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Abstract 

Background  Gestational DNA methylation age (GAmAge) has been developed and validated in European ances-
try samples. Its applicability to other ethnicities and associations with fetal stress and newborn phenotypes such 
as inflammation markers are still to be determined. This study aims to examine the applicability of GAmAge devel-
oped from cord blood samples of European decedents to a racially diverse birth cohort, and associations with new-
born phenotypes.

Methods  GAmAge based on 176 CpGs (Haftorn GAmAge) was calculated for 940 children from a US predominantly 
urban, low-income, multiethnic birth cohort. Cord blood DNA methylation was profiled by Illumina EPIC array. New-
born phenotypes included anthropometric measurements and, for a subset of newborns (N = 194), twenty-seven cord 
blood inflammatory markers (sandwich immunoassays).

Results  GAmAge had a stronger correlation with GEAA in boys (r = 0.89, 95% confidence interval (CI) [0.87,0.91]) 
compared with girls (r = 0.83, 95% CI [0.80,0.86]), and was stronger among extremely preterm to very preterm babies 
(r = 0.91, 95% CI [0.81,0.96]), compared with moderate (r = 0.48, 95% CI [0.34,0.60]) and term babies (r = 0.58, 95% 
CI [0.53,0.63]). Among White newborns (N = 51), the correlation between GAmAge vs. GEAA was slightly stronger 
(r = 0.89, 95% CI [0.82,0.94]) compared with Black/African American newborns (N = 668; r = 0.87, 95% CI [0.85,0.89]) 
or Hispanic (N = 221; r = 0.79, 95% CI [0.74,0.84]). Adjusting for GEAA and sex, GAmAge was associated with anthropo-
metric measurements, cord blood brain-derived neurotrophic factor (BDNF), and monocyte chemoattractant pro-
tein-1 (MCP-1) (p < 0.05 for all).

Conclusions  GAmAge estimation is robust across different populations and racial/ethnic subgroups. GAmAge 
may be utilized as a proxy for GEAA and for assessing fetus development, indicated by inflammatory state and birth 
outcomes.
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Introduction
In recent years, gestational DNA methylation age 
(GAmAge) has emerged as a molecular measure of ges-
tational age (GEAA) based on cord blood DNA methyla-
tion patterns [1–3]. Bohlin [1] and Knight [2] described 
GAmAge clocks based on the previous 27K and 450K 
methylation arrays, whereas the newest Haftorn clock [3] 
used methylation data from the EPIC methylation array. 
These cord blood epigenetic clocks were trained on data 
from European or mostly White population samples. The 
growing interest in GAmAge lies in its potential to bet-
ter capture individual variation in biological maturity 
beyond the chronological GEAA and gain deeper insight 
into pathophysiology by defining acceleration vs. decel-
eration relative to chronological GEAA.

For a long time, GEAA at birth, as estimated either by 
the last menstrual period or early ultrasound or both, 
has been a major clinical measure of newborn maturity 
and predictor of neonatal and infant outcomes [4]. Pre-
term birth, determined by a GEAA cutoff of 37 weeks, is 
associated with an increased risk of neonatal and infant 
morbidity and mortality, in part due to immature organs/
systems, including the immune system, making them 
more susceptible to infections and other health risks 
[5], with extremely preterm newborns (born before 28 
weeks of gestation) having an even higher risk of infec-
tions [6]. We have previously shown that in a sample of 
927 children, some cord blood inflammation markers 
were associated with preterm birth, with markers such 
as interleukin (IL)-2, IL-4, and IL-5 increased in preterm 
birth, while others, such as IL1-b and IL-18, decreased 
in preterm birth [7]. Inflammation markers measured in 
cord blood were also associated with DNA methylation; 
cord blood DNA methylation was associated with cord 
blood C-reactive protein (CRP) in a sample of 358 new-
borns from the EAGeR study [8]. The levels of cord blood 
inflammation-related intercellular adhesion molecule 1, 
CRP, IL-6, and serum amyloid A were associated with 
locus- and placenta-side-specific differential placenta 
DNA methylation [9].

The link between GAmAge, GEAA, and various inflam-
matory markers and anthropometric measures may 
be the first step in understanding how these are central 
to infant development. Furthermore, more research is 
needed to fully understand the implications of GAmAge, 
as estimated from the EPIC array by the Haftorn clock in 
European descents, and its potential uses, especially in 
minorities and other under-representative populations in 
capturing individual biological maturity variation.

