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Abstract 

Background  Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic fac-
tors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal 
effects between epigenetic clocks and WBC count have not been fully examined.

Methods  This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic 
clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individu-
als. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted 
method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR 
was applied to investigate independent effects of WBC count on epigenetic age acceleration.

Results  In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count mark-
edly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it 
did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly 
elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E−03 < 0.01). Reverse MR revealed no significant causal 
impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte 
counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal associa-
tion between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong 
associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E−07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E−06; Han-
numAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E−04). Likewise, eosinophil cell count demonstrated significant association 
with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E−03 < 0.01).

Conclusion  These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible 
and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight 
the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune 
parameters when interpreting epigenetic age.
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Introduction
Aging in humans is a multifaceted process involving 
the gradual loss of physiological integrity, diminished 
immune function, and increased susceptibility to mor-
tality over time [1]. This immune deterioration with age 
leads to heightened vulnerability to infections, reduced 
vaccine efficacy, and a greater risk of conditions like 
osteoporosis, Alzheimer’s disease, and cancer in elderly 
populations [2, 3].

Peripheral white blood cell (WBC) counts serve 
as essential indicators for evaluating inflammatory, 
immune, allergic, and hematological states [4]. The 
five primary types of WBCs—lymphocytes, basophils, 
eosinophils, monocytes, and neutrophils—are pivotal in 
both innate and adaptive immune responses. These cells 
engage in complex interactions, functioning as an inte-
grated system within the immune framework to mount 
a comprehensive defense against pathogens. Specifically, 
lymphocytes, which encompass T cells, B cells, and NK 
cells, are central to the adaptive immune response [5]. 
Monocytes can differentiate into macrophages or den-
dritic cells; macrophages are phagocytic cells that engulf 
and digest pathogens, while dendritic cells help activate 
other immune cells [6]. Basophils, although present in 
the smallest quantities in the blood, are involved in the 
inflammatory responses [7]. Eosinophils are particularly 
important in fighting parasitic infections and are also 
involved in allergic reactions and asthma [8]. Neutro-
phils, the most abundant type of WBC, are essential to 
the body’s innate immune system [9].

Empirical data corroborate the link between aging and 
variations in WBC count. Notably, research has shown 
that the absolute count of lymphocytes diminishes with 
age [10, 11]. Among lymphocyte subtypes, T cells and 
B cells exhibit a decline, while natural killer (NK) cells 
tend to increase with aging [12]. Neutrophil and mono-
cyte counts also increase with age [13], while eosinophils 
and basophils remain relatively unchanged throughout 
life [12]. A multi-omic study suggested that immune cells 
are associated with epigenetic clocks through cell-type 
enrichment analysis [14]. In a cohort of 2996 women 
from Quebec aged from 55 to 101 years, it was demon-
strated that aging is associated with elevated neutrophil 
and monocyte counts, while lymphocyte count decreases 
[13].

Epigenetic clocks have emerged as effective indica-
tors of biological age, providing insights that may differ 
from chronological age. These clocks are based on DNA 
methylation patterns at specific CpG sites that correlate 
with aging [15]. The first-generation epigenetic clocks, 
such as HannumAge, trained on blood samples [16], 
and Intrinsic HorvathAge, a multi-tissue predictor [17], 
exhibit strong correlations with chronological age. The 

second-generation clocks, including PhenoAge [18] and 
GrimAge [19], go beyond estimating chronological age 
by integrating data on disease and mortality risk factors, 
such as smoking habits, plasma protein levels, and WBC 
counts, to better predict health outcomes and longevity. 
Although epigenetic clocks were developed using bulk 
methylation data, which is inherently confounded by 
WBC counts, the causal relationship between epigenetic 
clocks and WBC counts remains relatively unexplored.

Mendelian randomization (MR) offers a method to 
establish causality between exposures and outcomes 
through genetic variants [20]. UVMR (two-sample uni-
variable MR) uses two different samples to focus on 
one exposure variable, while multivariate MR (MVMR) 
concurrently investigates the causal effects of multiple 
exposures on an outcome. McCartney et al. utilized the 
two-sample MR approach to study the genetic predictors 
of lymphocyte count on epigenetic age acceleration [21]. 
Expanding on this analysis, we incorporate additional 
common WBC counts (neutrophil, monocyte, eosino-
phil, and basophil counts), leveraging the latest aggre-
gated data, including from the Blood Cell Consortium, 
which integrate meta-analysis from the UK Biobank and 
other cohorts [22–24] (Additional file 3: Supplementary 
Table 1–2).

