-acute sequelae of SARS-CoV-2 infection 
(PASC) or long-COVID [13] affecting individuals with 
both severe acute symptoms and those with mild or 
asymptomatic disease progression [14]. These symp-
toms encompass organ (e.g., fatigue, post-exertional 
malaise, headache, insomnia, tachycardia) and neuro-
logical (e.g., brain fog, memory/speech/language issues, 
sleeping problems) manifestations [15, 16]. Estimating 
the accurate prevalence of this condition proves to be 
highly challenging, primarily because inherent stud-
ies are shaped by a wide array of variables, including 
age, gender, ethnicity, the severity of acute symptoms, 
the type of SARS-CoV-2 variant, follow-up durations, 
viral load, the presence of concurrent medical condi-
tions, vaccination history, preexisting social, economic, 
and medical factors, among others [17]. Among the 
most updated meta-analyses, the prevalence is reported 
between 30 and 60% [18–22]. Another meta-analysis 
revealed that COVID-19 long-term symptoms are 
slightly associated with older age and strongly associ-
ated with female sex and preexisting comorbidities 
(e.g., diabetes and obesity) [23].

The exact causes of long-COVID are still being inves-
tigated, but some hypotheses have emerged over time. 
SARS-Cov-2 can reach (via hematogenous spreading) 
and infect cells of the central nervous system (CNS), pro-
ducing neuroinflammation [24]. It has also been hypoth-
esized that the SARS-CoV-2 virus may persist in specific 
tissues long after the acute phase [13], leading to poten-
tial long-term health complications [25]. Disease risk 
factors include cell death and immune dysfunction after 
SARS-Cov-2 infection [26, 27], uncontrolled and persis-
tent release of cytokines [28, 29], multiple cell fusion in 
infected organ (syncytia) [30, 31], autoantibodies causing 
immunodeficiency (against type I IFN) [32, 33] or micro-
clots [33, 34], and persistent viral infection [35, 36].

The possibility that these dysfunctions are medi-
ated over time by epigenetic changes has been explored 
through EWAS approaches in a limited number of stud-
ies capable of identifying specific epigenetic signatures 
obtained by analyzing small cohorts of post-/long-
COVID-19 [37–39]. Lee and colleagues [38] investigated 
DNA methylation changes in immune response-associ-
ated genes in post-COVID-19 patients (after 3 months 
from the acute phase), identifying the gene IFI44L 
(interferon-induced protein 44 like) as the primary tar-
get. IFI44L plays a critical role in antiviral and antibac-
terial activity. The study of [37] compared methylation 
changes in the acute phase, and after one year, highlight-
ing the persistence of pathways related to viral response 
and inflammation. The study performed by Nikesjo and 
colleagues [39] found a unique DNAm signature in PACS 
patients involving modified pathways related to angioten-
sin II and muscarinic receptor signaling and mitochon-
drial function.

Here, we present a genome-wide study using the Illu-
mina 850 K EPIC BeadChips of a large cohort of ninety-
six individuals whose blood samples were collected 6 
months after COVID-19 infection. The follow-up exami-
nation has highlighted the presence of suggestive long-
term clinical features in twenty-eight patients. This study 
aims to assess potential epigenetic changes 6 months 
after COVID-19 exposure.

Results
Characteristics of the sample population
Demographic and clinical features, including age, sex, 
and cellular components of subjects sampled 6 months 
after the initial SARS-CoV-2 infection (cases) and healthy 
subjects with no history of SARS-CoV-2 infection (ref-
erences), are summarized in Table  1. The age and sex 
distributions of the sample population were analyzed to 
understand the demographic profile of the participants: 
The two cohorts differ statistically in terms of age dis-
tribution (Mann–Whitney test, p < 0.05) and sex ratio 
(Fisher’s exact test, p < 0.05). The estimation of cellu-
lar components of peripheral blood obtained from the 
EpiDISH package [40] was evaluated to explore any vari-
ations in the composition of blood samples between the 
reference and the post-COVID-19 groups. The analy-
sis showed no significant differences in immune cell 
composition.

Exploratory
We conducted an exploratory approach to investigate 
the epigenetic differences between the two groups 
(post-COVID-19 vs. reference) through a principal 
component analysis (PCA) both at the CpG site and 
region levels (genes, CpG islands, and promoter). The 
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analysis (Fig. 1) did not reveal distinct patterns of epi-
genetic variation between the two groups since the 
patterns observed were almost overlapping, indicating 
a lack of solid differences in DNA methylation at CpG 
sites and regions between the two groups.

