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Abstract 

Background Childhood maltreatment (CM) is linked to long-term adverse health outcomes, including accelerated 
biological aging and cognitive decline. This study investigates the relationship between CM and various aging bio-
markers: telomere length, facial aging, intrinsic epigenetic age acceleration (IEAA), GrimAge, HannumAge, PhenoAge, 
frailty index, and cognitive performance.

Methods We conducted a Mendelian randomization (MR) study using published GWAS summary statistics. Aging 
biomarkers included telomere length (qPCR), facial aging (subjective evaluation), and epigenetic age markers 
(HannumAge, IEAA, GrimAge, PhenoAge). The frailty index was calculated from clinical assessments, and cognitive 
performance was evaluated with standardized tests. Analyses included Inverse-Variance Weighted (IVW), MR Egger, 
and Weighted Median (WM) methods, adjusted for multiple comparisons.

Results CM was significantly associated with shorter telomere length (IVW: β = − 0.1, 95% CI − 0.18 to − 0.02, 
pFDR = 0.032) and increased HannumAge (IVW: β = 1.33, 95% CI 0.36 to 2.3, pFDR = 0.028), GrimAge (IVW: β = 1.19, 95% 
CI 0.19 to 2.2, pFDR = 0.040), and PhenoAge (IVW: β = 1.4, 95% CI 0.12 to 2.68, pFDR = 0.053). A significant association 
was also found with the frailty index (IVW: β = 0.31, 95% CI 0.13 to 0.49, pFDR = 0.006). No significant associations were 
found with facial aging, IEAA, or cognitive performance.

Conclusions CM is linked to accelerated biological aging, shown by shorter telomere length and increased epi-
genetic aging markers. CM was also associated with increased frailty, highlighting the need for early interventions 
to mitigate long-term effects. Further research should explore mechanisms and prevention strategies.
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Introduction
Child maltreatment (CM) refers to behaviors or neglect 
that harm children under 18, impacting their health, 
development, and dignity [1]. Forms of CM include phys-
ical, sexual, or emotional abuse, as well as neglect. This 
maltreatment distinctly influences social interaction pat-
terns and long-term health outcomes. It is important to 
differentiate CM from Adverse Childhood Experiences 
(ACE), which also include environmental factors and 
familial hardships not directly inflicted on the child, such 
as parental substance abuse or economic instability [2]. 
While many findings on ACE and CM overlap, and both 
can result in significant psychological and physiological 
consequences [3–6], not all individuals subjected to ACE 
suffer from CM [7]. Additionally, experiencing ACE or 
CM does not invariably result in trauma or stress due to 
the complexity of these processes and individual resil-
ience [7]. Understanding the nuances between CM and 
ACE is crucial for developing comprehensive interven-
tions and policies to support affected individuals effec-
tively. Addressing CM remains critical due to inadequate 
global interventions [8]. Statistics indicate that 22.6% of 
adults report having experienced physical abuse, 36.3% 
emotional abuse, 26% sexual abuse, and 16.3% neglect 
during childhood [9]. About 20% of those maltreated 
in childhood do not recover [10]. Observational studies 
link CM to various adverse outcomes, including behav-
ioral issues such as a decline in learning abilities [11], 
aggression [12], suicide [13], and increased likelihood of 
engaging in crime [14], cannabis or alcohol abuse [15, 
16], or exhibiting sexually coercive behavior [17]. CM 
is also associated with several mental disorders, includ-
ing depression [18], borderline personality disorder [19], 
post-traumatic stress disorder and anxiety [20], conduct 
disorders [21], and eating disorders [22], along with phys-
ical consequences like chronic pain [23], inflammation 
[24], hormonal imbalances [25], sleep disturbances [26], 
and observable changes in functional MRI scans [27]. 
These conditions often correlate with poorer social out-
comes in adulthood [28], and future research maybe con-
tinue to unveil further impacts. Continued exploration 
into CM is essential for developing a deeper understand-
ing and more effective interventions.