In this analysis, we used data from a multiethnic, 
mostly Black/African American and Hispanic birth 
cohort with cord blood DNA methylation and inflam-
matory markers measured. We examined the utility of 

pre-trained GAmAge based on European samples as a 
predictor of GEAA among our multiethnic cohort and in 
different subgroups of sex, ethnicity/race, delivery week, 
and fetal growth. We further studied the association of 
GAmAge with immediate birth outcomes as anthropo-
metric measurements (weight, length, head circumfer-
ence) and inflammatory state (represented by 27 cord 
blood inflammation markers). All of the above associa-
tions were examined beyond the impact of GEAA to elu-
cidate the independent effect of DNA methylation-based 
biological age as a predictor of health status.

Patients and methods
This study included 940 mother–newborns pairs from the 
Boston Birth Cohort (BBC; registered in ClinialTrial.gov 
NCT03228875), a US predominantly urban, low-income, 
Black and Hispanic population. The BBC was initiated 
in 1998 with rolling enrollment at the Boston Medi-
cal Center in Boston, MA, as detailed elsewhere [10]. In 
brief, mothers who delivered a singleton live birth at the 
Boston Medical Center were invited to participate 24–72 
h after a vaginal delivery. The BBC is enriched by preterm 
(< 37 weeks of gestation) and low birth weight (< 2500 
g) births by design of over-sampling preterm birth at 
enrollment. Pregnancies resulting from in vitro fertiliza-
tion, multiple gestations (e.g., twins, triplets), fetal chro-
mosomal abnormalities, major birth defects, or preterm 
birth due to maternal trauma were excluded. After moth-
ers provided written informed consent, research assis-
tants (RAs) administered a standardized questionnaire 
interview on maternal sociodemographic characteristics, 
lifestyle, including smoking and alcohol consumption, 
diet, and reproductive and medical history. Maternal and 
newborn clinical information, including birth outcomes, 
was abstracted from the medical records. The study pro-
tocol has received initial and annual approval from the 
Institutional Review Boards (IRBs) of Boston Medical 
Center and the Johns Hopkins Bloomberg School of Pub-
lic Health.

Main covariates
Mother–child characteristics: For background character-
istics and adjustment of the statistical models, we used 
the following data: maternal age at delivery, parity (nul-
liparous or multiparous), maternal education (below 
college or college and higher), maternal self-reported 
ethnicity/race (Black/African American, White, and His-
panic), maternal pre-pregnancy BMI, maternal diabetes 
(non, gestational diabetes or preexisting diabetes melli-
tus), method of delivery, child’s sex (female versus male), 
maternal smoking, birth weight (gram; as continuous 
and binary with above/below 2500g defined as the low 
birth weight (LBW) [11]), birth length (cm), birth head 
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circumference (cm), and GEAA as continuous and binary 
with below week 37 defined as “preterm” [11]. Delivery 
week subgroups were defined as follows: extremely pre-
term (< 28 weeks), very preterm (28 to 32 weeks), mod-
erate to late preterm (week 32 to 37), term (37 to 41 
weeks), late term (41 to 42 weeks), and post-term (> 42 
weeks) as per World Health Organization and American 
College of Obstetricians and Gynecologists definitions 
[12]). The estimation of GEAA was detailed before [13] 
and was performed using an established algorithm based 
on both the last menstrual period and the result of early 
ultrasound (< 20 weeks’ gestation). Fetal growth groups 
were determined by the birth weight and gestational age 
as described before [14]: small for gestational age (SGA), 
appropriate for gestational age (AGA), and large for ges-
tational age (LGA).

Inflammation markers: The BBC has available cytokines 
measured for 927 children. A subset of 194 children had 
both cord blood inflammation markers and DNA meth-
ylation measured. The comparison of background char-
acteristics between the group with both cord blood DNA 
methylation and cord blood inflammation markers meas-
ured vs. cord blood DNA methylation only is presented 
in Additional file  1: Table  S1. Twenty-seven inflamma-
tion markers were quantified using sandwich immuno-
assays as detailed before [7] and included: brain-derived 
neurotrophic factor (BDNF), granulocyte/macrophage 
colony-stimulating factor (GM-CSF); interferon-gamma 
(IFN-gamma); IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-8, 
IL-10, IL-12, IL-17, and IL-18; monocyte chemoattract-
ant protein1 (MCP-1); macrophage migration inhibitory 
factor (MIF); macrophage inflammatory protein 1 alpha 
(MIP-1alpha), MIP-1beta, matrix metalloproteinase 9 
(MMP-9); neurotrophin 3 (NT-3) and NT-4; regulated 
on activation, normal T-cell expressed and secreted 
(RANTES); soluble IL-6 receptor alpha (sIL-6r alpha); 
soluble tumor necrosis factor receptor I (sTNF RI); trans-
forming growth factor beta (TGF-beta); TNF-alpha and 
TNF-beta; and triggering receptor expressed on myeloid 
cells 1 (TREM-1).

