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Introduction
Advancements in next-generation sequencing and 
genome-wide association studies (GWAS) have revealed 
hundreds of loci associated with various cardiovascular 
diseases, highlighting the important role genetic variants 
play in disease pathogenesis and identifying potential 
therapeutics. Notably, most GWAS variants are located 
in noncoding genomic regions, which do not directly 
affect protein function. Instead, these variants are often 
found in genomic regions containing regulatory  ele-
ments, such as promoters, enhancers, and silencers. Con-
sequently, they regulate gene expression levels and the 
cell-type specificity of transcripts via modulation of tran-
scription factor binding and chromatin accessibility [1]. 
Unlike variants in coding regions, where the pathogenic 
effect of the variant could be predicted by changes in 

amino acid sequence, understanding the impact of non-
coding variants requires comprehensive transcriptomic 
and epigenomic investigations, rendering the process 
more challenging and costly. Additionally, the patho-
genicity of noncoding variants is more difficult to inter-
pret clinically due to our limited understanding and the 
scarcity of noncoding variant risk prediction tools.

One common methodology used to assess the impact 
of a GWAS-identified noncoding variant on gene expres-
sion is expression quantitative trait locus (eQTL), in 
which the expression of a gene of interest is stratified 
by the number of loci carrying the variant of interest 
[1]. Databases providing the scientific community with 
eQTLs are critical for researchers to dissect the impact 
of noncoding variants. By analyzing changes in variant-
mediated gene expression, researchers can identify target 
genes likely affected and perform biological validation 
experiments to elucidate the transcriptional and epige-
netic mechanisms involved using various disease models.

The genotype-tissue expression (GTEx) biobank, 
established in 2013, has become an immense resource 
for transcriptomic and eQTL analyses in cardiogenet-
ics. It encompasses gene expression (via RNA-sequenc-
ing) data on 429 and 432 left atrial (LA) appendage and 
left ventricle (LV) samples from males and females of 
various ages and ancestries, 372 and 386 of which were 
genotyped, respectively (Fig. 1A) [2]. However, given that 
many eQTLs are cell-type specific, wide-scale interpreta-
tion of noncoding variants has remained challenging. In 
parallel, there has been a steep rise in the use of human 
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Fig. 1  Investigating rs13376333 using GTEx and multi-ethnic hiPSC-CM databases. A Summary of genotype-tissue expression (GTEx) database 
and B multi-ethnic hiPSC-CM database. The impact of rs13376333 on KCNN3 expression in C GTEx left atrial appendage samples and D hiPSC-CMs. 
The top 50 correlated transcription factors (TFs) with KCNN3 expression in E GTEx left atrial appendage samples and F hiPSC-CMs, showing unique 
TFs and TFs overlapping in both databases. The impact of rs13376333 on genes in the gene ontology (GO) term Cardiac Conduction in G GTEx left 
atrial appendage samples and H hiPSC-CMs, showing unique and overlapping genes that are significantly affected (P < 0.05) by rs13376333
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induced pluripotent stem-cell derived cardiomyocytes 
(hiPSC-CMs) to model cardiac disorders and deline-
ate the pathogenicity and mechanisms of noncoding 
variants. The use of hiPSC-CMs facilitates this research 
in a personalized and scalable manner which captures 
patients’ genomic diversity, as done for heart failure, con-
genital heart disease and arrhythmia [3–5]. Thus, gener-
ating a genotype-expression biobank with hiPSC-CMs 
from diverse patients is critical to advance the study of 
noncoding variants in the era of personalized medicine.

Recently, Lv et al. [6] have successfully constructed a 
multi-ethnic hiPSC-CM eQTL database, which includes 
71 hiPSC-CMs derived from male and female patients 
of diverse ethnicities and ages (Fig.  1B). As noted by 
the authors, eQTLs derived from cardiac tissue are not 
cell-type specific, with only ~ 20% cardiomyocyte com-
position in cardiac tissue. This resource represents an 
important advance in understanding the mechanisms 
of cardiomyocyte-specific noncoding variants, which is 
crucial for downstream biological validation in hiPSC-
CMs. In this perspective article, we highlight the poten-
tial of integrating tissue and hiPSC-CM eQTL datasets to 
deepen our understanding of noncoding variants.