Aging is a natural progression observed in organisms 
as they grow older. It is driven by cellular senescence, a 
phenomenon where cells irreversibly cease to divide, 
starting from the onset of life. This state significantly 
impairs every physiological function, heightening the risk 
of age-related diseases such as neurodegenerative and 
cardiovascular diseases, cancers, and increases in mor-
tality rates, ultimately reducing the duration of a healthy 
life [29, 30]. While age serves as a basic marker of aging, 
it does not capture the variability in aging processes 

among individuals or species [31]. This discrepancy high-
lights cases where young individuals may suffer from 
age-related conditions and premature aging, leading to 
early death. Consequently, there is an emerging focus 
on assessing both chronological and biological ages at 
the molecular level to more accurately gauge and predict 
aging [32, 33].

Researchers utilize the DNA methylation (DNAm) 
ratio at CpG dinucleotide sites to develop aging bio-
markers based on the epigenetic clock [34], including 
HannumAge [35], intrinsic epigenetic age acceleration 
(IEAA) [36], GrimAge [37], and PhenoAge [38]. This 
innovative approach has enhanced our understanding 
and evaluation of aging processes. Telomeres, which are 
composed of repetitive nucleotide sequences that cap 
the ends of eukaryotic chromosomes, play a crucial role 
in cellular senescence due to their function in determin-
ing cell longevity [39]. As such, telomere length (TL) is 
a key indicator of aging. Facial aging involves analyzing 
aging through facial image features [40], while the Frailty 
index assesses frailty by collecting variables related to 
age-associated health deficits and assigning scores that 
reflect frailty levels [41]. Notably, the frailty index shows 
greater sensitivity to age variations compared to other 
frailty assessment tools [41]. Cognitive performance is 
often integrated with frailty assessments to provide a 
comprehensive measure of aging [42]. Current research 
supports that cellular senescence significantly influences 
these aging indices [43–46, 46–48].

Given the profound and lasting impacts of CM on 
health and development, there is a critical need to under-
stand the underlying mechanisms linking early-life adver-
sity to adverse health outcomes. Research highlights 
associations between CM and accelerated biological 
aging, such as shortened telomere length and altered epi-
genetic markers [43, 49]. However, causal relationships 
remain unclear due to potential confounding factors. 
To address these gaps, we designed this Mendelian ran-
domization (MR) study to investigate the causal effects 
of CM on specific aging biomarkers: telomere length, 
facial aging, IEAA, GrimAge, HannumAge, PhenoAge, 
frailty index, and cognitive performance. Using genetic 
data from large-scale Genome-Wide Association Stud-
ies (GWAS), our study aims to provide robust evidence 
on how CM influences biological aging processes, ulti-
mately informing prevention and intervention strategies 
to mitigate the long-term health consequences of early-
life stress.

Methods
Study design
Our research synthesizes a variety of data sources, 
including meta-analytical results from published GWAS 
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and datasets obtained from the UK Biobank (UKB). 
Within the framework of MR study, we employ Single 
Nucleotide Polymorphisms (SNPs) as proxies for both 
phenotypic and genetic Instrumental Variables (IVs). 
For inclusion, SNPs must meet three essential MR crite-
ria: first, a strong association with CM (Assumption 1); 
second, independence from potential confounders that 
could affect the study outcomes (Assumption 2); and 
third, the absence of a direct causal link between the IVs 
and the outcomes (Assumption 3) [50]. Figure  1 illus-
trates this specific process.

Genetic instrument selection
In our MR study, CM was assessed using the Child-
hood Trauma Screener from the UKB, as detailed by 
Warrier et  al. [51] in The Lancet Psychiatry. This meta-
analysis incorporated data from five cohorts: the UKB 
(n = 143,473), the Psychiatric Genomics Consortium 
(n = 26,290), the Avon Longitudinal Study of Parents 
and Children (n = 8346), the Adolescent Brain Cognitive 
Development Study (n = 5400), and the Generation R 
Study (n = 1905), totaling 185,414 individuals of primarily 
European ancestry. The genome-wide association study 
(GWAS) identified 14 independent loci associated with 
CM, revealing significant genetic correlations among dif-
ferent subtypes and reporting methods. Detailed infor-
mation on the data sources, including sample size, age 
range, demographics, and measures of CM, is provided 
in Table 1. This comprehensive dataset provided a robust 

foundation for our MR analysis, enabling us to investigate 
the potential causal effects of CM on Aging.

