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DNA methylation in cardiovascular disease 
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Abstract 

Background  Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause 
of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence 
of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands 
as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-
related quality of life compared to healthy subjects or affected by other diffused chronic diseases.

Main body  For both CVD and HF, prediction models have been developed, which utilize patient data, routine 
laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still 
is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these condi-
tions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable 
insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews 
current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction 
of CVD and HF as well as that of DNAm age as a proxy for cardiac aging.

Conclusion  DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG 
sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance 
on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources 
and advancements in new machine learning algorithms will help develop more precise and personalized risk predic-
tion methods for CVD and HF.
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Background
Cardiovascular diseases (CVD) affect over half a billion 
people globally and are a leading cause of global deaths, 
claiming about 17.9 million lives each year, approxi-
mately 30% of all global deaths, and imposing a heavy 
burden over healthcare systems [1]. CVD encompasses 
conditions affecting the heart, the blood vessels or both 
and include coronary artery (CAD), cerebrovascular, or 
peripheral artery diseases, and aortic atherosclerosis [1]. 
The heavy burden of CVD is attributed to a combination 
of socio-economic, metabolic, individual, behavioural, 
and environmental risk factors [1]. These include high 
blood pressure (BP), high cholesterol, diabetes, air pol-
lution, obesity, chronic kidney diseases, aging, personal 
and familial CVD history, and unhealthy lifestyles, i.e. 
poorly diet, smoking, physical inactivity, harmful alcohol 
use, stress, etc. [1].

The prevalence of heart failure (HF) is increasing glob-
ally, due to a combined increase in the incidence and the 
improving survival of the disease. [2]. HF affects 56.2 
million people worldwide, contributes to about 36% of 
all CVD deaths, and is the leading cause of hospitaliza-
tion [2, 3]. HF is a clinical syndrome characterized by a 
reduced ability of the heart to pump or fill with blood, 
revealed by increased left ventricular (LV) filling pressure 
along with associated CV risk [4]. There are four stages 
of HF termed A, B, C, and D [5]. Stage A is a preclinical 
condition including individuals at high risk of developing 
HF due to related conditions such as hypertension, dia-
betes, and CAD. Stage B may include subclinical changes 
such as ventricular systolic or diastolic dysfunction, LV 
hypertrophy, chamber enlargement, valvular disease, 
and/or biochemical evidence of increased filling pres-
sures, without symptoms of HF. In contrast, individuals 
at stages C and D have clinical evidence of HF. The initial 
diagnosis of HF is based on symptoms, i.e. fluid reten-
tion, exertional dyspnea, fatigue, and/or oedema, clinical 
findings, and test results with exclusion of other poten-
tial causes [5]. Diagnostic tests include laboratory test-
ing, 12-lead electrocardiogram, and biomarker testing for 
natriuretic peptides (NT-proBNP and BNP) [5]. Echocar-
diography is crucial in establishing the diagnosis and in 
differentiating HF based on LV ejection fraction (LVEF) 
[5]. HF patients with an LVEF of 50% or more are classi-
cally defined as HF with preserved LVEF (HFpEF), those 
with a LVEF between 41 and 49% are considered to have 
mildly reduced EF (HFmrEF), and those with LVEF of 
40% or less as having HF with reduced ejection fraction 
(HFrEF) [5]. Patients may occasionally fluctuate between 
different forms, making classification and pathogenetic 
interpretation more complex.

CVD and HF have significant effects on qual-
ity of life (QoL) and healthcare costs. In particular, a 

relevant fraction of healthcare expenditure is due to 
hospitalizations. Thus, reduction of the total costs for 
hospitalization caused by disease events is crucial for 
cost-effective prevention, diagnosis, and treatment strat-
egies [4, 6]. Financially convenient interventions should 
focus on reducing the need for hospitalizations and re-
hospitalizations, by the means of reducing CVD and 
HF incidence and improving disease progression and 
prognosis. Positive changes in lifestyles and environ-
ment as well as improved disease management have been 
linked to reduced incidence, morbidity, disease sever-
ity, and mortality for CVD [6]. As a consequence, these 
measures could also lead to a decrease in the impact of 
these diseases on QoL and healthcare costs. An effective 
strategy to minimize the overall burden of CVD and HF 
requires an impactful approach on the incidence and the 
prevalence of the diseases. Crucial to such strategies is 
the search of biomarkers capable to identify individuals 
at risk for CVD or HF, patients with faster progression, 
worse prognosis and higher risk of hospitalization and 
mortality. Research on CVD and HF on risk prediction 
by using innovative approaches is rapidly advancing [7, 
8]. This expanding field has the potential to significantly 
enhance overall healthcare management, by assisting 
healthcare professionals in their clinical decision-making 
process and informing individuals on their risks of devel-
oping CVD or HF or more rapidly progressing towards 
an unfavourable outcome. In the following paragraphs, 
we will discuss currently available risk prediction tools 
for CVD and HF and novel strategies for advanced risk 
prediction.

Main text
Approaches to the prediction of CVD
Preventing CVD and its complications in clinical practice 
mainly focuses on identifying and addressing risk factors 
[9]. Identifying individuals at high risk of CVD or early 
diagnosis can reduce the overall burden of the disease 
and its mortality. To meet this need, various risk predic-
tion models have been developed to assess individual 
CVD risk in adult patients and some of them may also 
provide information on current heart ageing [10–15]. 
Heart aging involves various cardiac tissues and can be 
associated with a higher risk of CVD [16]. CV risk calcu-
lators are now widely used and the number of available 
calculators on the web continues to grow [17]. Traditional 
risk prediction models, such as the Framingham Risk 
Score (FRS), are commonly used to calculate an individ-
ual’s 10-year primary CVD risk in asymptomatic patients 
[10]. The FRS utilizes input variables including age, sex, 
total and high-density lipoprotein (HDL) cholesterol 
plasma levels, systolic BP and smoking status. However, 
the FRS has limitations such as reduced accuracy in some 
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ethnic groups and exclusion of certain risk factors [10]. 
International guidelines recommend the use of further 
risk prediction tools [18]. In the USA, the ASCVD (ath-
erosclerotic CVD) score is a modern frequently adopted 
alternative to the FRS [11], while, in Europe, SCORE2 
and SCORE-OP are commonly used to estimate CV risk 
[12, 13]. In the UK, QRISK3 is largely used because of the 
advantage of incorporating additional risk factors com-
pared to FRS and of providing a more comprehensive 
assessment [14]. However, recent research has identified 
conditions associated with increased CVD risk that are 
not captured by the CVD risk equations most commonly 
adopted [15]. The new QR4 risk score, generated by using 
data from millions of adults in the UK and incorporating 
additional risk factors, such as brain, lung cancer, oral, 
and blood cancers, Down syndrome, COPD, and learn-
ing disability and, in women, pre-eclampsia and postna-
tal depression, shows superior performance compared 
to previously existing tools [15]. This increased accu-
racy and comprehensive risk assessment might improve 
patient outcomes through more personalized and effec-
tive preventive strategies. It is important to note that the 
same individual can receive different heart age or CV risk 
results depending on which calculator is used [16]. This 
discrepancy is influenced by the risk model adopted, the 
thresholds set for risk factors, and how the risk is trans-
lated into heart age or CV risk [16]. Furthermore, web-
based calculators for heart age are inferential tests that 
do not directly consider heart physiology [19].

