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Abstract 

Background Colon cancer ranks as the second most lethal form of cancer globally. In recent years, there has been 
active investigation into using the methylation profile of circulating tumor DNA (ctDNA), derived from blood, 
as a promising indicator for diagnosing and monitoring colon cancer.

Results We propose a liquid biopsy‑based epigenetic method developed by utilizing 49 patients and 260 healthy 
controls methylation profile data to screen and monitor colon cancer. Our method initially identified 901 colon 
cancer‑specific hypermethylated (CaSH) regions in the tissues of the 49 cancer patients. We then used these CaSH 
regions to accurately quantify the amount of circulating tumor DNA (ctDNA) in the blood samples of these same 
patients, utilizing cell‑free DNA methylation profiles. Notably, the methylation profiles of ctDNA in the blood exhib‑
ited high sensitivity (82%) and specificity (93%) in distinguishing patients with colon cancer from the control group, 
with an area under the curve of 0.903. Furthermore, we confirm that our method for ctDNA quantification is effective 
for monitoring cancer patients and can serve as a valuable tool for postoperative prognosis.

Conclusions This study demonstrated a successful application of the quantification of ctDNA among cfDNA using 
the original cancer tissue‑derived CaSH region for screening and monitoring colon cancer.
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Introduction
Colon cancer is the third most common cancer world-
wide (10.0%) and the second most common cause of 
death (9.4%) among cancers [1]. The annual incidence 
and mortality rates are continuously increasing, and by 
2040, it is predicted that there will be 3.2 million new 
cases and 1.6 million deaths in 185 countries [1, 2]. This 
emphasizes the importance of early detection and moni-
toring of colon cancer. The most standardized method 
for diagnosing colorectal cancer is colonoscopy, which is 
invasive and involves a complex procedure and time-con-
suming process with low patient compliance [3]. Fecal 
immunochemical test (FIT) and fecal occult blood test 
(FOBT) are noninvasive methods based on stool samples. 
However, these approaches undermine their advantages 
by reducing the accuracy of prediction due to the effects 
of other intestinal diseases [4, 5]. CEA (carcinoembryonic 
antigen) and CA19-9 are noninvasive serological mark-
ers used for colon cancer surveillance; however, they are 
constrained by their limited sensitivity [6–8]. A recent 
study reported that among participants who declined 
the invasive option of colonoscopy, 97% opted for non-
invasive screening, with 83% of this group expressing a 
preference for blood-based tests [9]. Consequently, it is 
necessary to develop more effective technologies for non-
invasive blood-based colon cancer diagnosis and moni-
toring with higher accuracy, especially for predicting the 
tissue of origin.

Recently, circulating tumor DNA (ctDNA) in blood, 
which carries genetic or epigenetic alterations originating 
from tumors, has been actively investigated for its clini-
cal applications as noninvasive diagnostic biomarkers for 
cancer [10–14]. Furthermore, since the ctDNA profile is 
blood-based, it can dramatically reduce the burden on 
patients compared to imaging and invasive biopsy. Also, 
the ctDNA profile can be employed for dynamically mon-
itoring molecular changes in tumors related to therapy 
and after surgery [15, 16]. In general, for cancer patients, 
ctDNA typically exists in a relatively low proportion, 
ranging from 0.01% to 1.0% of the total cfDNA [17]. 
Various strategies exist for detecting circulating tumor 
DNA (ctDNA) in the blood of cancer patients, with 
DNA mutation or methylation-based approaches being 
particularly notable. The method relying on somatic 
mutations encounters challenges in effectively detect-
ing ctDNA due to tumor heterogeneity and the limited 
presence of DNA fragments originating from tumors that 
contain the target mutations in plasma samples [18]. In 
contrast, profiling the cancer-specific aberrant methyla-
tion pattern distributed across the entire genome offers 
heightened clinical sensitivity and the capability for mul-
tiple detections. The detection of ctDNA based on the 
comprehensive methylation profile of the entire genome 

holds promise for effective early diagnosis, recurrence 
monitoring and other aspects of cancer management [19, 
20]. The approach of quantifying ctDNA based on DNA 
methylation for cancer detection has been substantiated 
for its efficacy in previous studies [21–24]. Mary L. Stack-
pole et. al. have suggested that the hypermethylation pro-
file associated with cancer is highly valuable for cancer 
detection, while the hypomethylation profile is suggested 
to be useful for detecting the tissue of origin (TOO) [10]. 
There was another study that introduced the concept of 
methylation haplotype blocks (MHB), considering the 
methylation status of adjacent CpG sites for the system-
atic discovery of markers [25]. However, this method has 
not been applied to the quantification of tumor-derived 
DNA fragments.