The Childhood Trauma Screener evaluates five sub-
types of maltreatment—emotional abuse, physical abuse, 
sexual abuse, emotional neglect, and physical neglect—
using five items, each rated on a scale from 0 (never 
true) to 4 (very often true). Participants were classified 
as having experienced abuse or neglect if they reported 
a score greater than 0 on the respective items. Com-
bined CM was identified when both abuse and neglect 
were reported [51]. The screener has been validated in 
several studies, demonstrating good reliability and valid-
ity. Its validity has been confirmed through comparisons 
with clinical interview data, showing strong correlations, 
which support its use as a reliable measure of CM [52, 
53]. The Childhood Trauma Screener is widely used in 
large-scale studies, including the UKB and the Psychiat-
ric Genomics Consortium, due to its simplicity and effec-
tiveness in capturing various forms of childhood trauma 
[51, 54].

For the genetic component of our study, instrumental 
variables were defined using SNPs that reached genome-
wide significance (P < 5 ×  10−8) in GWAS of CM, also 
based on UKB data. To mitigate confounding from link-
age disequilibrium, we applied pruning with thresholds 
set at LD r2 < 0.001 and a physical distance exceeding 
10,000 kilobases [55].

The validity of SNPs as instrumental variables was fur-
ther assessed by computing the F-statistic for each SNP. 
The calculation used the formula: F = [(N − k − 1)/k] × [R2/

Fig. 1 Schematic representation of the three hypotheses of the MR study. Solid arrow lines indicate MR analysis processes and can only influence 
the outcome by exposure. Dashed arrows indicate instrumental variables independent of any confounding variables. IVW, inverse-variance 
weighted; LD, linkage disequilibrium; SNP, single-nucleotide polymorphism
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(1 − R2)] [56], where R2 = 2 × (1 − MAF) × MAF × (β/
SD)2 [57, 58]. The variables in this formula are defined 
as follows: N is the total sample size, k is the number of 
selected SNPs, β represents the estimated effect of each 
SNP on CM, SD is the standard deviation of β, and MAF 
denotes the minor allele frequency. SNPs with an F-sta-
tistic below 10 were excluded to ensure the strength and 
reliability of the instrumental variables.

By employing these stringent criteria for SNP selec-
tion and validation, we aimed to control for genetic fac-
tors that could contribute to the development or risk of 
telomere length, facial aging, IEAA, GrimAge, Hannum-
Age, PhenoAge, frailty index, and cognitive performance. 
This ensures that the observed relationships between 
CM and these outcomes are not confounded by shared 
genetic tendencies. The assessment accounted for the 
influence of specific genetic variants on the likelihood of 
experiencing CM, allowing us to accurately evaluate the 
direct effect of CM on these aging-related biomarkers. 
This approach strengthens the robustness of our findings, 
ensuring that the relationships between CM and the vari-
ous aging-related outcomes are independent of underly-
ing genetic predispositions.

Data source for various aging‑related biomarkers
The data for telomere length were obtained from a large-
scale GWAS involving 472,174 well-characterized par-
ticipants from the UK Biobank. This study measured 
leukocyte telomere length using an established quantita-
tive PCR assay [59].

Facial aging data were sourced from the UK Biobank, 
utilizing a comprehensive GWAS pipeline developed by 
the MRC-IEU for the full UK Biobank genetic data (ver-
sion 3, March 2018) [60]. The methodology for assessing 
perceived age has been detailed in previous studies [61, 
62]. Subjective evaluations of facial aging were obtained 
through the questionnaire item: “Do people say that you 

look younger than you are, older than you are, about your 
age, do not know, and prefer not to answer?”.

The data for PhenoAge, GrimAge, HannumAge, and 
IEAA were derived from a comprehensive GWAS involv-
ing 34,710 individuals of European ancestry and 6195 
individuals of African American ancestry. PhenoAge is 
a second-generation epigenetic clock that incorporates a 
measure trained on mortality, using 42 clinical measures 
and age as input features. GrimAge, also a second-gen-
eration clock, includes DNA methylation-based meas-
ures of smoking, plasma protein levels, and other factors 
to predict mortality risk more accurately. HannumAge, a 
first-generation epigenetic clock, uses penalized regres-
sion models on DNA methylation data to predict chrono-
logical age, and IEAA is a derivative of the Horvath clock 
that provides an intrinsic measure of biological aging 
independent of blood cell type proportions. These clocks, 
developed and validated in a large-scale GWAS, serve as 
robust biomarkers of biological aging, linked to morbid-
ity and mortality risks [63].