Given the complexity of heart and blood vessels dis-
eases, imaging, electrocardiography (ECG) and machine 
learning approaches have been proposed for CVD risk 
assessment and heart aging [19–24]. Raisi-Estabragh 
et  al. have developed an innovative model to estimate 
biological heart age using radiomic phenotypes of cardiac 
shape and myocardial features derived from CV mag-
netic resonance imaging [20]. These authors used data 
from 29,996 UK Biobank participants without CVD and 
extracted 254 radiomic information on the LV, right ven-
tricle and the myocardium of each participant. Utilizing 
Bayesian ridge regression with tenfold cross-validation, 
they successfully built a model that accurately estimates 
heart age and heart age delta, i.e. the difference between 
the chronological age and model-estimated heart age. 
Additionally, the model shows strong correlations 
between heart aging and CV risk factors such as obesity, 
serum lipid markers, hypertension, diabetes and heart 
rate and represents a new method for phenotypic assess-
ment related to CV aging [20]. In 2011, Starc et al. and, 
in 2014, Ball et al. developed statistical models to predict 
heart age using ECG data [19, 21]. Ball’s method, which is 
based on a Bayesian approach, used a database of 5-min 
ECG recordings from healthy individuals and a validation 

group with cardiac risk factors and diagnosed cardiac dis-
ease [19]. The model aligned with the true chronological 
age in healthy individuals and showed higher predicted 
heart ages in subjects with risk factors and patients with 
proven heart diseases [19]. Since then, other ECG-based 
Heart Age approaches have been developed using Bayes-
ian and artificial intelligence methods [22, 23]. Lindow 
et  al. adopted a machine learning-based approach to 
predict cardiac age using information from a 10-s rest-
ing 12-lead ECG [22]. They analysed a database of ECG 
from 2,771 subjects, including healthy volunteers, indi-
viduals with CV risk factors and patients with CVD. The 
10-s Heart Age showed strong agreement with the 5-min 
Heart Age. The Heart Age Gap from the true chronologi-
cal age increased with CV risk and disease [22]. Ribeiro 
et  al. developed a deep neural network (DNN) to esti-
mate cardiac age based on raw 12-lead ECG tracings [23]. 
The DNN outperformed cardiology resident medical 
doctors in recognizing 6 types of abnormalities in ECG 
recordings, 1st-degree atrioventricular block, right bun-
dle branch block, left bundle branch block, sinus brady-
cardia, atrial fibrillation and sinus tachycardia, with F1 
scores above 80% and specificity over 99% [23]. Also, 
Hughes et al. recently developed a risk score called SEER 
(Stanford Estimator of Electrocardiogram Risk) using a 
deep convolutional neural network to accurately predict 
the long-term risk of CV mortality and disease based 
solely on a resting ECG [24]. SEER has shown impressive 
performance, accurately predicting 5-year CV mortality 
with an area under the receiver operator characteristic 
curve (ROC-AUC) of 0.83, 0.78, and 0.83 when evaluated 
on three independent populations. Additionally, SEER 
can predict 5-year ASCVD and other CV conditions such 
as HF and atrial fibrillation [24].

Approaches to the prediction of HF
Identifying individuals at stage A (high risk for HF) or 
those with stage B HF (without symptoms but with struc-
tural/functional cardiac abnormalities or elevated bio-
markers) will enable earlier implementation of effective 
strategies to prevent or delay the progression to advanced 
HF [7]. However, HF stems from a variety of causes mak-
ing it challenging for a single risk prediction model to 
encompass all at-risk individuals [7]. While traditional 
CV risk factors continue to be the primary contributors 
to the overall burden of HF in the population, incorpo-
rating nontraditional risk factors into HF risk assess-
ment should enable to better accommodate the diversity 
within HF [7]. The HF risk models, based on FHS for 
10-year risk [25] and the Health, Aging, and Body Com-
position (Health ABC) study for 5-year risk [26], incor-
porate traditional clinical risk factors such as age, systolic 
BP, heart rate, LV hypertrophy (LVH) and CAD. The first 
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model includes type 2 diabetes (T2D) and body mass 
index (BMI) [25], while the second model includes smok-
ing and routine laboratory values [26]. However, in both 
models, CAD was found to be the strongest predictor 
of incident HF, restricting their use mainly to second-
ary prevention [25, 26]. The Pooled Cohort equations 
to Prevent HF (PCP-HF) addressed this limitation [27]. 
The 10-year risk model, developed in 5 diverse cohorts, 
excludes individuals with baseline ASCVD and demon-
strates good discrimination (AUC ranging from 0.71 to 
0.88) in all tested cohorts [27]. Furthermore, precise risk 
prediction models tailored for HFpEF and HFrEF have 
been developed [28]. The HFpEF-specific model included 
age, sex, systolic BP, BMI, antihypertensive treatment and 
previous myocardial infarction (MI), while the HFrEF-
specific model additionally included smoking, LVH, left 
bundle branch block and T2D [28]. Furthermore, given 
the 22% prevalence of HF in individuals with diabetes, 
additional specific scores, such as the QDiabetes and the 
WATCH-DM, have been developed to predict HF risk in 
diabetes [29, 30].

In addition to HF prevention, understanding the prog-
nosis of patients with HF is also needed [7]. Indeed, while 
some patients experience prolonged periods without 
hospitalization, others face an unstable clinical course 
with frequent HF decompensation and a poor progno-
sis [31]. The Seattle Heart Failure Model (SHFM) was 
the first web-based tool to predict survival for patients 
with HF both at baseline and after treatments [32]. This 
model was developed using data from 1125 patients and 
validated using data from 5 additional groups totalling 
9942 patients. The SHFM takes into account clinical vari-
ables, medical treatment and standard laboratory tests to 
accurately estimate survival rates from 1 to 5 years. Addi-
tionally, it helps to estimate the potential benefit of add-
ing medications or devices to patient’s treatment plans 
[32]. There are other powerful risk scores currently used 
in clinical practice to predict mortality and morbidity in 
HF patients [33–35]. The Meta-Analysis Global Group 
in Chronic Heart Failure (MAGGIC-HF) risk score is 
based on 13 independent predictors of mortality, includ-
ing age, EF, serum creatinine, New York Heart Asso-
ciation (NYHA) class and diabetes. It predicts all-cause 
mortality at 1 and 3 years in patients with HF, whether 
they have reduced or preserved LVEF [33]. The PARA-
DIGM Risk of Events and Death in the Contemporary 
Treatment of Heart Failure (PREDICT-HF) is based on 
standard clinical and laboratory data, including natriu-
retic peptides [34]. It accurately predicts morbidity and 
mortality in ambulatory patients with chronic HFrEF 
at 1 and 2 years [35]. The Barcelona Bio-Heart Failure 
(BCN-Bio-HF) risk calculator is based on clinical and 
routine laboratory data, with the addition of biomarkers 

like NT-proBNP, high-sensitive troponin T (hs-TnT) and 
high-sensitivity soluble ST2 [35]. This tool enables indi-
vidual prediction of death at 1, 2 and 3 years in patients 
with at least one HF hospitalization or LVEF < 40% [35]. 
Recently, machine learning methods have been used to 
categorize different types of HF [36, 37]. In 2015, Shah 
et  al. were among the first to conduct studies aimed at 
evaluating whether unbiased clustering analysis using 
dense phenotypic data could identify distinct categories 
of HFpEF [36]. By adopting advanced statistical learn-
ing algorithms and unbiased hierarchical cluster analy-
sis, the authors developed a new sub-classification for 
HFpEF based on phenotypic data, including clinical, 
laboratory, ECG and echocardiographic data from 397 
patients. This analysis identified three distinct groups of 
patients with significant variations in clinical character-
istics, cardiac structure/function, invasive haemodynam-
ics and outcomes. Notably, group 3 displayed higher risk 
of HF hospitalization even after adjusting for traditional 
risk factors [36]. Very recently, Banerjee et al. conducted 
a further investigation using machine learning methods 
to subtype and predict HF outcomes by analysing data 
from electronic health records [37]. The study included 
313,062 patients from The Health Improvement Net-
work and Clinical Practice Research Datalink databases, 
cross-referenced with the Hospital Episode Statistics, the 
UK death registry and the UK Biobank. Four unsuper-
vised machine learning methods—K-means, hierarchical, 
K-Medoids and mixture model clustering—were used 
to identify subtypes, which were validated for external 
validity (across datasets), prognostic validity (predictive 
accuracy for 1-year mortality) and genetic validity (asso-
ciation with polygenic risk score for HF-related traits and 
single nucleotide polymorphisms). The study determined 
five clusters of patients with HF labelled early onset, 
late onset, atrial fibrillation-related, metabolic and car-
diometabolic, which might inform etiological research, 
clinical risk prediction and the design of HF trials. Addi-
tionally, using supervised machine learning, the authors 
developed a prediction model for routine clinical use 
with an online risk calculator available for patients and 
clinicians enabling evaluation of effectiveness and cost-
effectiveness [37].