Differential methylation and over‑representation (ORA) 
analysis
The differential methylation analysis between the two 
groups (post-COVID-19 vs reference) was performed 
using linear models for microarray data (LIMMA) [41]. 
Confounding factors (sex, chronological age, and cellu-
lar component estimations) [40, 42] were considered by 
adjusting for their effects in the analysis (see Methods 
for details). Limma results are available as Supplemen-
tary File 1. At the site level, the study revealed a set of 
42 CpG sites overlapping 53 genes exhibiting signifi-
cant differential methylation between the two groups 
(FDR < 0.05): 24 hypo-methylated (log2FC < 0; ∆β < 0) 
and 18 hyper-methylated (log2FC > 0; ∆β > 0) (Fig. 2).

Genomic localization of the 42 deregulated CpG sites 
showed a significant enrichment at the level of CpG 
islands (OR = 3.426, p-value = 1.58 ×  10–4). In compari-
son, 18 out of 42 sites (43%) are functionally related 
to promoter regions (TSS200, TSS1500, 5’UTR, and 
1stExon) (data not shown).

Differentially methylated cytosines were annotated 
with their corresponding genes for functional annotation 
and prioritization (Supplementary File 1).

Over-representation analysis (methylGSA) revealed 
KEGG pathways associated with amino acid metabolism, 
including "Alanine, aspartate, and glutamate metabolism" 
(hsa00250) and "D-glutamine and D-glutamate metabo-
lism" (hsa00471), albeit with nominal significance (Sup-
plementary File 2).

Next, we focused on differently methylated genes to 
determine their potential relevance to COVID infection 
and symptoms associated with post-acute sequelae of 
SARS-CoV-2 infection (PASC) by using the relevant key-
words (e.g., COVID-19, long-COVID, post-acute seque-
lae of SARS-CoV-2 infection; neuronal; inflammation, 
virus infection); we ranked genes based on their most 
suitable phenotype associations (VarElect) (Supplemen-
tary File 3). Among the top-rated genes to note: GLUD1 
(glutamate dehydrogenase 1) (cg00167275; log2FC = 1.5, 
∆β = 0.31, FDR = 1.66e-35), ATP1A3 (alpha 3 subunit 
of the Na + /K + ATPase) (cg13628106; log2FC = -0.32, 
∆β = -0.16, FDR = 3.2e-4), RNASEH2C (C subunit of 
ribonuclease H) (cg25294185; log2FC = -0.82, ∆β = -0.04, 
FDR = 1.96e-12), SMAD2 (SMAD family member 2) 
(cg05100634; log2FC = 0.51, ∆β = 0.02, FDR = 9.4e-7), 
TNIP1 (TNFAIP3 interacting protein 1) (cg22178392; 
log2FC = -0.18, ∆β = -0.03, FDR = 1.5e-2), PRKCI (protein 

Table 1 Clinical characteristics of study cohorts

IQR Interquartile range

Reference cohort (Healthy—pre‑
COVID‑19)

6‑month post‑COVID‑19 cohort p‑value

n = 191 n = 96

Host features

Age (years)—median [IQR] 51 [44.5–56.50] 60 [52.8–67.5]  << 0.05

Gender (ratio male/female) 2.8 0.5  << 0.05

Severity of clinical evolution during COVID-19 
infection

Mild (%) – n = 48 (50%)

Severe (%) – n = 48 (50%)

Long-COVID-19 symptoms

Yes (%) – n = 28 (29%)

No (%) – n = 68 (71%)

Estimates of blood cell counts

CD8 + T—median [IQR] 0.08 [0.05–0.1] 0.07 [0.03–0.11]  > 0.05

CD4 + T—median [IQR] 0.13 [0.1–0.17] 0.13 [0.09–0.17]  > 0.05

Natural Killer—median [IQR] 0.05 [0.02–0.09] 0.05 [0.02–0.08]  > 0.05

B cells—median [IQR] 0.03 [0.02–0.05] 0.03 [0.01–0.05]  > 0.05

Monocytes—median [IQR] 0.07 [0.05–0.09] 0.07 [0.05–0.09]  > 0.05

Granulocytes—median [IQR] 0.57 [0.52–0.63] 0.57 [0.52–0.63]  > 0.05
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kinase C iota) (cg18139307; log2FC = 0.18, ∆β = 0.31, 
FDR = 3.4e-6), and ARRB2 (arrestin beta 2) (cg10047026; 
log2FC = 0.24, ∆β = 0.025, FDR = 6e-3).