DNA methylation profiling and calculation of gestational 
methylation age
DNA methylation profiling and quality control (QC) 
steps were previously detailed [15]. Briefly, cord blood 
was obtained post-delivery by a trained staff member. 
We used the following criteria to select cord blood 
samples eligible for DNA methylation analysis: 1. hav-
ing enough DNA amounts (> 50 ng/ul); 2. having been 
followed; and 3. having available phenotypes (e.g., BMI, 
morbidity, etc.). Characteristics of mother–newborn 
pairs included versus excluded from the DNA methyla-
tion study were detailed elsewhere [15]. Genome-wide 

DNA methylation of 963 samples and 21 replicates 
were analyzed in the University of Minnesota Genom-
ics Center using the Illumina Infinium MethylationEpic 
BeadChip. Following sample-level QC, in which 23 sam-
ples were removed due to technical or quality issues, we 
performed a Noob preprocessing and obtained the beta 
values of > 865,000 CpG sites. No probes were removed 
to calculate the GAmAge by Haftorn et al. [3], who pre-
sented a GAmAge prediction model based on the EPIC 
array using 176 specific CpGs. All 176 CpGs were avail-
able and used for the current analysis (0% missing). The 
Haftorn GAmAge was calculated for all children with 
available DNA methylation data from cord blood sam-
ples using the “methylclock” R package [16]. Cell type 
(CD4 + , CD8 + , B cells, monocytes, granulocytes, nat-
ural killer cells, and nucleated red blood cells) was esti-
mated using the “minfi” R package [17].

Statistical analysis
This study examined the association of GAmAge 
with  GEAA across different subgroups, and the asso-
ciation of GAmAge with immediate birth outcomes 
(weight, height, and head circumference) and cord 
blood inflammation markers. Summary statistics were 
performed to compare newborns’ demographic and 
clinical characteristics across GAmAge quintiles using 
the Chi-square test or Fisher exact test for categori-
cal variables and ANOVA for continuous variables. To 
examine the p of trend of a continuous variable across 
quintiles, we used the “Kendall tau” correlation test. 
Pearson correlation test was used to examine the cor-
relation between continuous variables. Linear models 
were used to examine the association with continuous 
dependent outcomes adjusting for GEAA and other 
covariates and to test interactions. The analyses adjust-
ing for GEAA are the equivalent to analyzing asso-
ciations with epigenetic gestational age acceleration 
calculated using the residual method. Out of the 940 
children included in this analysis, 194 had measure-
ments of inflammation markers. We imputed below 
the level of detection inflammation markers data using 
the level of detection divided by the square root of two. 
We applied log10 transformation on the inflammation 
markers to achieve normal distribution. For the asso-
ciation with the CpGs in the Haftorn prediction model, 
we applied quantile normalization on the CpGs gen-
erated for the prediction model. The Benjamini and 
Hochberg false discovery rate (FDR) [18] was applied to 
correct for multiple testing (inflammation markers and 
CpGs), with FDR < 0.05 denoting significance. All sta-
tistical analyses were performed using R (version 4.1; R 
Foundation for Statistical Computing).
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Results
Population characteristics
Maternal and child characteristics across GAmAge quin-
tiles are presented in Table 1. Mothers of children in the 
lowest GAmAge quintile tended to be older (tau = − 0.07, 
p = 0.0017), with higher pre-pregnancy BMI (tau = − 0.06, 
p = 0.012), a higher proportion of gestational (6.4%) and 
diabetes mellitus (8.0%).