In conclusion, the use of advanced risk prediction 
models, which utilize technologies such as artificial 
intelligence and machine learning, alongside tradi-
tional risk prediction methods that rely on patient data, 
routine clinical laboratory test results and diagnostic 
information, has significantly improved the accuracy 
of identifying individuals at high risk for CVD or HF, 
as well as predicting short-term mortality. But a major 
clinical and research need still remains to identify novel 
biomarkers and approaches, to enhance CVD and HF 
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risk prediction and mitigate the impact of these condi-
tions on the global population.

DNA methylation in CVD and HF
DNA methylation (DNAm) is a well-studied epigenetic 
modification, involving the addition of a methyl (CH3) 
group to a cytosine base, primarily in cytosine-guanine 
dinucleotides (CpGs) [38]. Traditionally, unmethyl-
ated CpGs are associated with gene activity, while CpG 
methylation is linked to gene silencing [38]. The role of 
DNAm in human diseases has been widely recognized 
[39]. Many recent studies have also investigated the 
impact of DNAm and CVD, including coronary heart 
disease (CHD), MI, stroke, HF, hypertension and other 
CVDs [40–54], and there is now growing evidence sup-
porting strong link between DNAm changes, CVD 
and HF [45]. DNAm is also an attractive candidate for 
use as a disease biomarker [38, 55–57]. CpG modifica-
tions are relatively stable biochemical changes, easily 
detectable not only in tissues but also in blood, serum, 
plasma and cell-free DNA [55–57]. Furthermore, their 
dynamic and potentially reversible nature in response 
to biological and environmental factors makes them 
a valuable source for predicting response to therapy 
and prognosis of outcomes [55–57]. Currently, FDA-
approved kits detecting DNAm biomarkers for cancers 
are commercially available [57]. The advancement of 
methylation array technology has also made it possible 
to generate prediction models called DNAm risk scores 
(MRS) [58]. MRS, based on transferring genetic risk 
score approaches to DNAm, are defined as weighted 
sums of an individual’s methylation markers’ beta val-
ues from a pre-selected number of CpG sites [58]. The 
most popular MRS prediction models are the epige-
netic clocks, which are predictors of biological age 
[59–64]. Epigenetic clocks can be categorized based 
on the criteria for selecting CpG sites and the specific 
focus of their training data [54–59]. In particular, the 
first-generation epigenetic clocks, Horvath’s and Han-
num’s, are known as chronological age-trained clocks 
[59, 60]. At variance, the second-generation epigenetic 
clocks, DNAm PhenoAge, and DNAm GrimAge, are 
also called mortality-trained clocks [61, 62]. Also, very 
recently, a third-generation epigenetic clock was devel-
oped by Belsky et al. [63]. In addition to age prediction, 
MRSs have been applied to predict individual risks of 
disease or treatment success [58], and models based 
on DNAm have recently been developed for CVD and 
HF risk prediction [65–71]. In the following sections, 
current information on these subjects will be presented 
and implications of DNAm for improving clinical risk 
prediction of CVD and HF discussed.

DNAm, CVD and risk prediction
DNA methylome investigations through epigenome-
wide association approaches have deeply affected our 
CVD understanding and enabled the identification of 
novel biomarkers [40–43]. In 2015, Guarrera et al. were 
among the first who unveiled distinct DNAm changes 
linked to CVD [40]. Their seminal study, comparing MI 
and matched control individuals from the Italian Euro-
pean Prospective Investigation into Cancer and Nutrition 
(EPICOR study) and the Dutch EPIC (EPIC-NL) cohorts, 
revealed distinct methylation profiles in cases and con-
trols. Differentially methylated regions (DMR) at the 
ZBTB12 gene and LINE-1 elements were found in white 
blood cells several years before the MI event, indicating 
that DNAm may serve as an independent marker of CV 
risk [40]. One year later, Rask-Andersen et  al. investi-
gated the DNA methylome in blood DNA from partici-
pants in the Northern Sweden Population Health Study 
(NSPHS) which also included cases of MI and identified 
211 CpG sites (representing 196 genes) in individuals 
with a positive history of MI [41]. Such genes included 
RYR2 and KCNN1, which are related to cardiac function, 
NMNAT2, FMNL2, MEIS1, WNT7A, HAND2, TBX18, 
LMOD2, SOX17, FGF1 and OVol1 which are involved in 
cardiogenesis, and EPHA2, DYSF, SFRP4, NRG1, BNIP3, 
GDF15 and MLC1, which provides cardio-protection 
following ischaemic events or reperfusion injury [41]. 
In 2017, Li and colleagues reported a further analysis of 
DNAm in blood DNA from patients with Acute Coro-
nary Syndrome (ACS) and from control subjects [42]. 
They found a strong connection between ACS and meth-
ylation at 47 CpG sites. Approximately 62% of which also 
showed significant correlations with the expression lev-
els of known genes. Additionally, they found associations 
with smoking and low-density lipoprotein (LDL) choles-
terol and identified pathways related to atherogenic sig-
nalling and adaptive immune response [42]. A few years 
later, Westerman et al. conducted DNAm analyses in the 
Women’s Health Initiative (WHI) and FHS Offspring 
Cohorts to find more reliable epigenetic biomarkers for 
CV risk [43]. They identified two epigenetic modules 
whose activation correlated with CVD risk. These mod-
ules serve as a molecular indicator of cumulative CV risk 
factor exposure, thus improving clinical risk prediction. 
Additionally, they reported three regions associated with 
the genes SLC9A1, SLC1A5 and TNRC6C showing meth-
ylation patterns associated with CVD risk. Also, a single 
CpG site in SLC1A5 revealed a direct causal relationship 
with CHD [43]. In the same year, Fernández-Sanlés et al. 
discovered specific CpG sites linked to acute myocardial 
infarction (AMI) [44]. They identified 12 CpG sites that 
were duplicated in various independent cohorts with 
incident coronary and CVD, with 4 out of the 12 also 
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associating with incident CHD. These CpGs were labelled 
cg05575921 (AHRR), cg25769469 (PTCD2), cg21566642 
(intergenic) and cg04988978 (MPO) [44]. Very recently, 
Krolevets et  al., through a systematic review conducted 
following PRISMA guidelines, examined DNAm in CVD 
and created a database containing 74,580 unique CpG 
sites [45]. Out of these, 1452 CpG sites were validated in 
two or more publications and 441 CpG in three or more 
publications. In addition, two CpG sites were validated 
in six or more publications, cg01656216, located close to 
the ZNF438 gene (associated with vascular disease and 
epigenetic age), and cg03636183, close to F2RL3 gene 
linked to CHD, MI, smoking and air pollution. The most 
frequently reported genes were TEAD1 and PTPRN2 
which were associated with outcomes ranging from vas-
cular to cardiac disease. Also, STRING analysis revealed 
significant protein–protein interactions between the 
products of the differentially methylated genes, suggest-
ing that dysregulation of the protein network contributes 
to CVD [45].