Frailty-related SNPs were derived from an extensive 
GWAS meta-analysis involving European participants 
from the UK Biobank (n = 164,610, aged 60–70  years 
old, 51.3% females) and TwinGene (n = 10,616, aged 
41–87  years old, 52.5% females) [64]. Frailty was evalu-
ated using the frailty index, which is based on the accu-
mulation of 49 health deficits throughout the life course. 
This well-validated measure is widely employed in clini-
cal practice [65]

SNPs related to cognitive performance were compiled 
from the UK Biobank and Cognitive Genomics Consor-
tium datasets [66], covering approximately 10 million 
genetic variations in 257,841 individuals of predomi-
nantly European ancestry. The GWAS focused on the 
General Cognitive Factor, using educational achieve-
ment and various cognitive assessments such as digi-
tal symbol coding, digit span, word reading, semantic 

Table 1 Overview of data sources for childhood maltreatment GWAS

PGC, Psychiatric Genomics Consortium, ALSPAC, Avon Longitudinal Study of Parents and Children, ABCD Study, Adolescent Brain Cognitive Development Study

Study Sample size Age range Population Inclusion criteria Measure

UK Biobank 143,473 40–69 years European descent, balanced 
sexes

Phenotypic and genetic 
data, informed consent

Childhood Maltreatment 
Screener (emotional, sexual, 
physical abuse; neglect)

PGC 26,290 Not specified European descent Phenotypic and genetic 
data, informed consent

Retrospective CM question-
naires (abuse)

ALSPAC 8346 Birth years 1991–1992 Predominantly European 
descent

Phenotypic and genetic 
data, informed consent

Parent-reported data, various 
instruments

ABCD study 5400 Birth years 2006–2008 Predominantly European 
descent

Phenotypic and genetic 
data, informed consent

Parent and self-reported ques-
tionnaires

Generation R study 1905 Birth years 2002–2006 Predominantly European 
descent

Phenotypic and genetic 
data, informed consent

Mother-reported data, various 
instruments
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fluency, visual memory, vocabulary, speech memory, 
phoneme fluency, and footprint testing. This diverse 
set of measures allowed for a comprehensive analysis 
of cognitive abilities, including memory, language, and 
processing speed.

The demographic characteristics of the cohorts uti-
lized in our GWAS for various phenotypes—including 
telomere length, facial aging, epigenetic age markers, 
frailty index, and cognitive performance—are summa-
rized in Table  2. This table provides detailed informa-
tion on sample size, gender distribution, population 
ancestry, mean age, age range, and relevant PMID/
GWAS ID for each phenotype. This comprehensive 
overview ensures clarity and consistency in present-
ing the demographic context of our study populations. 
Notably, all datasets used in this study were of Euro-
pean or primarily European origin, with no overlap 
between exposures and outcomes. Ethical approval 
was not required for this study, as it employed publicly 
available summary-level statistics from previous GWAS 
research, which had already received ethical approval 
from their respective institutional review boards. The 
use of de-identified, summary-level data ensured the 
protection of individual privacy and confidentiality.

Exclusion of confounding and palindromic SNPs
To adhere to the second assumption of MR, each SNP 
and its associated phenotypes were assessed using the 
Phenoscanner V2 database (http:// www. pheno scann 
er. medsc hl. cam. ac. uk/, accessed on 31 Dec 2023), 
and SNPs associated with traits related to aging were 
excluded at an r2 threshold greater than 0.80. To har-
monize the data for exposure and outcome, all palin-
dromic SNPs with intermediate allele frequencies were 
removed from the selected SNPs [67], Palindromic 
SNPs are those with A/T or G/C alleles, and intermedi-
ate allele frequencies range between 0.01 and 0.30 [68].

Statistical analysis
In this study, we employed the Inverse Variance Weighted 
(IVW) method as the primary analytical approach, uti-
lizing a random effects model to estimate associations 
for genetically predicted aging. Causal estimates were 
derived by meta-analyzing SNP-specific Wald ratio esti-
mates, calculated as the ratio of the beta coefficient of the 
SNP’s effect on the outcome to its effect on the exposure 
[68]. These estimates were weighted by their standard 
errors, applying either fixed- or random-effects mod-
els depending on the observed heterogeneity. Standard 
errors for each Wald ratio were computed using the delta 
method. Results are presented as beta coefficients (β) 
with 95% confidence intervals (CI). A β below 0 suggests 
the exposure may be protective, while a β above 0 indi-
cates it may be a risk factor.