GEAA and GAmAge: sex, ethnicity/race, and fetal 
development differences
GAmAge (275.7 ± 12.3 days) and GEAA (270.2 ± 17.3 
days) were strongly correlated (r = 0.86, p = 4.70e−281; 
Fig.  1a). Within each sex strata, the correlations were 
stronger among boys (N = 500, r = 0.89, 95% confi-
dence interval (CI) [0.87, 0.91], p = 3.18e−171) com-
pared with girls (N = 440, r = 0.83, 95% CI [0.80, 0.86], 
p = 2.51e−113). We did not observe a GAmAge X sex 
interaction (p of interaction = 0.088).

We further examined the correlation between GAmAge 
and GEAA in ethnicity/race strata (Fig. 1b). Among chil-
dren to White mothers (N = 51), we observed the strong-
est correlation between GAmAge and GEAA (r = 0.89, 
95% CI [0.82,0.94], p = 2.16e−18), followed by Black/
African American descendants (N = 668; r = 0.87, 95% CI 
[0.85, 0.89], p = 2.09e−210), and Hispanic descendants 
(N = 221; r = 0.79, 95% CI [0.74, 0.84], p = 3.19e−49). No 
GAmAge X ethnicity/race interactions were observed 
in a linear model replacing the correlation model, with 
GEAA as the dependent variable and GAmAge, ethnic-
ity/race, and the interaction term of GAmAge X ethnic-
ity/race as the independent variables.

Next, we examined subgroups of the delivery week 
(extremely preterm to very preterm, N = 25; moderate 
to late preterm, N = 145; the term (N = 678); late to post-
term (N = 92); extreme preterm and late-term groups 
combined with the next/previous category due to small 
sample size). A stronger correlation of GAmAge and 
GEAA was observed among the extremely preterm to 

Table 1  Prenatal and perinatal characteristics across GAmAge quintiles1

1 Mean (SD) for continuous measurements and number (percentage) for categorical
2 P-value calculated as differences between groups (ANOVA or Chi-square test/Fisher’s exact test). Bold values denote p < 0.05
3 Data availability: Maternal diabetes and delivery method: N = 934

Q1: 195 to 269 
days; N = 188

Q2: 269 to 275 
days; N = 188

Q3: 275 to 280 
days; N = 188

Q4: 280 to 284 
days; N = 188

Q5: 284 to 310 
days; N = 188

P value2

Maternal age at delivery, years 28.9 (6.28) 29.5 (6.62) 28.4 (6.88) 26.8 (6,28) 27.8 (6.48) 0.001
Maternal pre-pregnancy BMI, kg/m2 27.7 (6.77) 27.6 (7.04) 27.1 (6.48) 26.1 (6.03) 26.3 (5.80) 0.053

Parity 0.036
Nulliparous 85 (45.2%) 58 (30.9%) 82 (43.6%) 95 (50.5%) 99 (52.7%)

Multiparous 103 (54.8%) 130 (69.1%) 106 (56.4%) 93 (49.5%) 89 (47.3%)

Maternal ethnicity/race 0.079

Black/African American 133 (70.7%) 137 (72.9%) 125 (66.5%) 138 (73.4%) 135 (71.8%)

White 19 (10.1%) 7 (3.7%) 10 (5.3%) 5 (2.7%) 10 (5.3%)

Hispanic 36 (19.1%) 44 (23.4%) 53 (28.2%) 45 (23.9%) 43 (22.9%)

Maternal diabetes3 4.99e-04
Non 160 (85.1%) 172 (91.5%) 174 (92.6%) 184 (97.9%) 177 (94.1%)

Gestational diabetes 12 (6.4%) 10 (5.3%) 8 (4.3%) 0 (0%) 9 (4.8%)

Pre-gestational diabetes 15 (8.0%) 6 (3.2%) 4 (2.1%) 2 (1.1%) 1 (0.5%)

Maternal education 0.118

Below college 134 (71.3%) 127 (67.6%) 127 (67.6%) 111 (59.0%) 130 (69.1%)

College and above 54 (28.7%) 61 (32.4%) 61 (32.4%) 77 (41.0%) 58 (30.9%)

Delivery method3 0.189

C-section 71 (37.8%) 65 (34.6%) 52 (27.7%) 54 (28.7%) 56 (29.8%)

Vaginal 117 (62.2%) 122 (64.9%) 136 (72.3%) 131 (69.7%) 130 (69.1%)

Maternal smoking 6.50e-04
No 119 (63.3%) 135 (71.8%) 139 (73.9%) 155 (82.4%) 145 (77.1%)