In parallel with research investigating the relationship 
between DNAm at specific sites and CVD in humans, 
many methylation-based disease risk scores (MRS) have 
been developed to predict CVD risk [65–69]. DNAm age 
has also been utilized to achieve the same goal. In 2020, 
Westerman et al. generated a new epigenomic risk score 
for CVD [65]. In this investigation, a cross-study learner 
(CSL) model by training time-to-event elastic net regres-
sions was initially developed on three existing DNAm 
datasets generated using the BeadChip array technology. 
These datasets were obtained from three independent 
cohorts, namely the Women’s Health Initiative (WHI) 
with 2023 participants, the FHS Offspring Cohort with 
484 participants and the Lothian Birth Cohorts (LBC) 
with 818 participants. The CVD events in these cohorts 
were 1009, 125 and 297, respectively. Scores from these 
models were aggregated through a “stacking” method 
and the resulting ensemble CLS model was validated in 
an additional group of participants from FHS (valida-
tion cohort, n = 2103, 180 cases). The CSL model showed 
strong associations with incident CVD in an unadjusted 
analysis (Hazard ratio, HR = 1.58), which was just par-
tially attenuated by adjustment for standard covariates 
(age, sex and estimated cell type fractions; HR = 1.28) as 
well as CVD risk factors (HR = 1.29). The CSL model was 
found to be associated with the time-to-event of CVD 
in the FHS cohort (HR per SD = 1.28). It was also able to 
predict the status of MI in the Registre Gironí del COR 
(REGICOR) cohort (Odds Ratio per SD = 2.14). The CSL 
model showed enhanced ability to discriminate epige-
netic risks in individuals classified at lower risk based on 
traditional metrics of CVD risk. This suggests that the 
CSL model is useful in identifying higher-risk individuals 

who would not have otherwise been detected by other 
risk metrics [65]. In 2022, Cappozzo et al. adopted a two-
step approach and developed the DNAmCVDscore, a 
combined blood DNAm biomarker for predicting future 
CV events trained on CVD-specific risk factors [66]. In 
the first phase of the study, by using the LASSO (Least 
Absolute Shrinkage and Selection Operator) algorithm, 
nine novel DNAm surrogates for the CVD risk factors, 
i.e. BMI, CRP, fasting glucose and insulin, HDL choles-
terol, triglycerides, PAI-1, platelet tissue factor (CD142) 
and systolic BP, have been used on the training set [par-
ticipants from the European Prospective Investigation 
into Cancer and Nutrition (EPIC) cohort; EPIC Italy; 
n = 1803] and validated on a testing set [made up of par-
ticipants from four independent cohorts, the EXPOsOM-
ICS CVD (n = 315), the Understanding Society (n = 1174), 
the Irish longitudinal study on aging (TILDA; n = 490) 
and the GSE174818 (n = 127)]. In the second phase of 
the study, by adopting the elastic net regression model, 
the DNAmCVDscore has been developed, based on 10 
DNAm surrogates (fasting glucose, HDL cholesterol, sys-
tolic BP, smoking pack-years, lead exposure and blood 
levels of PAI-1, CRP, SKR3, HGF and GDF15 proteins) 
regressed against the time from study recruitment to the 
CV event in the EPIC Italy (n = 1803; n = 295 CVD events 
during follow-up). Its prediction performance at different 
time points has been validated on the participants from 
the EXPOsOMICS CVD (n = 315), the Northern Ireland 
Cohort for the Longitudinal Study of Ageing (NICOLA; 
n = 1728) and The Health and Retirement Study (HRS; 
n = 2146) using adjusted logistic regression models. Of 
note, the DNAmCVDscore revealed a higher ROC-AUC 
for short-term CV events than for long-term CVD and 
outperforms for short-term CVD risk (AUC from 0.71 to 
0.85 for follow-up time at 7 years or less) the previously 
developed epigenetic-based scores for CVD risk, MRS 
(AUC from 0.67 to 0.72) and DNAmGrimAge (AUC 
from 0.71 to 0.84) and the traditional CVD risk algorithm 
SCORE2 (AUC from 0.68 to 0.75). Also, the DNAmCVD-
score improves the predictive accuracy of SCORE2 for 
the entire time horizon considered in the study (follow-
up time from 2 to 18 years), indicating that epigenetic-
based biomarkers complement the information provided 
by traditional CVD risk factors [66].

DNAm can also capture individual protein concentra-
tion differences [72]. Protein epigenetic scores (EpiS-
cores) are methylation scores derived from models of 
protein concentrations obtained by linear regression to 
be used as proxies for protein levels [72]. Also, EpiScores 
are more stable over time and may be more strongly 
associated with disease outcomes than individual pro-
tein measurements [72]. Recently, 109 EpiScores for cir-
culating protein levels, where DNAm patterns explained 
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between 1 and 58% of the protein variation levels, have 
been developed. These episcores were associated with the 
time to diagnosis for different leading causes of morbidity 
and mortality, including CVD [72]. Chybowska et al. have 
recently developed a composite EpiScores for circulating 
protein levels associated with CVD risk independent of 
traditional risk factors [67]. Specifically, the study tested, 
through a series of Cox proportional hazard (PH) mod-
els, whether 109 EpiScores for circulating protein levels 
identified by Gadd et al. were associated with CVD risk 
over 16 years of follow-up of analysed data from ≥ 12,657 
participants in the Generation Scotland (GS) cohort. This 
work revealed that individual EpiScores for 65 circulat-
ing proteins were associated with long-term risk of CVD 
independently of the clinical risk prediction assessed with 
ASSIGN [73] and the concentration of the cardiac Tro-
ponin I (cTnI). The most significant EpiScores reflected 
the concentration of CRP (HR = 1.23) and MMP12 
(HR = 1.13), whose elevated levels were associated with 
increased hazard of CVD, and of NOTCH1 (HR = 0.84) 
and OMD (HR = 0.87), whose higher levels were associ-
ated with a decreased hazard of CVD. In a second phase 
of the study, using the modelling techniques, COX PH 
elastic net and random survival forest, the composite 
CVD EpiScore, based on 45 protein EpiScores, has been 
developed. This further work revealed that the CVD 
EpiScore is a significant predictor of CVD risk independ-
ent of ASSIGN and the concentration of cTnI (HR = 1.32) 
[67]. Also, the CVD EpiScore outperforms the null model 
containing age, sex, ASSIGN and cTnI both in a 10-year 
elastic net prediction and in a random survival forest-
based analysis [67].