To validate our findings, we conducted three sensitiv-
ity analyses: the Weighted Median method, MR-Egger 
regression, and the MR-PRESSO test. Specifically, the 
Weighted Median method assumes at least 50% of the 
SNPs are valid instruments and provides robust causal 
estimates [69]. Additionally, MR-Egger regression, which 
detects and adjusts for pleiotropic effects, indicated no 
significant horizontal pleiotropy with an intercept P value 
greater than 0.05 [70]. Furthermore, the MR-PRESSO 
test identifies and excludes outliers, refining causal esti-
mates after their removal [71].

Further, we also evaluated the strength of the genetic 
instruments using the F statistic, which is crucial given 
the significant sample overlap between exposure and 
outcome data in the UK Biobank study. To assess het-
erogeneity among SNP estimates, we used the Cochrane 
Q test [72]. Additionally, we applied the False Discovery 
Rate (FDR) correction to the P values obtained from the 
IVW results to control for the potential increase in Type 
I errors due to multiple comparisons. This correction 
ensures that the proportion of false positives among the 
declared significant results is limited. All statistical analy-
ses were performed using R statistical software (version 

Table 2 Demographic characteristics of cohorts in GWAS for multiple age-related biomarkers

UKB, UK Biobank; TwinGene, TwinGene Study; WLS, Wisconsin Longitudinal Study; GWAS, Genome-Wide Association Study; PMID, PubMed Identifier; Mean age for 
Cognitive Performance is not provided as the cohorts have distinct age groups (Add Health: 12–20 years; WLS: Adults)

Phenotype Sample size Gender distribution Population Mean age (years) Age range (years) PMID/GWAS ID

Telomere length 472,174 Both males and females European Not specified 40–95 34,611,362

Facial aging 423,999 Both males and females European Not specified Not specified ukb-b-2148

Epigenetic age markers 34,710 42.7% female, 57.3% male European 54.8 27.2–79.1 34,187,551

Frailty index (UKB) 164,610 51.3% female, 48.7% male European 64.1 (2.8) 60–70 34,431,594

Frailty index (TwinGene) 10,616 52.5% female, 47.5% male European 58.3 (7.9) 41–87 34,431,594

Cognitive performance 257,841 Both males and females European Not specified 12–20 (Add Health), 
Adults (WLS)

30,038,396

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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4.1.0, R Foundation for Statistical Computing, Vienna, 
Austria), employing relevant packages such as ‘devtools’, 
‘TwoSampleMR’, ‘LDlinkR’, and ‘MR-PRESSO [71]. All 
tests were two-sided, and findings from MR analyses and 
sensitivity tests were considered statistically significant at 
a P value less than 0.05.

Results
Telomere length
Our analysis revealed a significant negative associa-
tion between CM and telomere length. Using the IVW 
method, we found that CM was significantly associated 
with shorter telomere length (β = − 0.1, 95% CI − 0.18 
to − 0.02, pFDR = 0.032). Neither MR-Egger regression 
(β = − 0.14, 95% CI − 0.52 to 0.24, pFDR = 0.491) nor 
Weighted Median (WM) (β = − 0.08, 95% CI − 0.17 to 
0.01, pFDR = 0.094) showed significant associations.

Facial aging
The association between CM and facial aging was not 
statistically significant. IVW analysis yielded a β of 
− 0.03 (95% CI − 0.07 to 0.01, pFDR = 0.192), while 
MR-Egger regression (β = − 0.06, 95% CI − 0.22 to 0.11, 
pFDR = 0.507) and WM (β = − 0.01, 95% CI − 0.05 to 
0.05, pFDR = 0.965) also did not demonstrate significant 
associations.

IEAA
For IEAA, the associations with CM were non-signif-
icant across all methods. IVW indicated a β of − 0.14 
(95% CI − 1.26 to 0.97, pFDR = 0.799), MR-Egger showed 
β = − 2.13 (95% CI − 3.29 to 0.3, pFDR = 0.442), and WM 
presented β = 0.26 (95% CI − 1.1 to 1.62, pFDR = 0.706).