In a previous study in 2022, we developed the ctDNA 
candidate count index (ctCandi) which measures the 
amount of ctDNA in blood, based on the methylation 
density of cfDNA [26]. Using this method, we presented 
models that can distinguish lung cancer patients and 
healthy controls with mean area under the curve (AUC) 
of 0.925. In the present study, we applied ctCandi with 
a new quantification method of scoring using cancer-
specific hypermethylated (CaSH) region for screening 
and monitoring colon cancer. We utilized tissues from 
49 colon cancer patients to define the CaSH region. To 
evaluate the clinical application of ctDNA quantification 
based on the CaSH region, we employed 160 plasma sam-
ples, including pre-operation and post-operation follow-
up observations from colon cancer patients, as well as 
260 plasma samples from healthy controls. CaSH region-
based ctDNA detection and scoring method first defines 
colon cancer-specific hypermethylated regions from the 
patient tissues and measures the relative amount ctDNA 
in the blood of the same patient. Machine learning mod-
els were constructed for distinguishing colon cancer 
patients from the control by comparing the normalized 
ctDNA count of CaSH regions. Furthermore, we sug-
gested the utility of CaSH region-based ctCandi in post-
operative patient prognosis monitoring.

Results
Quantification of ctDNA using genome‑wide colon 
cancer‑specific hypermethylated (CaSH) regions
We defined 901 colon CaSH regions through genome-
wide methylation analysis with 49 colon cancer patients 
and 190 healthy controls to quantify ctDNA of colon 
cancer (Fig.  1). The defined regions were utilized for 
quantifying ctDNA through the calculation of ctCandi 
in the blood. CtCandi estimates the amount of cancer-
derived DNA fragments using the methylation profiles, 
as we introduced in the previous study on lung cancer 
[26]. To define the 901 regions, two stages of analysis 
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were performed. Firstly, we identified 29,557 differen-
tially hypermethylated CpGs (βtumor tissue–βnormal tissue > 0.3 
and βhealthy plasma < 0.05, FDR < 0.05) by comparing colon 
tumor tissues to normal tissues and healthy control 
plasma. In previous studies, Δβ was primarily set at 0.2 
as a threshold [10, 12]; however, we used a threshold of 
0.3 to select more reliable colon cancer-specific hyper-
methylated CpG sites. Then, we combined adjacent 
hypermethylated CpG sites to generate variable length 
CaSH fragments using the 29,557 CpGs by taking 75 bp 
up- and downstream stretches (Fig. 1A) generating 2440 
fragments. We further filtered out 1539 fragments that 
have fewer than ten hypermethylated CpG sites. Finally, 
we selected the last 901 CaSH regions for application to 
quantify colon cancer-derived ctDNA and downstream 
analyses. The adjoined CaSH regions range in length 

from a minimum of 52 bp to a maximum of 1966 bp, with 
an average length of 397  bp. As shown in Figs.  1B and 
S1A, we present examples of CaSH regions where CpG 
sites showed significantly higher β values in colon can-
cer tissue compared to both normal tissue and healthy 
plasma. The β value differences were diminished on the 
outside of the defined CaSH regions. The 901 CaSH 
regions showed a high proportion within CpG islands 
(80.6%) (Fig.  S1B). Moreover, these regions were pre-
dominantly located in the exons, introns and promoters 
of 797 genes. When compared to the CpG distribution in 
the human genome, they exhibited a high proportion in 
these regions (Fig.  S1C). Also, the 797 genes contained 
the highest number of genes (N = 73) related to colon 
cancer compared to other cancer types in MethCan-
cerDB with the most significance in the enrichment test 

Fig. 1 Identification of colon cancer‑specific hypermethylated (CaSH) regions. A Schematic diagram of the definition of the CaSH regions. B 
Examples of the CaSH region extended 1 kb upstream/downstream on chr16. Dashed lines indicate start and end position of the CaSH region. C 
Gene set enrichment analysis of the CaSH regions. D An in silico simulation of quantification of ctDNA method, ctCandi
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(FDR = 2.85 ×  10–43, fold enrichment = 8.188; Fig.  1C). 
The 797 genes were functionally enriched with transcrip-
tion, such as specifically linked to sequence-specific DNA 
binding (GO:0043565) and the activity of DNA-binding 
transcription factors (GO:0003700) in gene ontology 
(GO) enrichment analysis (Fig. S1D).