The hypothesis that DNAm age mediates the associa-
tions between CV risk factors, CVD and cardiac age and 
may enable risk prediction has also been explored. In 
2023, Topriceanu et al. studied how DNAm age is related 
to A-ECG heart age and CV risk factors [68]. In this study 
DNAm age derived from first- (DNAm AgeHannum 
and AgeHorvath) and second- (PhenoAge and Grim-
Age) generation DNAm age biomarkers and their corre-
sponding AgeAccel (linearly regressed on chronological 
age) [59–62] as well as the cardiac age derived from the 
A-ECG- and the DNN ECG-based heart age scores [22, 
23] were calculated in 498 participants (range age, 60–64 
years) of the Medical Research Council (MRC) British 
National Survey of Health and Development (NSHD) 
study, which included data prospectively collected from 
each subject. Also, using generalized linear models, 
associations of the derived epigenetic age and AgeAccel, 
the ECG-based heart age scores and the biological car-
diometabolic risk factors (BMI, hypertension, diabetes, 
high cholesterol, previous CVD and any CV risk factor) 
were tested. These analyses revealed that by the age of 60, 

individuals with accelerated DNAm appear to have older, 
weaker and more electrically impaired heart function. 
Also, the association between CV risk factors and ECG-
based cardiac ages and disease scores is partly mediated 
by the second-generation DNAm AgeAccel biomarkers. 
Indeed, AgeAccelPheno is a partial mediator for diabetes 
(average causal mediation effects, ACME = 0.23 years), 
for high cholesterol (ACME = 0.34 years) and for any 
CVD risk factor (ACME = 0.34 years). Similarly, AgeAc-
celGrim mediates ≈30% of the relationship between 
diabetes or high cholesterol and the DNN ECG-based 
heart age. Also, when exploring the link between cardio-
metabolic risk factors and the A-ECG-based LV electrical 
remodelling (LVER) and LV systolic dysfunction (LVSD) 
scores, the AgeAccelPheno or AgeAccelGrim mediates 
10–40% of the total effects [68]. Compared to the first-
generation DNAm ages [59, 60], the second-generation 
DNAm ages integrate clinical and physiological prognos-
tic DNAm biomarkers and have been developed to serve 
as better predictors of health span (DNAm PhenoAge) 
[61] and lifespan (DNAm GrimAge) [62]. Also, DNAm-
Pheno includes CpG sites related to the immune system, 
inflammation and metabolism, which have been associ-
ated with accelerated cardiac aging and increased suscep-
tibility to CVDs [61]. At the same time, DNAm GrimAge 
incorporates blood-based biomarkers related to extracel-
lular matrix remodelling, which extensively affects LVSD 
and LVER [62]. Recently, Carbonneau et al. conducted a 
further study, involving 5682 participants from the FHS, 
to investigate the role of DNAm age in the relationship 
between CV health, CVD and all-cause mortality [69]. 
The study used four established scores for DNA methyla-
tion-based epigenetic age: the DunedinPACE Score [63], 
the PhenoAge [61], the GrimAge [62] and the DNAmTL 
[64]. Assessment of CV health was achieved using the 
Life’s Essential 8 (LE8) score, a metric composed of 8 fac-
tors, including diet, physical activity, nicotine exposure, 
sleep health, BMI, blood lipid levels, blood glucose levels 
and BP [74]. The study found that an increase of 1 stand-
ard deviation (equivalent to 13 points) in the LE8 score 
was associated with a 0.39 standard deviation lower Dun-
edinPACE Score, a 0.42 standard deviation lower Grim-
Age, a 0.15 lower PhenoAge and a 0.10 higher DNAmTL. 
Furthermore, a 1 standard deviation increase in the LE8 
score was correlated with a 35% lower risk of developing 
CVD, a 36% lower risk of CVD-specific mortality and a 
29% lower risk of all-cause mortality. These associations 
were partly influenced by DNAm age biomarkers like 
GrimAge and DunedinPACE scores. Mediation analyses 
for the DunedinPACE and GrimAge scores revealed that 
the mean proportions of mediation were 14% and 21% 
for incident CVD, 14% and 21% for CVD-related mortal-
ity and 42% and 65% for all-cause mortality, respectively 
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[69]. However, using DNAm age as a proxy for cardiac 
aging is not always optimal. Pavanello et  al. recently 
reported that the biological age of the heart, measured 
as DNAmAge, is consistently younger than chronologi-
cal age [75]. In 2023, by applying the Bekaert [76], Wei-
dner [77] and the Zbiec-Piekarska [78] DNAm clocks, 
Mongelli et  al., using blood and auricle samples from 
donors undergoing cardiac surgery for coronary aortic 
bypass graft (CABG; n = 289) or aortic valve replacement 
(AVR, n = 94), have reported that the heart is younger 
than the blood [70]. These authors found that while the 
Bekaert’s DNAm age estimation adequately determines 
the individual DNAmAge in blood, it also provides inap-
propriate DeltaAge between chronological and heart 
biological age [70]. Assuming that the heart may have 
intrinsic features that influence the organ-specific aging 
process, Mongelli et  al. designed new blood- and the 
first cardiac-specific clocks, now termed the Mongelli 
& Panunzi (M&P) cardiac and blood model. The two 
models were built by including three independent selec-
tion procedures, a stepwise regression, the LASSO and 
the recursive feature elimination (RFE) algorithms and 
take into account 31 specific CpG sites from six age-
related genes, ELOVL2, EDARADD, ITGA2B, ASPA, 
PDE4C and FHL2. These new methods revealed consist-
ency between chronological and biological age in the 
blood and heart (Chronological age = 66.5 ± 9.7 years; 
M&P blood-DNAmAge = 65.7 ± 7.6 years; M&P Cardiac-
DNAmAge = 66.4 ± 7.4 years). Additionally, the M&P 
clocks detect within the AVR and CABG participant 
groups with decelerated, regular and accelerated bio-
logical age, and interestingly, the cardiac-specific M&P 
clock revealed that DeltaAge acceleration within the AVR 
patient’s subgroup correlated with altered ventricular 
parameters, including LV diastolic and systolic volume 
[70]. Thus, DNAmAge may be adopted in diagnostic pro-
cedures to identify subpopulation of patients that require 
a more intense clinical follow-up. The studies reporting 
DNAm-based prediction models for CVD and heart age 
are summarized in Table 1.

DNAm, HF and risk prediction
Studies are also being published which reveal the asso-
ciation between DNAm and HF [46, 50–54]. In 2017, 
Meder et  al. conducted the first epigenome-wide asso-
ciation study in patients with HF using a multi-omic 
approach [46]. The study involved a detailed analysis 
of high-resolution epigenome-wide cardiac and blood 
DNA methylation as well as mRNA and whole-genome 
sequencing. This investigation was performed in a large 
group of extensively characterized patients with systolic 
HF following dilated cardiomyopathy (DCM). In the 
discovery cohort, the authors identified 59 differentially 