GrimAge
CM was positively associated with GrimAge using 
IVW (β = 1.19, 95% CI 0.19 to 2.2, pFDR = 0.040). How-
ever, MR-Egger (β = − 0.72, 95% CI − 2.38 to 3.93, 
pFDR = 0.768) and WM (β = 1.03, 95% CI − 0.22 to 2.29, 
pFDR = 0.107) did not show significant results.

HannumAge
A significant positive association was observed between 
CM and HannumAge via IVW (β = 1.33, 95% CI 0.36 to 
2.3, pFDR = 0.028). MR-Egger regression (β = − 0.24, 95% 
CI − 2.6 to 2.11, pFDR = 0.915) and WM (β = 1.03, 95% CI 
− 0.28 to 2.33, pFDR = 0.124) did not indicate significant 
associations.

PhenoAge
The association between CM and PhenoAge was sig-
nificant when using IVW (β = 1.4, 95% CI 0.12 to 2.68, 
pFDR = 0.053). Neither MR-Egger (β = − 2.69, 95% CI 

− 4.56 to − 2.18, pFDR = 0.399) nor WM (β = 0.67, 95% 
CI − 0.98 to 2.31, pFDR = 0.426) showed significant 
associations.

Frailty index
CM was significantly associated with an increased 
frailty index using IVW (β = 0.31, 95% CI 0.13 to 0.49, 
pFDR = 0.006). MR-Egger regression (β = − 0.36, 95% 
CI − 0.98 to 0.28, pFDR = 0.291) and WM (β = 0.19, 95% 
CI 0.02 to 0.37, pFDR = 0.03) did not yield significant 
associations.

Cognitive performance
There were no significant associations found between 
CM and cognitive performance across all methods. 
IVW analysis showed a β of − 0.08 (95% CI − 0.2 to 0.03, 
pFDR = 0.192), MR-Egger regression indicated β = − 0.28 
(95% CI − 0.75 to 0.19, pFDR = 0.287), and WM pre-
sented β = − 0.11 (95% CI − 0.24 to 0.03, pFDR = 0.123).

In summary, our results indicate that CM is signifi-
cantly associated with shorter telomere length, increased 
GrimAge, HannumAge, PhenoAge, and higher frailty 
index. These findings highlight the long-term biological 
impacts of early-life stress. No significant associations 
were observed between CM and facial aging, IEAA, or 
cognitive performance, suggesting that the effects of CM 
may be specific to certain aging biomarkers. As illus-
trated in Fig. 2’s forest plot and supported by the scatter 
plots in Fig. 3, these results underscore the specific path-
ways through which early-life stress can influence biolog-
ical aging.

Heterogeneity and pleiotropy
Table  3 presents the results of the sensitivity analyses 
conducted to ensure the robustness of our MR findings. 
The MR-Egger regression intercepts for all outcomes 
were close to zero, with P values above 0.05, indicating no 
evidence of substantial directional pleiotropy. Cochran’s 
Q test revealed significant heterogeneity for telomere 
length (Q value = 20.72, P = 0.036) and frailty index (Q 
value = 21.33, P = 0.006), suggesting variability in the 
SNP effects across these outcomes. Despite the observed 
heterogeneity, the IVW results remain reliable. The MR-
PRESSO global test showed no significant evidence of 
distortion due to pleiotropy for most outcomes, although 
telomere length approached significance (P = 0.051). The 
F statistics for the genetic instruments were all above the 
conventional threshold of 10, indicating strong instru-
ment strength and suggesting that weak instrument 
bias is unlikely. These findings, along with the lack of 
significant pleiotropy indicated by the MR-Egger inter-
cepts and MR-PRESSO global tests, support the robust-
ness of our causal estimates and suggest they are reliable 
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and not substantially influenced by pleiotropy or weak 
instruments.

Discussion
To the best of our knowledge, this is the first study to 
establish a connection between CM and aging using the 
MR approach in GWAS. Our findings indicate that CM 
is negatively correlated with TL and positively correlated 
with HannumAge, GrimAge, PhenoAge, and the Frailty 
index. These correlations suggest that CM may accelerate 
epigenetic and biomolecular aging.