Considering the top 200 nominally significant genes, 
we did not significantly enrich KEGG/PANTHER 
pathways (Supplementary File 4). However, at the 

Fig. 1 Scatter plots of principal component analysis (PCA). Scatter plot distribution of samples and the first two principal components at a sites, b 
genes, c promoters, and d CpG islands
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gene ontology level, we identified a significant enrich-
ment at the level of cellular components (CC), primar-
ily involving GO terms related to the proper function 
and structure of the Golgi apparatus (GO:0000139, 
"Golgi membrane"; GO:0098791, "Golgi subcom-
partment"; GO:0044431, "Golgi apparatus part"; 
GO:0005794"Golgi apparatus"; GO:0031984," organelle 
subcompartment").

At the regional level, the differential analysis revealed 
significant epigenetic changes limited to a specific CpG 
island region on chromosome 6 (chr6:41,068,476–
41069343) (adjusted p-value = 0.006, diff.meth =  + 1%). 
This region encompasses the 3’ terminal portion of 
NFYA (nuclear transcription factor Y subunit alpha) 

and the first exon of the pseudogene ADCY10P1 
(ADCY10 pseudogene 1).

Meta‑analysis
To enhance the robustness and validation of our find-
ings, we conducted a comprehensive literature search 
for analogous studies. After identifying the sole survey 
with a similar design, we integrated our nominal p-val-
ues derived from the differential analysis of CpG sites 
with those obtained from Lee and colleagues [38], who 
conducted a comparison between COVID-19 positive 
and negative cases, using a meta-analytical method. The 
meta-analysis (Supplementary File 5) detected 13 signifi-
cant (FDR < 0.05) CpG sites with identical directions of 

Fig. 2 Circos plot visualizes the genomic distribution of differentially methylated sites throughout the human genome. The blue 
(hyper-methylated) and red (hypo-methylated) dots represent the genomic position of sites that have exceeded the statistical significance 
threshold (FDR < 0.05) and are spatially arranged according to the -log10 (unadjusted p-value). The solid red line indicates the FDR significance 
threshold, while the dashed red line represents the Bonferroni significance threshold. X and Y chromosomes are omitted from the analysis.
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effect/deregulation across the two datasets. This analy-
sis was conducted considering that there is indeed a dis-
crepancy between the two studies regarding the timing of 
sample collection post-infection (6 months vs 3 months). 
The thirteen genes associated to the 13 CpG sites are (in 
order of significance): DYRK2 (dual-specificity tyros-
ine phosphorylation-regulated kinase 2), ATP5PF (ATP 
synthase peripheral stalk subunit F6), B4GAT1 (beta-
1,4-glucuronyltransferase 1), PRKXP1 (PRKX Pseudo-
gene 1), SLC25A21-AS1 (SLC25A21 antisense RNA 1), 
NRDC (nardilysin convertase), SMAD2 (SMAD Family 
Member 2), OSBPL6 (oxysterol-binding protein like 6), 
IFI44L (interferon-induced protein 44 like), PATJ(PATJ 
Crumbs cell polarity complex component), PRH1-PRR4 
(PRH1-PRR4 readthrough), and UBAC2 (UBA domain 
containing 2). The thirteenth probe is located in an inter-
genic region and aligns simultaneously with two genes, 
ACAN (Aggrecan) and ISG20 (interferon-stimulated 
exonuclease gene 20).

Age acceleration
Methylation profiles were evaluated through Horvath’s 
epigenetic clock tool to assess whether exposure to the 
COVID-19 virus impacted biological age estimates. We 
observed a slight but significant epigenetic age accelera-
tion (EAA) in post-COVID-19 patients across all available 
clocks [42–45], (Horvath, p-value = 3 ×  10–3; Hannum, 
p-value =  <  < 0.05; PhenoAge, p-value = 8.8 ×  10–4; Skin-
Blood, p-value = 2.7 ×  10–3) (Fig.  3 panels A, C, D, E). 
On the contrary, despite an increasing trend, no signifi-
cant differences were found when evaluating the DNAm 
GrimAge predictor of lifespan (linear regression adjusted 
for covariates, p-value = 0.42) (Fig. 3B).

Moreover, we also assessed DNAmTLadjAge, a DNA 
methylation-based estimator of telomere length [46]. 
DNAmTLadjAge corresponds to the age-adjusted 
parameter that relates DNAmTL to chronological age. 
Negative values of DNAmTLadjAge indicate DNAmTL 
that is shorter than expected based on age, while positive 
values indicate the opposite. Our analysis revealed that 
DNAmTLadjAge was significantly lower in post-COVID 
patients compared to controls. Results of linear regres-
sion adjusted for covariates: telomere length (DNAmTL) 
(p-value <  < 0.05).