methylated CpG loci in the myocardium of patients 
with DCM (n = 41) compared to patients without DCM 
(n = 31). Among these loci, 30 were hypomethylated 
and 29 were hypermethylated, with 3 of them achiev-
ing epigenome-wide significance at p ≤ 5 × 10–8, namely 
cg16318181, cg01977762 and cg23296652. Of note, 27 
of the 59 loci, including the cg16318181 within the gene 
body of CMSS1, the 5ʹUTR region of FILIP1L and part 
of the promoter region of miR-548G, were also replicated 
in independent cohorts. Furthermore, when comparing 
the methylation changes from previous studies (34 loci) 
[47–49] with their dataset, the authors showed repli-
cated DNAm changes in the genes LY75, PTGES, CTN-
NAL1, TNFSF14, MRPL16 and KIF17. These findings 
strengthened the association of HF with reproducible 
DNAm modifications. The study also confirmed known 
age-dependent patterns in CpG islands in ELOVL2, FHL2 
and PENK genes using DNA from whole-blood sam-
ples of the cohort. Two of the significantly confirmed 
CpG sites were found to be linked to the expression of 
neighbouring genes in both the discovery and validation 
groups. DNAm of the cg25838968 linked to PLXNA2 
gene and DNAm of the cg14523204 associated with 
RGS3 gene were found to be differentially expressed in 
DCM. In addition, the comparison between the meth-
ylation patterns from myocardial tissue and peripheral 
blood in the screening and replication cohorts revealed 
that the two hypomethylated CpGs, cg24884140 (B9D) 
and cg12115081 (doublecortin-like kinase 2), and the 
hypermethylated CpG, cg25943276 (neurotrimin), in 
DCM, significantly overlap between tissue and blood. 
Also, the combination of these three markers exhibited 
an excellent performance as a blood test for DCM, with 
an accuracy of 91.5% in the discovery group and 86.9% 
in the validation group which exceeded the accuracy of 
NT-proBNP (85%), a commonly used biomarker of HF 
[46]. Two years later, Pepin et  al. examined genome-
wide cardiac DNAm in patients with end-stage HF to 
determine whether epigenetic reprogramming occurs 
in Ischaemic Cardiomyopathy (ICM) [50]. In this study, 
including biopsies of cardiac LV from HF patients clas-
sified as either ICM (n = 5) or NICM (n = 6), combined 
genome-wide gene expression and DNAm analyses 
reflect metabolic gene reprogramming. The 211 differ-
ently methylated CpGs corresponding to 124 differen-
tially expressed genes mediate oxidative metabolic gene 
suppression via promoter hypermethylation of genes 
involved in electron transport, TCA cycle and fatty acid 
beta-oxidation, and regression to the foetal gene program 
through hypomethylation of anaerobic glycolytic genes. 
These authors further identified a potential regulator of 
cardiac DNAm, EZH2 and suggested a new mechanism 
by which HF may affect the expression of enzymes and 
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regulators of cardiac metabolism, such as KLF15 [50]. 
In the same year, Pepin et al. also examined whether the 
DNA methylome and transcriptome are reprogrammed 
in HF by comparing whole-genome data from cardiac 
LV biopsies of patients with end-stage HF (n = 7) and 
nonfailing donor hearts (n = 3) [51]. These differential 
methylation studies revealed a diametric metabolic shift 
in cardiac genes, with hypermethylated gene promot-
ers associated with mitochondrial compartmentaliza-
tion and oxidative pathways and hypomethylated gene 
promoters enriched in genes involved in glycolysis and 
anaerobic metabolic processes. Also, epigenetic interfer-
ence of NRF1 via hypermethylation of its downstream 
promoter targets was identified. All these findings sup-
port cardiac reprogramming by epigenetic modifications 
of metabolic genes in HF [51]. Subsequently, Bain et  al. 
adopted methyl-binding domain-capture sequencing 
in a cohort of 20 male patients, 10 of which with multi-
vessel CAD and HF. The authors identified 68 DMRs in 
HF, 48 of which occurring within gene bodies and 25 
located near enhancer elements [52]. Of the HF-associ-
ated DMRs, genes of particular interest as novel candi-
date markers of HF were HDAC9, JARID2 and GREM1, 
with reduced methylation, and PDSS2, with increased 
methylation [52]. In 2023, Liao et  al. determined the 
DNA methylation profile of myocardial tissue in patients 
with end-stage cardiomyopathy [53]. The study included 
36 patients with end-stage HF who underwent LV Assist 
Device (LVAD) implantation at Columbia University 
Irving Medical Center. Twelve of these patients had ICM, 
24 nonischaemic dilated cardiomyopathy (NICM), and 7 
were nonfailing (NF). The genome-wide DNAm analysis 
identified a total of 2,079 differentially methylated posi-
tions (DMPs) in the myocardium of the patients with 
ICM. Among these, 625 DMPs were found to be hyper-
methylated and 1,454 were hypomethylated. In addition, 
261 DMPs were identified in the myocardium of patients 
with NICM, with 117 DMPs being hypermethylated and 
144 hypomethylated. Also, 192 HF DMPs were common 
to both patients with ICM and NICM and were either 
concordantly hypomethylated (n = 125) or hypermethyl-
ated (n = 67). The study also found minimal reversibility 
of myocardial DNAm with LVAD support, with only 35 
CpG sites being common in HF and reverse remodel-
ling, though all methylated in opposite directions. Addi-
tionally, the analysis of DNAm with gene expression in 
the failing human heart revealed several protein-coding 
genes that are hypomethylated and upregulated (HTRA1, 
FBXO16, EFCAB13 and AKAP13) or hypermethylated 
and downregulated (TBX3) in HF. Furthermore, the long 
noncoding RNA LINC00881 was identified to feature 
epigenetic and transcriptional dysregulation in patients 
with ICM and NICM. LINC00881, transcribed from 

a cardiac-specific super-enhancer region with abun-
dant expression levels in the adult human heart, is an 
upstream regulator of the sarcomere and calcium chan-
nel gene expression, including MYH6, CACNA1C and 
RYR2, and its knockdown reduces peak calcium ampli-
tude in the beating human-induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CMs) [53]. Qi et al. very 
recently discovered a link between DNAm at the iodothy-
ronine deiodinase 3 gene promoter region fragment FA27 
(DIO3-FA27), biochemical markers and HF [54]. In this 
study involving 20 patients diagnosed with HF, a quanti-
tative DNAm analysis on DIO3-FA27 promoter through a 
Matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF–MS), revealed lower 
DNAm of the CpG_11.12 and CpG_23.24 in HF patients 
in NYHA class III/IV compared to HF patients in class I/
II. Also, a restrictive cubic spline model revealed that the 
DNAm levels of CpG_11.12 and CpG_23.24 were associ-
ated with coagulation, liver and renal function biomark-
ers, suggesting that biochemical perturbations, combined 
with certain levels of DIO3-FA27 promoter DNAm, may 
worsen the prognosis of patients with HF [54].

In 2022, a prediction score, termed HFmeRisk, com-
bining multi-omic data interactions through end-to-
end machine learning models, has been developed to 
explore the interaction between DNAm and clinical 
features in predicting the early onset of HFpEF [71]. In 
particular, in this study Zhao et  al. included partici-
pants free of chronic HF (CHF) at baseline in FHS Off-
spring Cohort exam 8, with a specific diagnosis of HFpEF 
or no-CHF and a follow-up of 8 years, with complete 
medical information and qualified DNAm data (train-
ing set cohort: HFpEF; n = 59; no-CHF, n = 738; testing 
set cohort: HFpEF; n = 32; no-CHF, n = 139). This study 
involved the use of the LASSO and XGBoost (Extreme 
Gradient Boosting) algorithms to perform feature selec-
tion and of the DeepFM (Factorization-Machine based 
neural network-based recommender system) algorithm 
to build the prediction model. The developed HFmeRisk 
framework includes 25 specific CpGs and five electronic 
health record (EHR) variables (age, diuretic use, BMI, 
albuminuria and serum creatinine) and accurately pre-
dicts the early risk of HFpEF. The HFmeRisk achieved an 
AUC of 0.90, which outperformed models with the five 
clinical characteristics (AUC = 0.78) or the DNAm lev-
els of the 25 CpGs alone (AUC = 0.65), the Hannum 26 
age-related CpG (AUC = 0.65) [60] and other benchmark 
machine learning models (AUCs from 0.63 to 0.83). Also, 
the HFmeRisk featured the best performance compared 
to prediction models fed with other omics, such as the 
EHR + RNA model (AUC = 0.78) and the EHR + micro-
RNA model (AUC = 0.80), indicating that DNAm is more 
suitable than RNA to predict CHF risk. This investigation 
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further demonstrated that CpG sites in the HFmeRisk 
have  key  functions for pathways related to the causal 
mechanism of HFpEF, including intercellular signalling 
and interaction, amino acid metabolism, transport and 
activation, and were related to genes associated with risk 
factors for HF such as BMI, systolic and diastolic BP, EF 
and T2D [71]. The studies reporting DNAm based-pre-
diction models for HF are summarized in Table 1.