To validate 901 CaSH regions in distinguishing colon 
cancer, we analyzed Infinium Methylation 450  K array 
data of 263 colon cancer tissue samples and 35 colon 
normal tissue samples from The Cancer Genome Atlas 
(TCGA) and 656 healthy blood samples from Gene 
Expression Omnibus (GEO) dataset. Among the CpG 
sites on the array, 1676  CpGs from 730 CaSH regions 
overlapped with the 901 CaSH regions. The mean β value 
of the 1676  CpGs within the CaSH region was high-
est in colon cancer tissue, showing a significant differ-
ence compared to the methylation profiles of both colon 
normal tissue and healthy blood (Wilcoxon rank-sum 
test; colon normal tissue: P = 1.5 ×  10–21, healthy blood: 
P = 6.9 ×  10–124; Fig. S2A). In contrast, we found that the 
mean β value of the 439,311 CpGs outside the CaSH 
regions on the array was hypermethylated in healthy 
blood compared to both colon cancer tissue and colon 
normal tissue (Wilcoxon rank-sum test; colon cancer tis-
sue: P = 2.5 ×  10–85, colon normal tissue: P = 6.0 ×  10–23; 
Fig.  S2B). Additionally, we investigated the distribu-
tion of β values from the array data in the longest CaSH 
region (1966 bp) (Fig. S2C). Six CpGs were located in this 
region, and the β value profiles observed in the TCGA 
and GEO datasets consisted of the distribution found in 
both tissue and plasma from our dataset. To evaluate the 
consistency between the ctCandi, based on the 901 CaSH 
regions, and proportion of cfDNA fragments originating 
from colon tumors, we performed an in silico test using 
six simulated cfDNA data. This evaluation employed 
plasma samples from ten healthy controls and tumor tis-
sue from six colon cancer patients. ctCandi was highly 
correlated statistically with the simulated cancer DNA 
ratio (Spearman’s correlation; ρ = 0.964, P = 2.88 ×  10–66; 
Fig. 1D).

The quantification method for colon cancer-derived 
ctDNA has been applied to the screening and monitor-
ing of colon cancer (Fig. 2). We constructed a cancer clas-
sification machine learning model using ctCandi for the 
selected regions as an input feature. Independent plasma 
samples from colon cancer patients (N = 49) and healthy 
controls (N = 60) were used, and threefold cross-valida-
tion was performed. Moreover, the plasma samples col-
lected after the patient’s operation (N = 111 in total) were 
employed to assess the effectiveness of ctDNA methyla-
tion in monitoring the colon cancer patients (Fig. S3). As 
a healthy control group, 260 samples of plasma cfDNA 
were selected from the Korean Genome Project (KGP) 

[27]. Detailed clinical characteristics for all the collected 
samples are summarized in Table 1.

Colon cancer detection using ctDNA methylation
The logistic regression-based machine learning model 
for colon cancer detection demonstrated outstanding 
performance with an AUC of 0.903 by utilizing normal-
ized ctDNA count of the 901 CaSH regions. Notably, 
the ctCandi values employed in constructing the model 
were significantly higher in the 49 colon cancer patients 
compared to the 60 healthy controls with a P-value of 
2.4 ×  10–13 (Wilcoxon rank-sum test; Fig.  3A). Contrast-
ing with the previously presented single CpG-based 
ctCandi calculation approach, the CaSH region-based 
method in this study revealed a more pronounced differ-
ence between colon cancer patients and healthy controls 
(Wilcoxon rank-sum test, P = 1.3 ×  10–11, Fig.  S4). Addi-
tionally, stage III patients showed a more significant dif-
ference with the healthy controls compared to stage II 
patients (Wilcoxon rank-sum test; stage II: P = 9.0 ×  10–7, 
stage III: P = 5.4 ×  10–10; Fig. S5). Furthermore, we classi-
fied 49 patients into microsatellite instability (MSI) and 
microsatellite stable (MSS) groups, categorizing them 
based on the presence or absence of RAS, KRAS and 
NRAS gene mutations to calculate CaSH-based ctCandi 
(Fig.  S6). By confirming a significant difference (Wil-
coxon rank-sum test; P = 1.1 ×   10-17) between the MSS 
group and healthy controls (Fig.  S6A), we distinguished 
colon cancer patients from healthy controls, independ-
ent of MSI status. Although the MSI group showed a 
significant difference compared to both the MSS and 
healthy control groups (Wilcoxon rank-sum test; MSS: 
P = 0.0045, healthy control: P = 0.0039), the analysis was 
limited by the large difference in  sample size (MSI = 3, 
MSS = 46). Among the three genes, only NRAS showed 
a significant difference between wild-type and mutation 
groups (Wilcoxon rank-sum test; P = 0.027; Fig.  S6B). 
However, in this comparison as well, the statistical power 
of the analysis was constrained by a substantial difference 
in sample sizes between the two groups (wild type = 46 
and mutation = 3).