Our MR study indicates that increased exposure to CM 
correlates with shorter TL. Shortened telomeres com-
promise chromosome protection, potentially hastening 
biological aging [39]—a conclusion supported by our 
findings. A previous study of 31 adults used quantitative 
polymerase chain reaction to measure telomeres, dem-
onstrating that CM contributes to shortened telomeres 
in leukocytes [73]. However, a subsequent larger study, 
involving 123 cases and 1751 control subjects, employing 

the Southern blot method alongside rigorous statisti-
cal approaches, did not observe an impact of CM on TL 
[74]. Nevertheless, recent research increasingly supports 
the link between CM and telomere shortening [43, 49, 
75, 76]. The exact mechanisms by which CM influences 
TL remain elusive. One prevailing theory suggests that 
adverse childhood experiences, such as maltreatment, 
may elevate oxidative stress and inflammatory responses, 
resulting in DNA damage and thus, telomere shortening. 
Furthermore, chronic stress could diminish telomerase 
activity—primarily the functions of telomerase reverse 
transcriptase (TERT) and telomerase RNA component 
(TERC)—impairing telomere maintenance and accelerat-
ing the aging process [39, 77].

In our study, we observed that CM is positively cor-
related with three epigenetic age markers: HannumAge, 
GrimAge, and PhenoAge. These epigenetic clocks, which 
include HannumAge, IEAA, GrimAge, and PhenoAge, 
are designed to measure both chronological and biologi-
cal ages based on DNAm levels. Understanding these 

Fig. 2 Forest plot of the causal relationships between CM and various aging-related biomarkers. OR, odds ratio; CI, confidence interval; IVW, inverse 
variance weighting; WM, weighted median; MR Egger, MR Egger regression; nSNP, number of single-nucleotide polymorphism
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clocks is crucial for interpreting our findings. Originally, 
it was challenging to quantify age and aging using DNAm. 
However, advancements in genomic DNA sequencing 
technology and microarray hybridization have greatly 

improved the accuracy of DNAm measurements [63]. By 
combining diverse biological tissue samples with special-
ized algorithms, researchers developed epigenetic clocks 
with varying strengths and limitations. HannumAge, a 

Fig. 3 Scatter plots of the causal relationships between CM and various aging-related biomarkers. Scatter plots illustrating the causal relationships 
between CM and various aging-related biomarkers, including telomere length, facial aging, GrimAge, HannumAge, PhenoAge, IEAA, frailty index, 
and cognitive performance. Each plot shows the SNP effect on CM (x-axis) versus the SNP effect on the respective biomarker (y-axis). The lines 
represent different MR methods: Inverse Variance Weighted (IVW), MR-Egger regression, Weighted Median, Simple Mode, and Weighted Mode
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first-generation clock, is geared toward predicting chron-
ological age using DNAm from leukocytes in saliva sam-
ples [35]. It is less effective at predicting physiological 
conditions and lifespan compared to newer models [35]. 
The second-generation clocks, GrimAge and PhenoAge, 
offer more comprehensive assessments. GrimAge inte-
grates DNAm data with mortality-related indicators such 
as smoking and plasma protein levels, enhancing predic-
tions of health outcomes like mortality and cancer [78]. 
PhenoAge, utilizing data from whole blood cells, excels 
in predicting a range of outcomes, including death, can-
cer, healthy lifespan, physical function, and Alzheimer’s 
disease [38]. Linking these insights to our MR findings, 
we conclude that CM not only accelerates aging but also 
increases the likelihood of mortality and adverse health 
conditions. This pattern aligns with previous research, 
including studies in bipolar disorder patients, showing 
that CM elevates GrimAge [79], and supports evidence 
that CM increases PhenoAge [47, 80].

Our MR study analysis indicates a positive correlation 
between CM and the frailty. To date, no direct studies 
link CM with frailty, making our findings particularly 
significant. A comprehensive cross-sectional study in 
the UK has shown that adults with greater exposure to 
CM are more likely to exhibit increased frailty [81]. Even 
though this analysis used the frailty phenotype model 
specific to the UK Biobank, this supports a consistent 
relationship in terms of frailty attributes. Additionally, 
a large study in Canada found a positive dose–response 
relationship between the frailty and ACE [46]. This study 
employed a broader definition of ACE compared to CM, 
indicating some alignment but also notable differences 
between our findings and existing research.