Future directions: histone modifications and noncoding 
RNA for risk prediction in CVD and HF?
Concurrent with the evidence revealing the presence of 
DNAm changes in CVD and HF, many studies have also 
reported the role of post-translational modifications of 
histone tails and post-transcriptional regulation of gene 
expression by noncoding RNA (ncRNAs) in the regula-
tion of myocardial and vascular function in health and 
disease [79]. The sections below will briefly discuss the 
implications of these abnormalities in CVD and HF and 
their potential use for improving clinical risk prediction 
of these diseases.

Histone modifications in CVD and HF
Histone modification is one of the most important and 
complex epigenetic regulatory mechanisms in eukary-
otes [80]. Histone post-translational modifications such 
as acetylation, methylation, phosphorylation, ubiquityla-
tion, and the less common ribosylation, sumoylation and 
citrullination, are finely regulated by histone modifying 
enzymes, which catalyse the addition or removal of cova-
lent modifications [80]. In 2013, Papait et  al. provided 
compelling evidence that the histone modification land-
scape is a key determinant of gene expression reprogram-
ming in cardiac hypertrophy [81]. In their work these 
authors used a multi-omic approach, which involved 
a genome-wide map of seven histone modifications 
(H3K9ac, H3K27ac, H3K4me3, H3K79me2, H3K9me2, 
H3K9me3 and H3K27me3) and a transcriptome analy-
sis of gene expression. Their study in adult mouse car-
diomyocytes exposed to a hypertrophic stimulus in vivo, 
revealed that 9.1% of the genome in hypertrophic cardio-
myocytes experienced a change in the distribution of at 
least one histone mark. The sites showing differential dis-
tribution of H3K9ac, H3K27ac or H3K4me3 were found 
to be mainly associated with the regulatory regions of 
genes involved in heart function or the epigenetic control 
of gene expression. On the other hand, sites with altered 
H3K79me2, H3K9me2, H3K9me3 or H3K27me3 profiles 
were predominantly linked to genes that regulate signal 
transduction, as well as the organization and regulation 
of sarcomeric structure. Sites with differential distribu-
tion of H3K9ac, H3K4me3, H3K79me2 or H3K27me3 
were associated with hypertrophic heart phenotypes. 

Finally, the authors identified 9,207 potential active 
enhancers whose activity was modulated. The analysis 
of the transcriptional network revealed that the myocyte 
enhancer factors MEF2C and MEF2A play a role in regu-
lating enhancers during cardiac hypertrophy [81].

Among all histone post-translational modifications, 
methylation and acetylation and the role of their modi-
fying enzymes were mainly studied and involved in 
the development of CVD and HF [82]. The histone tri-
methyllysine demethylase JMJD2A was found to feature 
increased expression in human patients with hyper-
trophic cardiomyopathy. In mice, this enzyme promotes 
cardiac hypertrophy in response to hypertrophic stim-
uli by binding to the promoter of FHL1 which leads to 
upregulation of FHL1 expression and downregulation of 
H3K9 trimethylation [83]. Another example is the his-
tone methyltransferase G9a, which has been reported to 
regulate cardiomyocyte homeostasis in the adult heart by 
mediating repression of key genes that regulate cardio-
myocyte function through dimethylation of H3 lysine 9 
and interaction with the catalytic subunit of polycomb 
repressive complex 2 [84]. The histone acetyltransferase 
p300 also plays an important role in cardiac develop-
ment and HF [85, 86]. p300 controls the expression of 
GATA4 during embryonic mouse cardiogenesis through 
the acetylation of H3K4, H3K9 and H3K27 in the GATA4 
promoter [85]. Additionally, p300 mediates the acetyla-
tion of the SERCA2a at lysine 492. In failing hearts, the 
acetylation of SERCA2a is significantly increased, lead-
ing to reduced SERCA2a activity. Importantly, revers-
ing SERCA2a acetylation by pharmacological activation 
of the histone deacetylase SIRT1 can recover SERCA2a 
function and improve cardiac defects in failing hearts, 
offering a novel potential strategy for the treatment of HF 
[86].

Noncoding RNA in CVD and HF
ncRNAs, by definition, are a group of heterogene-
ous transcripts of different types and sizes that are not 
translated into proteins [87]. ncRNAs operate through 
various mechanisms to influence post-transcriptional 
regulation of expression of target genes and interact 
with each other, forming a complex and dynamic regula-
tory RNA network [87]. Also, ncRNAs are major regula-
tors of various biological functions in different cell types 
and tissues [87]. Dysregulation of ncRNAs, particularly 
microRNAs (miRNAs), has been linked to human dis-
eases, including CVD and HF [88–92]. For instance, 
miR-1 is the most abundant miRNA in the heart and is 
specific to the heart and muscles. The levels of circulat-
ing cell-free miR-1  increased in patients with AMI and 
showed a positive correlation with serum CK-MB levels 
[93]. Plasma miR-1, miR-133a, miR-133b and miR-208b 
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were linked to hs-TnT levels in a large group of patients 
with ACS. Patients who had experienced a heart attack 
had higher levels of miR-1, miR-133a and miR-208b com-
pared to those with unstable angina. Also, miR-133a and 
miR-208b were significantly associated with the risk of 
death [94]. The levels of serum miR-21 were reported to 
be significantly higher in HF patients than those in con-
trol subjects and were correlated with EF and BNP lev-
els. Furthermore, miR-21 has high levels of sensitivity 
and specificity for diagnosing HF [95]. Notably, numer-
ous publications are reporting on circulating miRNAs 
as potential biomarkers for the diagnosis and prognosis 
of CVD and HF only this year [96–99]. Plasma expres-
sion of miR-106a-5p has been demonstrated to undergo 
downregulated in acute HF (AHF) [96]. In their work, 
including 127 AHF patients and 127 control individu-
als followed up for 1 year, Fei et al. showed that plasma 
miR-106a-5p is expressed at lower levels in AHF patients 
compared to controls and negatively correlates with 
NT-proBNP and CRP levels. Also, plasma miR-106a-5p 
level lower than the cut-off 0.655 aids in the diagnosis of 
AHF and level lower than 0.544 predicts poor prognosis 
in AHF patients [96]. The diagnostic and prognostic sig-
nificance of miR-320a-3p has been reported in patients 
with CHF [97]. In this study, 103 patients with CHF and 
95 healthy controls were examined. The levels of serum 
miR-320a-3p were elevated in CHF patients, and the 
levels of BNP and LVEF were found to be positively and 
negatively correlated with miR-320a-3p, respectively. 
The high diagnostic accuracy of miR-320a-3p for CHF 
was indicated by a ROC-AUC value of 0.866. Survival 
curve and Cox analysis also revealed that high expression 
of miR-320a-3p was linked to poor prognosis in CHF 
patients [97]. In the same year, Marchegiani et  al. iden-
tified prognostic minimally invasive miRNA biomarkers 
capable to assess mortality risk in patients with cardio-
vascular multimorbidity [98]. Their study, involving 246 
hospitalized geriatric patients (median age 86 years) fol-
lowed for up to 24 months, revealed that lower circulat-
ing levels of miR-17 and miR-126-3p were significantly 
associated with increased short- and medium-term 
mortality risk. This finding helps in identifying patients 
at higher risk of mortality. Specifically, patients with the 
lowest levels of miR-17 upon hospital admission had a 
higher risk of mortality at 31 days, while those with the 
lowest levels of miR-126-3p had a higher risk of mortality 
at 24-month follow-up. Conversely, high expression lev-
els of miR-17 and miR-126-3p at admission were linked 
to better prognosis [98]. A miRNA signatures of CVD 
and its risk factors at the population level in middle-aged 
and older adults have been also reported [99]. In their 
study, Karlin et  al. measured plasma miRNA levels in 
4440 participants of the FHS. Linear regression analyses 

were conducted to test associations of each miRNA with 
various risk factors. Additionally, prospective analyses 
were conducted to assess the associations of miRNAs 
with new-onset obesity, hypertension, T2D, CVD and 
all-cause mortality. In the FHS, miR-193b-3p and miR-
122-5p were significantly associated with six CVD risk 
factors, and miR-365a-3p, miR-194-5p, miR-192-5p and 
miR-193a-5p were each associated with five risk factors. 
Also, miR-193b-3p, miR-194-5p and miR-193a-5p were 
each associated with two or more risk factors in the 1999 
participants of the Rotterdam Study. Finally, prospective 
analyses revealed that miR-193a-5p, miR-192-5p, miR-
122-5p and miR-193b-3p, along with miR-320e, miR-
210-3p, miR-34a-5p and miR-301a-3p, were associated 
with all-cause mortality in the FHS [99].