Method
Study design
To ensure unbiased estimates in MR, we adhered to three 
essential assumptions [25]. First, the genetic variants 
used as instruments must exhibit a strong correlation 
with the exposure. Second, these genetic instruments 
must be unaffected by any confounders that could affect 
the outcome. Third, the instruments should influence the 
outcome only through the exposure.

In our research, two-sample univariable MR was 
employed to investigate the bidirectional causal relation-
ships between WBC counts and epigenetic age accelera-
tion. Additionally, multivariate MR analyses were used to 
explore the independent effects of each WBC subtype on 
outcomes due to the interactions among the five differ-
ent subtypes. Figure 1 showcases the design for the MR 
study.

Data sources
We sourced extensive genome-wide association study 
(GWAS) summary data on blood traits for a sizable 
cohort (N = 563,946) from the Blood Cell Consor-
tium, accessible via IEU Open GWAS Project. This 
consortium encompasses an additional 26 discovery 
cohorts beyond the UK Biobank [22–24]. Further-
more, GWAS summary statistics for four epigenetic 
age measures (GrimAge, PhenoAge, intrinsic epigenetic 
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age acceleration (IEAA), and HannumAge) involv-
ing 34,710 participants were obtained from 28 cohorts 
through Edinburgh DataShare [21]. The GWAS analy-
ses included in this research are all based on individu-
als of European heritage.

Instrumental variables selection
Single-nucleotide polymorphisms (SNPs) exhibit-
ing strong associations with the exposure variable 
were identified using the GWAS significance criterion 
(P < 5E−08). To derive independent instrumental vari-
ables (IVs), we applied clumping procedures with the 
standard linkage disequilibrium (LD) parameters 
(r2 < 0.001, distance > 10000  kb) utilizing the LD refer-
ence dataset from the 1000 Genomes Project. Follow-
ing this step, SNPs that were palindromic or ambiguous 
were excluded to prevent potential misalignment issues 
during genotype imputation and to ensure the accuracy 
of our genetic association estimates. Additionally, SNPs 
showing significant association with epigenetic clocks 
(P < 5E−05) were discarded to avoid bias. Finally, we 
calculated the R-squared (R2) and F-statistics to gauge 
the reliability of the instrumental variables, with F-sta-
tistics exceeding 10 considered indicative of robust 
instruments [26].

MR statistical analysis
In our MR analysis, the random-effects IVW method 
was utilized as the main method, presenting odds ratios 
(ORs) in relation to a standard deviation (SD) incre-
ment in risk factor levels [27]. The significance thresh-
old for Bonferroni correction was set at P = 0.05/N, 
where N is the cumulative count of exposures assessed. 
The statistical treatments were implemented using R 
version 4.3.2 and TwoSampleMR package.

To ensure the reliability of our IVW MR analysis, 
we employed MR-Egger [28], weighted median [29], 
and mode-based [30] analyses. Specifically, we firstly 
employed the MR-Egger intercept to evaluate and 
adjust for potential horizontal pleiotropy (HP) among 
genetic variants [31]. We then applied Cochran’s Q test 
(P < 0.05) to evaluate heterogeneity among the cho-
sen IVs [32]. Moreover, the MR-PRESSO technique 
was implemented using the “MR-PRESSO” software 
package to detect and adjust for HP and outliers [33]. 
A scatter plot was generated to visually identify any 
outliers.

MVMR was then applied to independently ascer-
tain the impact of each WBC count on epigenetic age 
acceleration.

Fig. 1  Study design of this MR study. IEAA intrinsic epigenetic age acceleration, GWAS genome-wide association study, UVMR univariate MR, MVMR 
multivariate MR, MR-PRESSO Mendelian randomization pleiotropy residual sum and outlier
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IVW estimates were deemed to reflect causal associa-
tions solely if they were consistent in direction and sta-
tistical significance with at least one of the sensitivity 
analyses and displayed no evidence of HP (P > 0.05).

Result
UVMR analysis of the bidirectional causal relationship 
between white blood cells and epigenetic age acceleration
To investigate the causal effect of WBC count on epige-
netic age acceleration, we employed the random-effects 
inverse-variance weighted (IVW) approach as our 

primary analysis. The selection of SNPs was based on 
summarized GWAS datasets, with the involvement of 
these SNPs in each analytical step outlined in Additional 
File 1: Supplementary Tables  1–20. All the F-statistics 
associated with these SNPs exceeded 10, confirming their 
strength as IVs. Our analysis presented robust evidence 
for a causal effect of lymphocyte cell count on epige-
netic markers such as GrimAge, HannumAge, and Phe-
noAge (GrimAge IVW β: − 0.52; 95% CI − 0.68, − 0.37; 
P = 2.51E−11; HannumAge IVW β: − 0.59; 95% CI − 0.75, 
− 0.43; P = 2.08E−13; PhenoAge IVW β: − 0.76; 95% CI 