Epigenetic drift
The assessment of epigenetic drift was carried out 
through the identification of stochastic epigenetic muta-
tions (SEMs) as described in [3, 47–51]. To detect SEMs, 
we first examined the distribution and variability of 
methylation levels in the control population for all the 
probes: A reference methylation range for each probe 
was generated using the formula Q1-(3 × IQR) = lower 

limit and Q3 + (3 × IQR) = upper limit. Methylation lev-
els of cases falling outside this extreme interval were 
identified as SEMs. Differences between cases and con-
trols were then investigated using two distinct metrics to 
evaluate the epigenetic drift: one examining the broader 
influence of SEMs (Global-Epi Mutation Load (EML)), 
while the other focused on assessing the burden of SEMs 
at the gene level (Gene-EML).

In the case cohort (Global-EML), the median value of 
SEMs stood at 488.5, IQR (373–922), whereas in the ref-
erence group, it was 369, IQR (314–520.5). The multiple 
regression model that accounted for sex and principal 
component covariates, which included age and cellular 
components, confirmed a significant increase of SEMs 
in the post-COVID-19 group compared to the control/
reference group (with an estimated incremental log10 
transformed value of 0.1667 and a p-value of 3.74 ×  10–06) 
as shown in Fig. 4. The increase is confirmed even when 
SEMs are hyper-methylated and hypo-methylated cat-
egories (data not shown).

Differences in Gene-EML between cases and controls 
were investigated using a sequence kernel association test 
(SKAT) [52]. After correction for appropriate covariates 
(sex and principal components, as described for the dif-
ferential methylation step), the analysis identified 790 
SEMs-enriched genes with statistically significant asso-
ciations with sample group variable (Perm P value < 0.05) 
(Supplementary File 6). The roster of genes exhibiting 
increased drift in cases underwent an over-representa-
tion analysis (Fig. 5) (Supplementary File 7).

ORA identified several enriched pathways, some 
remaining significant even after multiple testing cor-
rections. Notably, the "Insulin resistance" pathway 
(hsa04931) remained significant (FDR = 0.04), alongside 
the "VEGF signaling" pathway (hsa04370) and the "Apop-
tosis signaling pathway" (P00006) (FDR = 0.005). Other 
pathways, while not significant after correction, are note-
worthy, including "Hypoxia response via HIF activation," 
"Axon guidance mediated by netrin," "Relaxin signaling 
pathway," "T-cell activation," and the "Endothelin signal-
ing pathway."

Discussion
This study aimed to investigate potential epigenetic 
changes 6 months after COVID-19 exposure. Currently, 
within this timeframe of exposure, it stands out as one 
of the epigenetic studies with robust statistical power, 
analyzing the methylation profile of nearly a hundred 
individuals.

The role of DNA methylation in developing long-term 
COVID-19 symptoms has been examined in three pre-
viously published studies [37–39]. However, these stud-
ies utilized diverse approaches, primarily focusing on 
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post-acute sequelae of SARS-CoV-2 infection (PASC), 
and employed study designs with reduced sample sizes. 
We examined peripheral blood samples collected from 

individuals 6 months post-infection, regardless of per-
sistent COVID-19 symptoms, with a primary focus 
on investigating whether the virus-induced significant 

Fig. 3 Boxplots showing the distribution of age acceleration differences for different epigenetic clocks: A Horvath, B GrimAge, C Hannum, 
D PhenoAge, and E SkinBlood. The thick horizontal line in each box represents the median of the distribution, while the box itself represents 
the interquartile range (IQR). In the "ggplot" boxplot function, the whiskers extend to the data points located within 1.5 times the IQR from the box 
by default. Dots represent outliers (single values exceeding 1.5 IQRs). (F) Telomere length evaluation (DNAmTLadjAge)
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epigenetic remodeling or reprogramming in the host 
organism.

The initial suggestive discovery reveals no discern-
ible variance in the immune system landscape between 
the two groups, as evidenced by comparable estimates 
of blood cellular composition (CD8T, CD4T, NK, Bcell, 
Mono, Gran) (Supplementary File 8).

Although not directly comparing the same populations 
at the same time point (3 months post-infection), [38] 
confirmed the absence of an inflammatory state, as they 
observed no significant differences in the various cell 
types under consideration.

The principal component analysis (PCA) showed no 
distinct patterns of epigenetic variation between the 
two groups, indicating a lack of solid differences in DNA 
methylation at CpG sites and regions (genes, promoters, 
CpG islands) level. However, the differential methylation 
analysis between the two groups revealed 42 CpG sites 
exhibiting significant differential methylation. The over-
representation analysis highlighted a pathway related 
to glutamate/glutamine metabolism. The dysregula-
tion of this pathway has been reported as significant in 
COVID-19 since studies have shown that glutamine and 
glutamate metabolism play a crucial role in COVID-19 
severity, with elevated glutamate levels associated with an 
increased risk of infection and severe disease. In contrast, 
elevated glutamine levels are linked to a decreased risk 
of infection and severe COVID-19 [53]. Moreover, the 
functional prioritization analysis enabled the identifica-
tion of genes, including GLUD1, ATP1A3, RNASEH2C, 
SMAD2, TNIP1, PRKCI, and ARRB2, which are par-
ticularly intriguing for their potential involvement in the 

neurological and immunological processes associated 
with post-COVID symptoms.