Yes 69 (36.7%) 53 (28.2%) 49 (26.1%) 33 (17.6%) 43 (22.9%)

Baby’s sex

Female 83 (44.1%) 85 (45.2%) 101 (53.7%) 84 (44.7%) 87 (46.3%) 0.319

Male 105 (55.9%) 103 (54.8%) 87 (46.3%) 104 (55.3%) 101 (53.7%)
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very preterm (r = 0.91, 95% CI [0.81, 0.96], p = 2.07e−10) 
compared with the other delivery week groups (moderate 
to late preterm: r = 0.48 95% CI [0.34, 0.60], p = 9.56e−10; 
term: r = 0.58 95% CI [0.53, 0.63], p = 2.67e−63). There 

was no correlation between GAmAge and gestational 
age in the late to the post-term group: r = 0.09, 95% CI 
[− 0.12, 0.29], p = 0.40; Fig. 1c).
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Fig. 1  a–d GAmAge and GEAA. a Correlation between GAmAge and GEAA; b correlation between GAmAge and GEAA stratified by ethnicity/
race groups; c correlation between GAmAge and GEAA stratified by delivery week. Extremely preterm to very preterm delivery week ranged 
from 24.14 to 31.86 weeks; moderate to late preterm delivery week ranged from 32.14 to 36.83 weeks; term delivery week ranged from 37 to 41 
weeks; late to post-term delivery week ranged from 41.14 to 43.14 weeks; d correlation between GAmAge and GEAA stratified by fetal growth 
groups. AGA, appropriate gestational age; GAmAge, gestational methylation age; GEAA, gestational age; LGA, large for gestational age; SGA, small 
for gestational age
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While there were no differences in mean GAmAge 
between subgroups of fetal growth (SGA: 276.3 ± 10.1 
days, AGA: 275.3 ± 12.8 days, LGA:276.1 ± 11.6 days; 
p = 0.69), the strongest correlation between GAmAge 
and GEAA (Fig. 1d) was observed within the AGA group 
(N = 744, r = 0.88, 95% CI [0.86, 0.90], p = 6.87e−244). The 
correlation between GAmAge and GEAA was r = 0.79, 

95% CI [0.70, 0.85] and r = 0.75, 95% CI [0.65, 082] in 
the LGA (N = 97) and SGA (N = 99) groups, respectively 
(p = 1.38e−21 and p = 4.40e−19). A significant GAmAge 
X fetal growth interaction was observed for GAmAge X 
SGA (compared with AGA: p of interaction = 4.58e−06; 
compared with LGA: p of interaction = 0.014). The over-
lap of newborns between delivery week and fetal growth 
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Fig. 1  continued
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groups is presented in Additional file 1: Table S2. For all 
delivery week groups, the majority of newborns were 
AGA.

GAmAge associations with anthropometric measurements
GAmAge was correlated with birth weight (r = 0.65, 
p = 2.62e−113), birth length (r = 0.70, p = 1.27e−66), and 
birth head circumference (r = 0.60 and p = 2.35e−44). 
Following GEAA and sex adjustment using multivari-
able linear models, the association between GAmAge 
and each of the anthropometric outcomes remained sig-
nificant (Fig.  2). No GAmAge X sex interactions were 
observed in these models for birth weight (p of interac-
tion = 0.06), birth length (p of interaction = 0.14), and 
birth length (p of interaction = 0.82). Sex stratification of 
the correlations and further GEAA adjustment are pre-
sented in Additional file  1: Figure S1, Additional file  1: 
Figure S2.

GAmAge associations with cord blood inflammation 
markers
Out of 27 inflammatory markers measured in cord 
blood, 9 were significantly correlated with GAmAge (all 
FDR < 0.05; Fig.  3, Additional file  1: Table  S3). Adjust-
ment for GEAA attenuated most of the observed asso-
ciations; however, GAmAge remained significantly 
associated with BDNF and MCP-1 (beta = 0.008, p = 0.04 
and beta = − 0.014, p = 0.006, respectively). No sex X 
GAmAge interactions were observed for BDNF (p of 
interaction = 0.30) and MCP-1 (p of interaction = 0.53) 
multivariable models. Sex stratification of the correlation 
of GAmAge and either MCP-1 or BDNF is presented in 
Additional file 1: Figure S3.