The models were validated using a threefold cross-
validation approach during the model training step. All 
these models performed well in distinguishing colon 
cancer patients from healthy controls with an average 
AUC of 0.903 (0.862–0.984), an average sensitivity of 82% 
(74–95%) and an average specificity of 93% (80–100%) 
(Fig. 3B). Furthermore, a significantly positive correlation 
emerged between tumor size and ctCandi, indicating an 
association with increased ctDNA quantity attributed to 
a higher tumor burden (ρ = 0.53, P = 8.2 ×  10–5; Fig. S7).
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The differentially hypomethylated regions in colon 
cancer were notably fewer (N = 48) than the hypermeth-
ylated regions (N = 901). The limited number of regions 
failed to substantially distinguish between colon cancer 
patients and healthy controls (Wilcoxon rank-sum test, 
P = 0.4, Fig.  S8A). The logistic regression models that 
employed the hypomethylated regions as input features 
had low discriminative power with 0.495 of a mean AUC 
(Fig. S8B).

The utility of ctDNA methylation in postoperative 
monitoring for colon cancer
To assess the clinical potential of our approach in post-
operative monitoring, we applied CaSH-based ctCandi 
to longitudinally collected cfDNA from colon cancer 
patients. We found a reduction of ctCandi values in 

81.6% (N = 40) of all patients at one month post-oper-
ation compared to preoperative levels (Fig.  4A). Addi-
tionally, patients without recurrence between 1 and 
12  months after the operation also decreased ctCandi 
values compared to preoperative levels (Fig. 4A). In con-
trast, there were two cases where ctCandi unexpectedly 
increased one month after the operation. For instance, 
in the case of patient C04, distant recurrence in the liver 
occurred within six months after the operation, and this 
patient’s ctCandi value continuously increased from pre-
operation to six months after the operation (Fig. 4B). The 
patient died after the recurrence. Another notable case 
is patient C46 who showed an increase in ctCandi at one 
month after the operation. However, after completing six 
months of postoperative chemotherapy starting from the 
first month after the operation, ctCandi values decreased 

Fig. 2 Overall study design. A Composition of clinical samples in healthy controls and colon cancer patients. B Comprehensive process flowchart 
for definition of CaSH regions, detection model for colon cancer and postoperative monitoring; ‘PostOP’ indicates ‘Post‑operation’; ‘ctCandi’ indicates 
‘ctDNA candidate count index’
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compared to the preoperative levels. Subsequently, this 
patient has not experienced recurrence in the six months 
following the completion of chemotherapy (Fig. 4C).

In addition to patient C04, there were five more cases of 
recurrence post-operation (Fig. S9). Patient C34 showed 
a sustained increase in ctCandi from one to ten months 
post-operation, with distant recurrence to the lung occur-
ring in the 14th month after the operation (Fig. S9A). The 
ctCandi levels of other metastatic recurrence—patients 
C03 (liver metastasis), C11 (lung metastasis), C16 (liver 
metastasis) and C22 (liver and peritoneum metastasis) 
increased from the first to the sixth month after opera-
tion. Unfortunately, we were not able to measure whether 
there was an elevation in ctCandi at the time of proximity 
to the recurrence because of the absence of the samples 
(Fig. S9B–E).

Interestingly, we found that a region (chr6:391,824–
393,789, 1966  bp) on exon2 of IRF4 (interferon regula-
tory factor 4) contributed a major role in the reduction of 
ctCandi when we identified the CaSH regions associated 
with the decrease in ctCandi across 22 individual patients 
before and one month after the operation (Fig.  S10A; 
Pairwise Wilcoxon rank-sum test, P = 1.2 ×  10–4). The 
methylation and expression level of IRF4 have been 
reported to be associated with the development of colon 
cancer [28]. Hypermethylated markers on IRF4 have been 

reported as useful for detecting colorectal cancer patients 
using cfDNA [29].