Among the genes with the highest prioritization scores, 
we identified GLUD1 (glutamate dehydrogenase 1), 
which is interesting because it plays a role in maintain-
ing glutamate levels. The hyper-methylation of GLUD1 
observed in this study aligns with the elevated levels of 
glutamate resulting from systemic inflammation caused 
by SARS-CoV-2 infection. This finding might contribute 
to explaining a number of neurotoxic effects, contribut-
ing to neuronal dysfunctions such as altered learning, 
memory, and neuroplasticity highlighted in post-COVID 
patients [54, 55].

Additionally, after prioritization analysis, ATP1A3 
(alpha three subunits of the Na + /K + ATPase) emerged 
as another intriguing gene. Although not directly linked 
to COVID-19, it has been associated with various neu-
rological disorders [56] and cardiac abnormalities [57], 
suggesting a potential indirect role in the neurologi-
cal manifestations and cardiovascular complications 
observed in some patients.

Emerging findings indicate that also the other genes, 
RNASEH2C, SMAD2, TNP1, PRKCI, and ARRB2, may 
play a role in the pathophysiology of long-COVID by 
influencing various aspects of the immune response, 
inflammation, or cellular processes contributing to pro-
longed symptoms following COVID-19 infection. Muta-
tions in the C subunit of ribonuclease H (RNASEH2C), 
for example, have been reported to affect the immune 
response and potentially result in severe COVID-19 out-
comes [58, 59]. SMAD2 (SMAD family member 2) is a 
protein that plays a role in the TGF-β signaling pathway, 
which is involved in the regulation of cell growth, dif-
ferentiation, and immune response [60]. Research has 
shown that SMAD2, along with other genes like SMAD1 
and SMAD3, plays a role in modulating T-cell immunity 
and viral infection responses, contributing to symptoms 
such as chronic inflammation and immune dysregulation 
observed in long-COVID [61].

TNFAIP3 interacting protein 1 (TNIP1) is a hub pro-
tein associated with autoimmune diseases [62] and plays 
a role in COVID-19. Research suggests that TNIP1 is 
involved in the immune response and inflammation reg-
ulation, making it a potential target for therapeutic inter-
ventions in COVID-19 patients [63].

Among the latest interesting genes, we found PRKCI 
and ARRB2. The PRKCI gene encodes a protein kinase 
C iota (PKCi), which regulates cellular functions such 
as cell proliferation, division, differentiation, survival, 
migration, and polarization [64, 65]. On the other hand, 
ARRB2, a member of the arrestin/beta-arrestin protein 
family, is involved in desensitizing G-protein-coupled 
receptors and regulating signaling pathways related to 

Fig. 4 Boxplot showing the distribution of SEMs in Reference 
and post-COVID-19 groups. The thick horizontal line in the box 
represents the median of the distribution, while the box represents 
the interquartile range. By default, in the "ggplot" boxplot 
function, the whiskers extend to the data points located within 1.5 
times the interquartile range (IQR) from the box. Dots represent 
outliers (single values exceeding 1.5 IQRs)
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cell proliferation, migration, and inflammation. Muta-
tions in ARRB2 have been linked to neurodegenerative 
diseases [66, 67], cardiovascular alterations [68, 69], and 
cancer [70]. Additionally, β-arrestin 2 promotes the pro-
duction of IFN-β and virus clearance in macrophages, 
although some viruses may degrade it to evade the 
immune response [71]. Both ARRB2 and PRKCI regu-
late toll-like receptor (TLR) signaling, which is critical for 
inducing inflammation in response to microbes and host 
molecules.

An additional analysis aimed to boost the over-repre-
sentation analysis (ORA) sensitivity by incorporating 
the first 200 nominally significant genes into the gene 
list. This effort was made to capture potentially relevant 

genetic factors that may enhance ORA accuracy. The 
results revealed considerable enrichment in gene ontol-
ogy (GO) terms associated with "Golgi apparatus func-
tionality" under "cellular components." This finding is 
noteworthy as it aligns with previous research indicating 
that SARS-CoV-2 infection induces Golgi fragmentation, 
which aids in viral trafficking and release [72]. Addition-
ally, Golgi fragmentation is commonly observed in brain 
samples from individuals with Alzheimer’s disease and 
can be triggered by excessive neuronal activation [73].