Fetal growth stratification showed 8 significant corre-
lations between the GAmAge and inflammatory mark-
ers (FDR < 0.05; Additional file  1: Table  S4) in the AGA 
group (N = 142). After adjustment for GEAA, only 
MCP-1 remained significantly correlated with GAmAge 

(beta = − 0.019, p = 0.002). Among LGA babies (N = 26) 
and SGA babies (N = 26), none of the correlations 
remained significant after correcting for multiple com-
parisons. Yet, the small sample size for these groups 
should be considered when examining these correlations.

Since the inflammation panel was restricted to 194 chil-
dren, the delivery week groups were significantly smaller 
(extremely preterm to very preterm, N = 4; moderate to 
late preterm, N = 55; term, N = 120; late to post-term, 
N = 15). Thus, we examined the correlations between 
GAmAge and inflammation markers in strata of preterm 
yes/no, as defined in the “Patients and methods” section. 
In the preterm strata (N = 59), 4 inflammation mark-
ers were significantly correlated with GAmAge (Addi-
tional file 1: Table S5), but only sTNF-RI had FDR < 0.05. 
Among term babies (N = 135), only BDNF was correlated 
with GAmAge (r = 0.212, p = 0.01), but correction for 
multiple comparisons completely attenuated the correla-
tion (FDR = 0.362).

GAmAge associations with candidate cord blood 
inflammation markers accounted for estimated cell type 
proportions
Next, we wanted to elucidate whether the associations 
of GAmAge with BDNF and MCP-1 relate to age or cell 
type (correlation matrix presented in Additional file  1: 
Figure S4). We used linear models adjusting for estimated 
cell type (CD4 + , CD8 + , B cells, monocytes, granulo-
cytes, natural killer cells, and nucleated red blood cells) 
and GEAA. GAmAge remained significantly associated 
MCP-1 (beta = − 0.013, p = 0.02), but not with BDNF 
(beta = 0.006, p = 0.12).

Sensitivity analysis
As a sensitivity analysis, we calculated GAmAge residu-
als by regressing GAmAge on GEAA. We then correlated 
the GAmAge residuals with the three anthropometric 
birth outcomes, MCP-1, and BDNF (Additional file  1: 

Fig. 2  Association between GAmAge and immediate birth anthropometric outcomes. Beta coefficients from a linear model adjusting for GEAA 
and sex. Data presented for 1-SD of GAmAge, GEAA, and the outcomes. GAmAge, gestational methylation age; GEAA, gestational age; SD, standard 
deviation
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Figure S5). This allowed us to show acceleration/de-
acceleration, which was in accordance with the direction 
of the main analysis.

As a sensitivity analysis for the multivariable models, 
we added the following models to examine the associa-
tion between GAmAge and anthropometric birth out-
comes, MCP-1, and BDNF: model 1: adjusted for GEAA, 
sex, maternal pre-pregnancy BMI, maternal diabetes, and 
ethnicity/race and model 2 (model 1 + cell type propor-
tion). These models yielded similar results to the previ-
ous analysis for birth weight, birth length, and MCP-1, 
and attenuated for birth head circumference and BDNF 
(Additional file 1: Figure S6).

CpGs contributing to the association of GAmAge 
and candidate inflammation markers
Finally, we examine the 176 CpGs from the Haftorn 
GAmAge for the association with either BDNF or MCP-1 
to see which CpG was driving the correlation observed 
above. We observed that 26 CpGs were correlated with 
BDNF (all FDR < 0.05; Fig.  4a) and 36 with MCP-1 (all 
FDR < 0.05; Fig.  4b). After adjusting for GEAA and cell 
type, three CpG remained significantly associated with 
BDNF (cg12434132: beta = − 1.38, p = 0.03; cg04347477: 
beta = − 0.76, p = 0.04; cg19640090: beta = − 1.65, 
p = 0.047; Additional file  1: Table  S6), and 12 CpGs 
remained significantly associated with MCP-1 (top CpG: 

cg25975961, beta = 1.46, p = 0.006; Additional file  1: 
Table S7).

Discussion
Our analysis confirmed the applicability of a gesta-
tional age clock based on the Illumina EPIC array [3] to 
a mostly Black/African American and Hispanic popula-
tion. In our study of 940 children, the GAmAge, calcu-
lated using cord blood DNA methylation, was directly 
correlated with GEAA, birth weight, head circumference, 
birth length, and BDNF levels and inversely correlated 
with MCP-1, varied by sex and fetal growth status in 
some of these associations.