Fig. 2  IVW MR estimates for genetically predicted effects of lymphocyte cell count (A) and neutrophil cell count (B) on epigenetic clocks. MR 
Mendelian randomization, IEAA intrinsic epigenetic age acceleration
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− 0.96, − 0.55; P = 4.96E−13). After adjusting for multiple 
testing with a significance threshold set at P < (0.05/5), 
all P values from the IVW MR analysis and the accom-
panying sensitivity analyses were significant. Moreo-
ver, the directional consistency between the primary 
analyses and sensitivity analyses (MR-Egger, weighted 
median, and weighted mode) was confirmed. However, 
no significant association was found between lympho-
cyte cell count and IEEA (IVW β: − 0.03; 95% CI − 0.20, 
0.13; P = 0.697) as depicted in Fig.  2A and detailed in 
Additional File 1: Supplementary Table  21. Overall, a 
decrease of 1 SD in lymphocyte cell count corresponds 
to an increase of 0.52  years in GrimAge, 0.59  years in 
HannumAge, and 0.76 years in PhenoAge. Similarly, sub-
stantial evidence indicated that an increase of 1 SD in 
neutrophil cell count could result in an elevation of Phe-
noAge acceleration by 0.38  years (IVW β: 0.38; 95% CI 
0.14, 0.61; P = 1.65E−03 < 0.01). Moreover, the estimated 
effects observed in the primary analyses were in agree-
ment with the outcomes of the sensitivity analyses. The 
causal effects identified in all analyses met the criteria for 
statistical significance, even after correcting for multiple 
testing using the Bonferroni correction (P < 0.01), as illus-
trated in Fig.  2B and detailed in Additional File 1: Sup-
plementary Table  22. We did not find a causal effect of 

basophil cell count, monocyte cell count, and eosinophil 
cell count on epigenetic clocks (Additional File 1: Supple-
mentary Table 23–25).

While Cochran’s Q-statistic and MR-PRESSO analy-
sis revealed notable heterogeneity (P < 0.05) (Additional 
File 1: Supplementary Tables 26, 27), the causal estimates 
remained reliable under the random-effects IVW method 
[34]. Furthermore, the Egger intercept test did not detect 
any HP (all P > 0.05) (Additional File 1: Supplementary 
Table  26), and scatter plots additionally confirmed the 
stability of these findings (Additional File 2).

In the reverse MR analysis, we identified 4 SNPs as 
IVs for GrimAge, 9 for HannumAge, 24 for IEAA, and 
11 for PhenoAge (Additional File 1: Supplementary 
Tables  28–47). The IVW analyses revealed no major 
causal relationship between epigenetic clocks and WBC 
counts, with all P-values exceeding 0.0125 (Additional 
File 1: Supplementary Tables 48–51).

MVMR analysis of the causal relationship between white 
blood cells and epigenetic age acceleration
In our analysis, we employed MVMR to examine the 
causal effect of WBC counts on the acceleration of aging 
as measured by epigenetic clocks. The findings high-
lighted that lymphocyte counts maintain a significant 

Exposure
basophil cell count

Outcomes Beta(95% CI) P

monocyte cell count

lymphocyte cell count

eosinophil cell count

neutrophil cell count

GrimAge
HannumAge

IEAA
PhenoAge
GrimAge

HannumAge
IEAA

PhenoAge
GrimAge

HannumAge
IEAA

PhenoAge
GrimAge

HannumAge
IEAA

PhenoAge
GrimAge

HannumAge
IEAA

PhenoAge

−0.277 (−0.657 to 0.102)
−0.357 (−0.741 to 0.027)
−0.161 (−0.578 to 0.256)
−0.180 (−0.677 to 0.317)
−0.013 (−0.171 to 0.145)
0.127 (−0.034 to 0.288)

−0.004 (−0.178 to 0.170)
0.267 (0.059 to 0.476)

−0.622 (−0.843 to −0.402)
−0.804 (−1.033 to −0.575)

0.080 (−0.162 to 0.323)
−0.916 (−1.205 to −0.628)

0.123 (−0.075 to 0.322)
0.328 (0.126 to 0.529)

0.005 (−0.214 to 0.223)
0.067 (−0.195 to 0.330)
0.550 (0.313 to 0.787)
0.422 (0.180 to 0.665)

0.067 (−0.195 to 0.330)
0.781 (0.470 to 1.091)