After concluding the differential methylation analy-
sis, the results were compared with those of a previ-
ous study using a meta-analytical approach to produce 
a more reliable list of genes. This comparative analysis 

Fig. 5 Bar chart showing enrichment ratio of a KEGG and b PANTHER pathways
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identified 13 genes showing notably consistent epige-
netic differences among studies. Despite the differing 
study designs, this gene list allows for a focus on more 
robust results.

Furthermore, the study explored additional facets of 
epigenetic regulation and investigated whether exposure 
to the SARS-CoV-2 virus affected biological age and epi-
genetic drift.

We observed a slight but significant age acceleration 
(AgeAccelerationDiff) and telomere shortening in post-
COVID-19 patients, suggesting that SARS-CoV-2 virus 
exposure might accelerate aging. The effects of viral 
infections, specifically COVID-19, as well as immune 
responses on the process of biological aging are cur-
rently a topic of debate: several studies have explored this 
aspect among individuals with acute phase COVID-19, 
examining both the comparison between healthy con-
trols and COVID-19 cases and the assessment of vary-
ing severity levels within the COVID-19 patient group, 
comparing mild and severe cases. While specific studies 
have shown no distinctions between chronological and 
biological age [3, 74], others have observed an accelera-
tion [75]. In partial contrast to our findings, it is worth 
noting the absence of this acceleration in Lee et  al., 
2022 [38], where no significant differences are observed; 
however, it is essential to consider that the time points 
between our study (after 6 months) and Lee’s [38] (after 
3 months) are pretty different. Telomere shortening is a 
widely observed and confirmed aspect in the context of 
COVID-19, as demonstrated in other studies involving 
subjects with severe forms of the disease [75–77] and in 
post-COVID-19 survivors [78].

Another critical issue in understanding the biological 
effects of COVID-19 virus infection after 6 months is 
the results obtained by evaluating epigenetic drift. Epi-
genetic drift refers to the changes in DNA methylation 
patterns that occur over time, contributing to aging. It 
can be influenced by genetics and environmental expo-
sure, including viral infections, exerting an influence on 
individual health by increasing genomic instability and 
promoting abnormal gene expression [79]. Stochastic 
epigenetic mutations (SEMs) can be considered a reli-
able measure of epigenetic drift [3, 50, 80]. For example, 
the burden of SEMs was recently found to be associ-
ated with Parkinson’s disease (referred to as epigenetic 
mutation load) [81] or with amyotrophic lateral sclero-
sis [80]. Two different metrics have been used to assess 
epigenetic drift: one that analyzed the broader impact of 
SEMs (Global-EML) and another that concentrated on 
evaluating the burden of SEMs at the gene level (Gene-
EML). Interestingly, our analyses showed a significantly 
increased Global-EML in the post-COVID-19 group 
compared to controls (Fig. 4).

Moreover, to assess epigenetic drift at the gene level 
(Gene-EML), we employed a sequence kernel associa-
tion test (SKAT). Designed initially for rare variant stud-
ies, this method has recently found applications in other 
areas like copy number variations (CNVs) and epigenetic 
modifications. It has been widely used in numerous stud-
ies aiming to identify genetic associations with diseases 
such as Alzheimer’s disease, schizophrenia, and autism 
spectrum disorder, amyotrophic lateral sclerosis [80, 82–
84]. This analysis has identified a list of genes that exhibit 
significantly different epigenetic drift between the two 
study groups. The ORA analysis considering this list of 
genes revealed several significantly enriched biochemical 
pathways, most of which may directly or indirectly relate 
to COVID-19.

The "VEGF signaling pathway" and "Hypoxia response 
via HIF activation" pathways have been associated with 
COVID-19 due to their involvement in vascular dysfunc-
tion and inflammation observed during disease progres-
sion [85, 86]. Vascular endothelial growth factor (VEGF) 
plays a crucial role in angiogenesis and regulates various 
activities such as vascular permeability, cell migration, 
proliferation, and survival [87]. Hypoxia, or low oxygen 
conditions, can activate the hypoxia-inducible factor 
(HIF), a key regulator in the response to hypoxia. The 
concurrent activation of HIF and proinflammatory sign-
aling leads to the upregulation of VEGF, which is elevated 
in COVID-19 patients compared to healthy controls [88, 
89] and significantly higher in patients with severe out-
comes compared to survivors [86, 90], suggesting that 
extensive activation of endothelial cells significantly con-
tributes to disease progression. Unfortunately, we cannot 
speculate on whether these pathways are up- or down-
regulated in our analysis; as for the SKAT analysis, we 
considered overall epigenetic dysregulation by aggregat-
ing hyper- and hypo-methylated SEMs.