Among boys, a stronger correlation between GAmAge 
and GEAA was observed compared with girls. Previous 
studies have identified sex differences in DNA methyla-
tion. A study that examined over 1000 whole-blood DNA 
methylation data using the Illumina EPIC array found 
396 sex-associated differentially methylated CpG sites, 
with 74% of these sites showing elevated methylation in 
females compared with males [19]. Another study used 
111 cord blood samples to detect sex differences in DNA 
methylation (Illumina 450K) and showed that about 3% 
of the CpGs were differentially methylated between girls 
and boys at birth, with 83% of the CpGs located on the 
autosomes being hypermethylated in girls [20]. These 
observations on cord blood were recently included in a 

Fig. 3  Volcano plot for inflammation markers associations with GAmAge. Horizontal dashed gray line indicates p < 0.05. Horizontal dashed black 
line indicates FDR < 0.05
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meta-analysis of 8438 newborns demonstrating sex dif-
ferences in DNA methylation at 46,979 autosomal CpG 
sites [21]. Of the 176 CpGs in the EPIC GAmAge predic-
tion formula, 33 overlapped with the above-published 
CpGs. Thus, the correlation between cord blood DNAm 
age estimated using this small set of age-related CpGs 
predicting GEAA may be sex-specific.

We further stratified the association between GAmAge 
and GEAA by subgroups that may indicate intrauterine 
growth: delivery week and fetal growth. Among different 
delivery week groups of preterm, term, or late-term birth, 
we found that the strongest correlation of GAmAge and 
GEAA was within the preterm groups, gradually weak-
ening within the next two groups based on GEAA, and 
completely attenuated in the late-term group. This indi-
cates that the gestational age clock may represent fetal 
development and fetal stress rather than gestational age. 
Another interpretation to these findings could be math-
ematically and not biologically, as the latter group has the 
narrowest window of GEAA, thus the least variability to 
correlate against. Exposure to maternal stress in utero 

may increase risk for preterm birth [22]. The maternal 
stress may further lead to epigenetic modifications in the 
offspring. In a sample of 537 mother–child pairs (122 of 
which had high stress), high maternal stress was associ-
ated with higher offspring regional DNA methylation at 
the MEST gene, compared with infant of the non-stressed 
mothers [23]. Fetal DNA methylation may also reflect 
developmental age. This was demonstrated in a study of 
different human fetal tissues at different gestational age 
[24]. In that study, the results indicated that between the 
9th and the 18th gestational weeks, there is a dynamic 
of DNA methylation remodeling expressed as gain and 
loss of methylation. This was consistent across different 
tissues. DNA methylation at week 22 of gestation were 
similar to the DNA methylation in adults. When exam-
ining the association between GAmAge and GEAA in 
fetal growth subgroups, we found that the strongest 
association was observed within the AGA group, reflect-
ing weight appropriate for GEAA. This observation may 
reflect the epigenetic differences between these groups; 
higher global placental DNA methylation in a study of 

Fig. 4  a-b CpGs associated with candidate inflammation markers. a BDNF; b MCP-1. Dots above the red line are significant CpGs at FDR < 0.05
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1023 mothers was observed in LGA offspring compared 
to AGA [25]. Another study found over 500 differentially 
methylated genes between LGA and AGA in placen-
tal samples [26]. While we examined preterm and fetal 
growth groups separately, these might be linked and have 
a specific epigenetic signature. Thirty-eight SGA preterm 
babies (< 32 weeks) were compared with seventy five pre-
term AGA in a study examining differences in whole-
blood DNA methylation of specific genes [27]. While the 
DNA methylation levels in the SGA group were not sig-
nificantly different from the AGA group in this study, it 
may be due to the small sample size.

Ethnicity/race stratification showed that the correla-
tion between GAmAge and GEAA among the White 
group was the strongest compared to the Black/African 
American and Hispanic groups. This may be expected as 
the EPIC GAmAge clock was trained on the European 
population. While ethnic differences may contribute 
to differences in DNA methylation [28], we have previ-
ously demonstrated that an adult’s mAge methylation 
clock trained on the Chinese population performed well 
among the White population in the CENTRAL trial [29]. 
In this current study, all ethnic groups showed significant 
correlations between GAmAge and GEAA. However, 
there were significant differences in these observed cor-
relations between the Hispanic and Black/African Amer-
ican ethnic groups. White and Hispanic and White and 
Black/African American ethnic groups did not differ in 
the correlation between GAmAge and GEAA. Further 
investigation should be conducted to elucidate whether 
these differences are due to the population the GAmAge 
clock was trained on or differences in methylation pat-
terns in different ethnicities.