Histone post-translational modifications on specific 
target regions are potential sources of biomarkers that 
could be useful for CVD and HF assessment. However, 
some issues still limit their application in clinical prac-
tice. For instance, histone modifications have mainly 
been reported in cardiomyocytes or heart samples [81–
86]. It remains to be demonstrated that the same histone 
modifications specific to the myocardium might be found 
in circulating leukocytes. Additionally, technical chal-
lenges, such as sample preparation, DNA integrity, anti-
body specificity and cross-reactivity, must be overcome. 
In contrast to histone modifications, there is more robust 
evidence supporting the potential of ncRNAs as diagnos-
tic and prognostic biomarkers for CVD and HF. ncRNAs 
can be isolated from tissue biopsies and liquid specimens 
such as blood, serum, plasma and extracellular vesicles, 
and be easily detected and analysed using standardized 
techniques including quantitative real-time PCR, droplet 
digital PCR or RNA sequencing [87]. Additionally, circu-
lating ncRNAs are remarkably stable in blood, and spe-
cific miRNAs that are unique to cardiac tissue have been 
tested as circulating biomarkers [87]. Also in this case, 
however, several challenges still need to be addressed. 
For example, changes in the levels of the same circulating 
ncRNAs have been reported in different CVD and non-
cardiac diseases [87]. Also, there are conflicting obser-
vations regarding the quantification of ncRNAs among 
studies, highlighting the need for standardized proce-
dures and protocols for material management, ncRNA 
isolation and quantification [87].

Conclusions
This review has examined most recent findings from 
the investigation of DNAm in CVD and HF in humans. 
Methylated CpG sites identified in CVD and HF belong 
to genes that can impact cardiac and vascular function. 
Also, many CpG sites have been adopted to design spe-
cific prediction algorithms for CVD and HF, with similar 
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or even enhanced performance compared to existing 
scores based on clinical risk factors alone. For instance, 
Westerman’s CSL model associates with CVD time‐to‐
event and predicts MI. It also helps identify high-risk 
individuals who may not be identified by other risk met-
rics [65]. Cappozzo’s DNAmCVDscore, which is based 
on 10 DNA methylation surrogate biomarkers, performs 
better in predicting short-term CVD risk compared 
to the traditional CVD risk algorithm SCORE2. It also 
improves the predictive accuracy of SCORE2 for follow-
up periods ranging from 2 to 18 years [66]. Similarly, 
Chybowska’s CVD EpiScore, a composite model based on 
45 circulating proteins, is associated with CVD risk inde-
pendently of traditional risk factors. It also outperforms 
a null model containing age, sex, ASSIGN and cTnI in 
predicting CVD risk over a 10-year period [67]. Finally, 
Zhao’s HFmeRisk, a deep learning model that incorpo-
rates DNAm biomarkers and clinical features, exceeds 
risk scores based solely on clinical findings or CpG meth-
ylation and other benchmark machine learning models in 
predicting the early risk of HFpEF [71].

While the field of CVD epigenetics is rapidly advancing, 
there still remains an urgent need of standardized proce-
dures, the lack of which hinder comprehensive compari-
sons and synthesis of the available information, limiting 
the application of these epigenetic scores in current clini-
cal practice. DNAm is, indeed, commonly identified 
using different profiling procedures, such as sequencing 
techniques or methylation arrays [100, 101]. Sequencing 
data offer more comprehensive CpG methylation infor-
mation, but the present high cost of whole-genome bisul-
phite sequencing platforms makes large-scale research 
impractical [101]. Methylation arrays, on the other hand, 
offer a reasonable compromise as the approach is cheaper 
than whole-genome bisulphite sequencing and covers a 
large portion of the methylated genome [45, 101]. At the 
present, the most common methods for characterizing 
DNAm in humans have been the 450 k methylation array 
from Illumina, which measures methylation at around 
450,000 CpG loci throughout the genome, and the 
updated 850k array, which covers almost twice as many 
CpG loci as the 450k array [102, 103]. However, since the 
two arrays do not cover the same set of CpGs, they only 
allow limited comparisons [103]. However, technology is 
constantly evolving and generation of custom-designed 
methylation arrays comprehensive of all CpGs relevant 
to a specific disease will represent a relatively cheaper 
solution and enable the screening of large sample sets. 
Furthermore, the current epigenetic prediction scores 
of CVD and HF have only been validated in a limited 
number of individuals and should be replicated across 
different human ethnicities. Refining DNAm prediction 
models should be also achieved by re-training the model 

after increasing the sample size by combining data from 
multiple cohorts and countries and using updated analyt-
ical methods. Replicating these results in more extensive 
and diverse populations will improve finding validation 
and eventually help modelling ethnicity-specific predic-
tion scores [66–69]. Further limitation is determined 
by the fact that, at the present, existing epigenetic pre-
diction models mainly rely on DNAm assessments 
obtained from blood, which restricts the exploration 
to simply establishing correlations between the identi-
fied CpG modifications in CVD and HF. CpG methyla-
tions in blood may be different from those in the heart 
or blood vessel cells. Accordingly, it is crucial to provide 
evidence of consistent results in blood and the target tis-
sue or isolated cells to establish the biological relevance 
of the differential DNAm patterns in health and diseases. 
Finally, the current epigenetic scores are based on CpG 
biomarkers, while DNAm is only one of several poten-
tially relevant epigenetic modifications. Future investiga-
tions might reveal new epigenetic markers. For instance, 
as mentioned in the previous paragraph, miRNAs have 
already been related to the development and progression 
of CVDs, including HF, and circulating miRNAs, which 
are easily detectable in peripheral blood, show potential 
applicability as diagnostic or prognostic biomarkers for 
CVD and HF [88–92]. Understanding epigenetic heart 
aging will also improve risk prediction models for these 
diseases.

In the near future, research work is expected to lead 
to the development of epigenetic prediction models that 
focus on specific heart or vascular diseases (such as MI, 
CAD, aortic atherosclerosis, stroke or peripheral artery 
disease) and help identifying individuals at high risk early 
in life and better stratify patients with different disease 
trajectories and prognosis. Also, advances in artificial 
intelligence applied to CV medicine and the develop-
ment of new machine learning algorithms with improved 
performances, specifically designed to integrate data 
from DNA methylomics, other sources and patient clini-
cal information will help in personalizing risk prediction 
for CVD and HF. The following approaches will enhance 
accuracy of diagnosis and effectiveness of treatment 
through personalized, risk-focused targeted therapies. 
They will also empower patients to take control of their 
health, enable early detection of CVD and HF, develop 
more cost-effective strategies and identify new care 
pathways.
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