Furthermore, a region (chr13:93,227,291–93,228,759, 
1469 bp) on exon 1 of GPC6 (Glypican 6) exhibited a sig-
nificant decrease in ctCandi across 51% (N = 25) of the 
overall patients (Fig. S10B; Pairwise Wilcoxon rank-sum 
test, P = 1.3 ×  10–2). The hypermethylation and down-reg-
ulated mRNA expression of the GPC6 have consistently 
been observed in colon cancer, as reported in a previous 
study [30]. We also confirmed that IRF4 and GPC6 show 
a significantly negative correlation between the average 
β values and transcript per million (TPM) values from 
TCGA dataset (Spearman’s correlation, IRF4: ρ = − 0.38, 
P = 2.9 ×  10–10; GPC6: ρ = −0.31, P = 3.3 ×  10–7; Fig. S11).

Discussion
Our study has several critical limitations. First, the 
defined CaSH regions have not yet been validated for 
cancers other than colon cancer. As a result, the general-
izability of this CaSH concept is uncertain. Despite this, 
the regions show promising clinical utility in detecting 
and monitoring colon cancer. Additionally, while we have 
not conducted a comparative analysis to identify meth-
ylation profiles specific to all cancer types, the defined 
regions might encompass pan-cancer methylation pro-
files. Therefore, future studies should focus on selecting 
more definitive colon cancer-specific methylated regions 
through comparative analysis of methylation profiles 
from various cancers. Second, our classification model, 
based on a small sample of 49 colon cancer patients, 
requires further validation with an independent cohort. 
Third, our study’s credibility is limited by a short six-
month clinical follow-up period. To fully assess ctCandi’s 
reliability in clinical decision-making, especially in pre-
dicting patient recurrence, we need more extensive, long-
term follow-up data. Lastly, the lack of blood samples at 
recurrence times limits our ability to accurately gauge 
ctCandi’s effectiveness in detecting recurrence. To vali-
date ctCandi’s feasibility in monitoring cancer patients, 
additional blood samples should be collected both at the 
time of recurrence and in periods closely preceding it.

One last discussion point we would like to mention 
is cancer detection using hypomethylated regions. We 
failed to acquire high performance using hypometh-
ylated regions when we tested a ctDNA quantifica-
tion method based on the CaSH region in diagnosing 
patients. We think this lack of predictive information 
stems from the fact that in most normal human cells, 
promoter regions are predominantly unmethylated [31, 
32], creating significant background noise that inter-
feres with our method’s ability to provide cancer-specific 
hypomethylation information. We observed that while 
CaSH regions with 10 or more hypermethylated CpGs 

Table 1 Baseline characteristics

*All patients

**Only recurrence cases

Colon cancer Healthy controls
n = 49 n = 260

Sample type Plasma, tissue Plasma

Age, avg. (min, max) 65.5 (42, 86) 62.6 (40,86)

Male, n(%) 26 (53.1) 138 (53.1)

Female, n(%) 23 (46.9) 122 (46.9)

BMI(kg/m^2) 23.1 24.9

Smoking status

Never 28 (57.1) 125 (59.5)

Former 16 (32.7) 59 (28.1)

Current 5 (10.2) 26 (12.4)

NA, n 0 50

Recurrence, n(%) 6 (12.2)

Stage, n(%)

II 18 (36.7)

III 31 (63.3)

Chemotherapy, n(%)

Yes 38 (77.6)

No 11 (22.4)

Median F/U period (month)* 20

Median time to recurrence (month)** 13.5
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are common enough to generate cancer-related signals, 
there are significantly fewer instances of 10 or more tan-
demly occurring hypomethylated regions that are spe-
cific to colon cancer.

Conclusion
We introduced a method for detecting and monitoring 
colon cancer using cell-free DNA methylation profiling, 
focusing on 901 cancer-specific hypermethylated regions. 

Fig. 3 Performance of ctDNA candidate count index (ctCandi) and classification machine learning models. A ctCandi of 49 colon cancer patients 
and 60 healthy controls. The P-value was calculated by the Wilcoxon rank‑sum test. B Receiver operating characteristic (ROC) curves of ctCandi 
for distinguishing the colon cancer patients and the healthy controls. TPR indicates a true positive ratio, and FPR indicates a false positive ratio

Fig. 4 Monitoring of prognosis after surgical resection for colon cancer patients based on ctCandi. A Changes in ctCandi values 
from before operation to 12 months after operation. Gray lines indicate ctCandi of individual patients excluding C04 and C46. Red line indicates 
ctCandi values of C04 patients. Green line indicates ctCandi values of C46 patients. B, C ctCandi of individual patients before and one month and six 
months after the operation. Dashed line and shaded region indicate recurrence and postoperative chemotherapy, respectively
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This method effectively identifies colon cancer-specific 
methylated ctDNA, eliminating false signals from blood-
derived cfDNA. It offers sensitive ctDNA quantification 
in blood, enhancing the identification of colon cancer 
patients and tracking their response to treatments. This 
approach may provide crucial improvement in liquid 
biopsy-based patient care, reducing the need for invasive 
tests and aiding in early recurrence prediction.