Moreover, pathways like "Insulin Resistance" and the 
"Insulin/IGF pathway-protein kinase B signaling cascade" 
could become relevant due to COVID-19’s association 
with various metabolic alterations, such as impacts on 
insulin sensitivity and glucose metabolism. Studies have 
shown that COVID-19 patients, even those with mild 
cases, may experience increased insulin resistance, which 
can persist long after the acute phase of the infection 
[91].

Another attractive deregulated pathway is represented 
by the "Apoptosis signaling pathway"; this pathway plays 
a central role in the pathogenesis of COVID-19, and its 
dysregulation may also contribute to disease severity. 
However, the role of apoptosis is very complex, and both 
the induction and inhibition of apoptosis have been sug-
gested as potential therapeutic targets at different stages 
of the disease [92].
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The "T-cell receptor signaling pathway" and "T-cell 
activation" pathways are highly suggestive concerning 
COVID-19. These pathways are relevant because the 
SARS-CoV-2 virus can directly impact the immune 
response of T-cells. During COVID-19 infection, there 
has been significant observed impact on T-cell popula-
tions and their activation, as T-cells play a crucial role 
in the immune response against the virus: Longitudi-
nal studies [93, 94] show that immune abnormalities 
may persist after a severe COVID-19 progression, with 
sustained activation of myeloid cells, the presence of 
proinflammatory cytokines, and consistently activated 
T-cells still detectable between 8 to 12  months after 
the initial COVID-19 infection.

In conclusion, these results provide comprehensive 
insights into the epigenetic consequences of SARS-
CoV-2 exposure after 6 months, emphasizing potential 
associations with aging, SEM accumulation, and dys-
regulation in critical pathways linked to insulin resist-
ance, immune response, and vascular function.

We emphasize, for completeness of information, 
that an additional epigenetic analysis was conducted 
considering the subcohort of 28 samples that exhib-
ited long-COVID symptoms. However, although 
these results confirm the findings already highlighted 
regarding the SARS-CoV-2 exposure factor, they 
should be taken and interpreted with caution due to 
the low sample size. The results of this additional anal-
ysis are reported in Supplementary File 9.

The study has some limitations Due to experimental 
constraints, cases and controls were not perfectly bal-
anced on each BeadChip, necessitating careful evalu-
ation and correction for any potential batch effects. 
To validate the results obtained from an EWAS (epi-
genome-wide association study), a biological replicate 
of the experiment with a different validation cohort 
would be necessary. Furthermore, although the sample 
size may be considered large, it may still be insufficient 
to detect very subtle differences between cohorts that 
could prove significant in a genomic framework or 
large genetic association study. However, it is essen-
tial to note that the analysis framework developed in 
this study aims to apply not only the most commonly 
adopted methods in the field of DNA methylation, 
such as the study of age predictors and the analysis of 
differential methylation, but also extends to less com-
mon analytical approaches by integrating the study of 
epigenetic drift and pathways enriched in genes sig-
nificantly enriched in stochastic epigenetic mutations.

Materials and methods
Patient recruitment and study design
This study, conducted across multiple centers, intended 
to examine the long-term effects of COVID-19 by assess-
ing ninety-six individuals 6 months after they con-
tracted the virus (years 2020 and 2021). Inclusion criteria 
encompassed hospitalization during the infection period, 
with a subgroup of patients requiring intensive care unit 
admission and the use of forced ventilation. As a refer-
ence methylation profile, a control group of 191 selected 
individuals from an unrelated study with no history of 
COVID-19 (confirmed through serological testing) was 
included. At the time of sampling, control individuals 
did not exhibit any symptoms suggestive of COVID-19. 
The ethics committees of the participating hospital cent-
ers approved the study protocol. Informed consent was 
obtained from all participants before their inclusion 
in the study. All data collected were treated with strict 
confidentiality and adhered to relevant data protection 
regulations.

DNA extraction
DNA isolation from peripheral blood from all patients 
was performed using automatic equipment and a com-
mercial kit based on magnetic beads separation. Total 
genomic DNA quantification was carried out using an 
N60 Implen Nanophotometer. Samples showing aber-
rant protein (260/280) and organic compounds (230/260) 
ratios were discarded or purified.