0.152
0.069
0.450
0.478
0.875
0.123
0.964
0.012

3.00E−08
5.53E−12

0.516
4.61E−10

0.223
1.43E−03

0.965
0.616

5.50E−06
6.30E−04

0.616
8.26E−07

−1.5 −1 0 1 1.5

protective factor risk factor

Fig. 3  MVMR analysis estimating effect of each white blood cell subtype on epigenetic age acceleration conditioning on other four WBC subtypes
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association with GrimAge, HannumAge, and Pheno-
Age (GrimAge β: − 0.62; 95%CI − 0.84, − 0.40; P = 
3.00E−08; HannumAge β: − 0.80; 95% CI − 1.0, − 0.58; 
P = 5.53E−12;PhenoAge β: − 0.92; 95% CI − 1.21, − 0.63; 
P = 4.61E−10). Notably, we also observed that neutrophil 
cell count was significantly related to PhenoAge (β: 0.78; 
95% CI 0.47, 1.09; P = 8.26E−07), as well as GrimAge 
and HannumAge (GrimAge β: 0.55; 95% CI 0.31, 0.79; 
P = 5.50E−06; HannumAge β: 0.42; 95% CI 0.18, 0.67; 
P = 6.30E−04) (Fig.  3, Additional File 1: Supplementary 
Table 52). All P values passed multiple testing correction 
(P = 0.05/5 = 0.01). Likewise, eosinophil cell count dem-
onstrated a significant association with HannumAge (β: 
0.33; 95% CI 0.13, 0.53; P = 1.43E−03 < 0.01) (Additional 
File 1: Supplementary Table 52).

Discussion
To the best of our knowledge, this study represents the 
first comprehensive exploration into the causal effect 
of WBC count on epigenetic clocks. By employing 
bidirectional UVMR and MVMR methods, we found 
that decrease of 1 SD in lymphocyte cell count or an 
increase in of 1 SD in neutrophil cell count signifi-
cantly accelerates GrimAge, HannumAge, and Pheno-
Age. These causal effects persist even after adjusting 
for the other WBC subtypes, suggesting their effects 
are independent of other WBC types. Our results are 
in harmony with the observed shift from lymphoid to 
myeloid lineage in hematopoiesis [35] and corroborate 
findings in the literature, notably the study by McCart-
ney et  al., which identified potential causal impacts of 
lymphocyte cell count on the acceleration of PhenoAge, 
GrimAge, and HannumAge, but not on IEAA [21]. The 
IEAA clock, derived from Horvath’s multi-tissue pre-
dictor, adjusts for DNA methylation-based estimates 
by factoring out influences from WBCs. Although we 
did not find significant causal associations between 
any WBC types and IEAA, this result actually supports 
the effectiveness of IEAA in mitigating the confound-
ing effect of WBC counts. Through these findings, we 
aim to provide further empirical support for the use 
and interpretation of IEAA, thus enhancing its reli-
ability in aging research. The association between aging 
and immune system, termed immunosenescence, has 
been well studied. Aging is associated with a decrease 
in naive immune cells and an increase in activated 
immune cells [36]. From age 20 to 70, the population 
of naive T cells (CD4+ and CD8+) decreases approxi-
mately 100-fold [37, 38]. A functional genomics analy-
sis study has reported associations between epigenetic 
clocks and lymphocyte T and NK cells [39]. We infer 
that decline of native immune cells might lead to aging, 

warranting further exploration. Additionally, an enrich-
ment of basophil cell count was noted in the GWAS 
outcomes for IEAA and GrimAge in a prior study [21]. 
However, no significant relationship was found in our 
study. We did found a causal effect of eosinophil cell 
count on HannumAge. Moreover, our analysis revealed 
no significant causal relationships between epigenetic 
clocks and WBC count, indicating that aging does not 
result in notable alterations in WBC counts.

However, our study has several limitations. Firstly, 
although WBC counts possess characteristics of a sta-
ble trait to some extent, they vary over time, including 
fluctuations within one day, potentially leading to errors 
[40]. Secondly, our study results pertain primarily to 
European population. Further investigations are needed 
to examine other populations. Thirdly, as WBC play a 
crucial role in immune response and inflammatory pro-
cesses, future studies should consider broadening the 
scope by including inflammation factors to comprehen-
sively investigate their potential effects in these causal 
pathways.

In summary, our research provides additional evi-
dence of a potential genetic causal link between WBC 
count and the acceleration of epigenetic age. Neverthe-
less, further research could investigate the impact of 
more specific cell subtypes or other biomarkers on epi-
genetic age.
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