Combining databases to explore the atrial 
fibrillation‑associated variant rs13376333
Atrial fibrillation (AF) is largely co-morbid with heart 
failure, worsens the prognosis, and in some cases, can 
be the root cause of heart failure [7]. To demonstrate 
the utility of these two publicly available resources in 
understanding potential mechanisms of noncoding var-
iants, we focus on the common AF-associated variant 
rs13376333. This variant is located within the intronic 
region between exons 1 and 2 of the KCNN3 gene, 
which is the most significantly associated with AF from 
the 1q21 locus on chromosome 1 (Odds ratio = 1.56) 
[8]. Given the proximity of rs13376333 to the KCNN3 
promoter, we first tested the association of rs13376333 
with KCNN3 expression, showing a significantly posi-
tive cis-eQTL association in both LA appendage sam-
ples (Fig.  1C) and hiPSC-CMs (Fig.  1D). To identify 
potential transcriptional regulators of KCNN3, we 
then measured the correlation of KCNN3 expression 
with the expression of all known human transcription 
factors (TFs) in each dataset, revealing 4 shared hits 
(PBX1, ZNF521, NFIA, TRERF1) among the top 50 
correlated TFs (Fig.  1E, F). Although these data may 
not be informative in isolation, they can provide can-
didate transcriptional regulators in combination with 
motif enrichment, epigenomics, and biological assays. 
Furthermore, given that AF is a rhythm disorder, we 
assessed the impact of rs13376333 (eQTL) on genes 
in the gene ontology term ‘Cardiac Conduction’ in LA 

appendage samples (Fig. 1G) and hiPSC-CMs (Fig. 1H), 
and identified a common hit, SLC9A1, encoding Na+/
H+ exchanger 1 (NHE1). NHE1 is upregulated in heart 
failure and AF and is a potential target of SGLT2 inhibi-
tors [9], suggesting a potential implication of SLC9A1 in 
AF risk in rs13376333 carriers. Given the emerging role 
of SGLT2 inhibitors in the treatment of all-cause heart 
failure [10], our analysis pinpointed a candidate mecha-
nism that can be further investigated to understand its 
contribution to AF in rs13376333-carrying hiPSC-CMs 
and heart failure patients. Moreover, this analysis sug-
gested that the expression of genes beyond the 1q21 
locus (e.g., KCNN2 on Chr 5, SCN4B on Chr 11, DSG2 
on Chr 18) may be altered with rs13376333, implicating 
both cis- and trans-eQTLs associated with this variant, 
although it remains to be clarified whether the trans-
eQTLs are mediated through the cis-altered genes. Col-
lectively, these analyses underscore the value of eQTL 
databases in hypothesis generation and candidate tar-
get identification, but biological validation remains 
necessary to fully elucidate disease mechanisms.

Future directions
We have demonstrated that integrating human cardiac 
tissue and hiPSC-CM eQTL datasets is feasible and 
can be of great value. To further enhance the utility of 
these resources, we recommend enabling the analysis of 
large gene lists simultaneously in the hiPSC-CM eQTL 
database. Currently, up to 400 genes can be tested at 
once in the GTEx dataset; expanding this capability 
would allow for more comprehensive investigations of 
cis- and trans-acting variants and their genome-wide 
effects. With rapid advancements in single-cell genom-
ics and QTL methods, such as histone acetylation QTL 
(haQTL), methylation QTL (mQTL), and splicing QTL 
(sQTL), the investigation of noncoding variants is 
expected to become increasingly feasible, reliable, and 
specific to both cell-type and cell-state. Future research 
should leverage multi-ethnic and diverse hiPSC-CMs 
to combine single-cell omics with advanced QTL stud-
ies in combination with biological validation. By better 
understanding the role of noncoding variants, patients 
carrying such variants can be better risk stratified and 
novel pharmacological targets can be developed by the 
unraveling of novel disease mechanisms.
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