Our results confirmed the known correlations 
between GAmAge and immediate birth anthropo-
metric outcomes and strengthened the potential use 
of epigenetic clocks to assess developmental features. 
In a study of 863 children, birth weight, length, and 
head circumference were all associated with age accel-
eration, the regressed GAmAge of age [30]. Another 
study employed the Haftorn clock in 688 mostly White 
children and found that GAmAge is associated with a 
developmental delay within the first 3 years of life in 
the same manner as clinical GEAA [31]. We also found 
that beyond GEAA or estimated cell type, the meth-
ylation-based age was inversely correlated with cord 
blood MCP-1 levels and directly associated with BDNF. 
Our findings are aligned with a previous study of 135 
infants, where MCP-1 levels in cord blood were signifi-
cantly higher in very premature neonates when com-
pared with more mature neonates [32]. Additionally, 
the direct association between GAmAge and BDNF 
was previously demonstrated to reflect neural maturity 

in preterm infants and may be driven, at least partially, 
by GEAA [33]. Notably, prematurity-associated factors 
such as maternal infection or use of steroids for ante-
natal lung maturation could also affect the cord blood 
levels of BDNF and other soluble immune mediators 
and should be considered in the interpretation of these 
findings. Another factor that may explain the associa-
tion of GAmAge and BDNF is the direct correlation of 
GAmAge with birth weight. Our study did not examine 
BDNF at birth and obesity but rather a correlation with 
GAmAge, associated with birth weight and long-term 
overweight or obesity. In previous work, circulating 
levels of BDNF in children were previously associated 
with BMI, as obese children tended to have higher lev-
els of BDNF than lean children [34]. Yet, more studies 
should be conducted targeting the association between 
cord blood inflammation markers and obesity.

The 176 CpGs in the Haftorn GAmAge calculation 
were selected using penalized regression to predict 
GEAA. Using these GEAA-associated methylation 
sites, we searched for specific CpGs driving the asso-
ciation between GAmAge and the two candidate 
inflammation markers BDNF and MCP-1. Out of the 
15 CpGs identified to be associated with the inflam-
mation markers, some were previously identified as 
associated with adverse pregnancy outcomes [35] or 
newborn birth weight [36]. One cg site (cg24797865) 
found to be associated with MCP-1 in our analysis, is 
mapped to the immune gene integrin subunit beta 2 
(ITGB2) which encodes the beta subunit of LFA-1, a 
protein which plays a crucial role in leukocyte migra-
tion, adhesion, and activation [37]. Since the current 
analysis cannot determine whether maternal condi-
tions affected the inflammatory status of the newborn, 
we encouraged further studies to examine the interplay 
between adverse pregnancy outcomes and other mater-
nal exposures, GAmAge, and inflammation status in 
the newborn.

There are some limitations to this study. First, the small 
sample size for some of the subgroups as the extremely 
preterm to very preterm. This may not only affect our 
power to detect significant effect size, but also to detect 
significant interactions. However, this is a secondary 
analysis and remains exploratory. Cord blood inflamma-
tion markers were measured for a small subset of partici-
pants. Still, we could detect associations that remained 
significant after adjustments, even with the given sam-
ple size. Our study results may be misinterpreted due 
to a residual confounding effect. To overcome this, we 
included both stratification and sensitivity analyses with 
further adjustments. Beyond its large sample size, this 
study’s strengths are the novel associations described of 
GAmAge with inflammatory markers.
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Conclusions
The existing GAmAge algorithm from European descents 
predicts GEAA slightly better in White newborns com-
pared to Black/African American or Hispanic newborns. 
Our findings support the call for inclusion of diverse 
populations in developing robust GAmAge algorithm 
across ethnic/racial groups. A large difference between 
GAmAge and GEAA might indicate development impact 
not captured by GEAA alone; therefore, it might cap-
ture underline biological stage for fetus development. 
Moreover, the GAmAge could be utilized as a proxy for 
fetus maturity beyond GEAA and used to assess immedi-
ate health outcomes. Further studies should explore the 
interplay between GEAA, DNA methylation, and immu-
nological markers in newborns.
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