The biological mechanisms underlying changes in aging 
biomarkers due to CM may involve the activation of the 
stress system and subsequent release of neuroendo-
crine hormones [82]. This exposure to stress biologically 

embeds itself in the body, destabilizing the physiological 
system and activating the stress response, which signifi-
cantly impacts the regulation of the hypothalamic–pitui-
tary–adrenal (HPA) axis [83]. For instance, in response 
to stress, corticotropin-releasing hormone (CRH) and 
arginine vasopressin are released from the hypothala-
mus, triggering the anterior pituitary gland to release 
adrenocorticotropic hormone (ACTH). This hormone 
then stimulates the adrenal cortex to produce glucocor-
ticoids like cortisol. Cortisol plays a critical role in reg-
ulating the HPA axis through a negative feedback loop 
and influences both peripheral and central system func-
tions. Additionally, stress induces the adrenal medulla to 
secrete catecholamines (norepinephrine and epineph-
rine), which affect the peripheral system. The modifica-
tions in the HPA axis and related hormonal responses 
are intricately linked to cognitive behavior changes and 
health outcomes, involving complex interactions across 
various physiological and psychological regulatory levels 
[84–87].

Additionally, stress can also cause changes in mito-
chondrial structure and function through mechanisms 
such as increased oxidative stress and mitochondrial 
DNA damage, which may occur prior to neuroendocrine 
changes, making it one of the micro-mechanisms by 
which CM accelerates aging [88]. However, these results 
are mainly based on animal experiments, which have 
limitations regarding sample size, gender, sample selec-
tion, and measurement methods. A recent study involv-
ing 754 human samples of all genders used multi-model 
linear regression analysis to find significant effects of 
CM on mitochondrial function [89]. The study measured 
two skeletal muscle mitochondrial function indicators in 
peripheral blood—Maximal Oxidative Phosphorylation 
(Max OXPHOS) and Maximal ATP Production (ATP-
max)—which are considered important standards in 
mitochondrial bioenergetics. Although this provides new 

Table 3 Summary of sensitivity analysis results

MR-PRESSO, sum of outliers and multiplicity residuals; F, F-statistic

Outcome MR‑Egger regression Cochran’s Q MR‑PRESSO F

Egger intercept P value Q value P value Global test P value

Telomere length 0.01 0.839 20.72 0.036 0.051 154.23

Facial aging 0.01 0.71 11.84 0.222 0.208 153.89

PhenoAge 0.09 0.205 8.42 0.394 0.407 148.43

GrimAge 0.04 0.432 10.24 0.332 0.331 150.66

HannumAge 0.04 0.491 5.87 0.662 0.686 148.43

IEAA 0.05 0.462 12.24 0.2 0.233 150.66

Frailty index 0.02 0.066 21.33 0.006 0.104 146.1

Cognitive performance 0.01 0.427 9.63 0.211 0.231 147.2
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evidence for the mitochondrial mechanisms by which 
CM leads to aging, further large-scale studies are needed 
to verify and expand these findings.

Conclusion
Our MR study underscores the significant effects of CM 
on telomere length, HannumAge, GrimAge, PhenoAge, 
and frailty index. However, associations with facial aging, 
IEAA, and cognitive performance were not statistically 
significant. These findings may be influenced by various 
factors, including lifestyle, environmental exposures, and 
genetic variations. The complexity of measuring cogni-
tive performance could also obscure a direct link with 
CM. Although CM is not an exclusive determinant of all 
health outcomes, it plays a crucial role. This underscores 
the importance of considering multiple factors when 
assessing the long-term effects of CM, which is essential 
for developing effective intervention strategies and public 
health policies.

Strengths and limitations
Our study has several strengths, including the use of 
robust analytical methods (IVW, Weighted Median, 
MR-Egger, and MR-PRESSO), comprehensive data from 
large-scale GWAS like the UK Biobank, and thorough 
sensitivity analyses indicating reliable causal estimates 
with high F statistics.

However, the study has limitations: it included primar-
ily European ancestry individuals, limiting generaliz-
ability. Despite efforts to exclude confounders, residual 
confounding is possible. The GWAS for CM lacked sub-
group analyses, and no GWAS for Adverse Childhood 
Experiences (ACE) was available, preventing stratified 
analyses. Some outcomes, like facial aging and cognitive 
performance, relied on self-reported or proxy measures, 
potentially introducing measurement error. Finally, our 
study did not cover all aging biomarkers. Future research 
should include diverse populations, additional biomark-
ers, and investigate stratified effects of CM and ACEs 
for a comprehensive understanding of early-life stress 
impacts on aging.
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