Methylation assay
Following the manufacturer’s instructions, 900  ng of 
high-quality genomic DNA was bisulfite converted using 
the EZ DNA methylation kit (D5001, Zymo Research 
Corporation). Illumina incubation conditions were 
used to increase the efficiency and reproducibility of 
the bisulfite conversion. Quality control/quantification 
of bisulfite-converted DNA (bsDNA) was performed 
using an N60 Implen Nanophotometer. Approximately 
200  ng/ul of bisulfite-converted DNA was hybridized 
on Illumina Infinium Methylation EPIC BeadChips. 
Fluorescent signals were detected using the (two-color 
laser—532  nm/660  nm) Illumina iScan scanner and 
saved as intensity data files (*.idat). The methylation 
level for each CpG site is represented as β-values based 
on the fluorescent intensity ratio between methylated 
and unmethylated probes. β-values may range between 0 
(non-methylated) and 1 (completely methylated).

Quality control and differential methylation analysis
The generation of the β-value dataset of all samples was 
carried out using the ChAMP package [95]: After the 
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quality control/preprocessing step, 12,777 probes with 
a detection p-value above 0.01, 5179 probes with a bead 
count < 3 in at least 5% of samples, 2875 NoCG probes, 
94,318 probes with potential SNPs [96], 11 probes that 
align to multiple locations, and 16,424 probes located on 
X and Y chromosomes were filtered out. 734,334 probes 
and 287 samples were retained. After BMIQ normaliza-
tion, the variability due to the batch effect was corrected 
by using the ComBat function [97], which performs para-
metric empirical Bayesian adjustments. To infer the pro-
portions of a priori known cell types (e.g., CD8+T and 
CD4+T-cells, natural killer (NK) cells, B cells, mono-
cytes, granulocytes (basophils, eosinophils, and neu-
trophils)) present in blood samples, we used EpiDISH 
package [40] in R environment.

Differential methylation analysis at the CpG sites level 
was conducted at the group level by computing p-val-
ues using the “Limma” package [41]. At the region level 
(Genes, promoters, CpG island, tiling), the “RnBeads” 
differential methylation (Limma) module was alterna-
tively used [98].

To adjust for potential confounding factors, a principal 
component analysis (PCA) was performed to evaluate the 
association of age and blood cell estimations with both 
dependent (disease groups) and independent (methyla-
tion values) variables: The principal components summa-
rizing 80% of the variability were used as covariates in the 
differential methylation step. Principal components (PCs) 
were used to avoid collinearity of covariates. Estimation 
of biological age (Horvath, Hannum, PhenoAge, DNAm 
skin, and blood) [43–45] and telomere length (surrogate 
marker DNAmTL) [46] were assessed using the DNA 
methylation age calculator analysis tool [42] (https:// 
dnama ge. genet ics. ucla. edu/). Enrichment analysis on 
differentially methylated sites was performed using the 
"methylGSA" package [99] (methylglm function) in the R 
environment.

Individual sample analyses were carried out by 
identifying stochastic epigenetic mutations (SEMs) 
as described in [3, 47–51]. SEMs represent extreme 
aberrant methylation data points and were identi-
fied for each CpG site by comparing the methyla-
tion profile of each case to a reference methylation 
range, calculated from a control population as fol-
lows: upper value = Q3 + (k * IQR), lower value = Q1—
(k * IQR), where Q1 represents the first quartile, Q3 
corresponds to the third quartile, IQR (Interquartile 
Range) equals Q3—Q1, and k is set at 3. Outlier val-
ues were then classified as hyper-methylated or hypo-
methylated with respect to the median values of the 
controls’ corresponding probes. Gene annotation of 
SEMs was obtained using the web tool wANNOVAR 
[100]. For testing associations between cases and SEM 

enriched genes, a method for rare variants analysis was 
applied using the SKAT‐O method implemented in the 
RVTESTS package [52]. Organization/investigation of 
results was conducted according to the clinical charac-
teristics/keywords by using the available prioritization 
tools, including WEB-based gene set analysis toolkit 
(WebGestalt) [101] which uses, among others, gene 
ontology, KEGG (Kyoto Encyclopedia of Genes and 
Genomes) and PANTHER (protein analysis through 
evolutionary relationships) databases, and VarElect (the 
next-generation sequencing phenotyper) [102]. Data/
results were visualized using the "ggplot2" package for 
PCA charts and boxplots, the "Pheatmap" package for 
the heatmaps, and the "CMplot" for the Manhattan 
plots. Linear regressions (after checking assumptions) 
or the Mann–Whitney function were used to evaluate 
statistical differences in age, cell-type composition, and 
burden of SEMs between cases and controls. Unless 
otherwise stated, the statistical significance threshold 
was set to 0.05.

Meta-analysis The meta-analysis was performed 
using the computational tool METAL [103], specifically 
designed for (epi) genome-wide analysis. Only the over-
lapping site-specific p-values (n = 723,656) derived from 
the differential methylation analyses were integrated into 
the meta-analysis.
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