Materials and methods
Patient recruitment and clinical characteristics
We collected tissue and blood plasma samples from 49 
patients diagnosed with stage II or III colon cancer at the 
Dongnam Institute of Radiological and Medical Sciences 
(DIRAMS), Busan, Republic of Korea. This study received 
approval from the Institutional Review Board (IRB) of 
DIRAMS (IRB No.: D-2003-011-002). In total, 94 tissue 
samples were collected, including 47 tumor tissue sam-
ples from colon cancer patients and 47 matching normal 
tissues from adjacent regions to the tumor. However, we 
could not acquire tissue samples from two patients due 
to their small size. Plasma samples corresponding to the 
49 patients were collected at four time points per patient: 
before the operation (N = 49), one month after the opera-
tion (N = 49), six months after the operation (N = 46) and 
more than 12  months after the operation (N = 16; one 
sample was exceptionally collected at 10  months post-
operation). Samples were initially collected six months 
post-operation, followed by regular six-month interval 
collections, with varying success rates depending on each 
patient (Fig. S3). The median follow-up period for recur-
rent and nonrecurrent patients was 20 months, and the 
median time to recurrence for patients with recurrence 
was 13  months. Among the total colon cancer patients, 
36.7% (N = 18) were diagnosed with stage II and 63.3% 
(N = 31) with stage III. Additionally, 12.2% (N = 6) of 
patients experienced distant recurrence after the opera-
tion (Table  1). A healthy control group consisted of 
260 plasma cfDNA samples selected from the Korean 
Genome Project (KGP), approved by the Institutional 
Review Board (IRB) at UNIST in Ulsan, South Korea 
(IRB No.: UNISTIRB-21-66-A). The participants in this 
group had no history of cancer, and the female partici-
pants were not pregnant.

Sample processing
To extract DNA from the tissue samples, we pulverized 
the tissue using a mortar and pestle in liquid nitrogen. 
The resulting powder was then homogenized in a cell lysis 
solution consisting of 2% CTAB, 1.4  M NaCl, 100  mM 
Tris–Cl (pH 8.0), 20 mM EDTA and β-mercaptoethanol 
(added immediately before use at a ratio of 100  μl per 
10 ml). After thorough mixing, proteinase K was added, 

and the mixture was incubated at 65 °C for 1.5 h. Subse-
quently, an equal volume of phenol–chloroform-isoamyl 
alcohol (25:24:1, PCI) was added to the lysate, followed 
by centrifugation at 12,000 rpm for 10 min at room tem-
perature. We then isolated the top aqueous phase and 
incubated it at 37  °C for 1  h after adding RNase A at a 
concentration of 100 μg/ml. Following this, an equal vol-
ume of chloroform-isoamyl alcohol (24:1) was added, and 
the mixture was centrifuged under the same conditions. 
The supernatant was collected, to which 1/12 volume of 
5  M NaCl and twice the volume of 100% ethanol were 
added. After 30 min of incubation at − 20  °C, the DNA 
pellet was collected by centrifugation, washed with 70% 
ethanol and finally dissolved in 100 μl of ion-exchanged 
ultrapure water. In the Korean Genome Project (KGP), 
plasma samples were obtained by initially separating 
plasma from whole blood using Cell-Free DNA BCT 
tubes (Streck). This separation was achieved by centrifug-
ing at 1500 g for 10 min at room temperature, followed 
by a subsequent centrifugation at 3000  g for 10  min at 
4  °C to remove any remaining cells. Cell-free DNA was 
extracted from 3 to 5  ml of plasma using the QIAamp 
Circulating Nucleic Acid Kit (QIAGEN, 55,114) accord-
ing to the manufacturer’s instructions. The concentra-
tion of cfDNA was measured using the Qubit dsDNA HS 
Assay Kit (Thermo Fisher Scientific), and its quality was 
evaluated using the 4150 TapeStation system (Agilent 
Technologies). Only samples with cfDNA purity of 80% 
or more and a total amount of 5 ng or more were used for 
this study.

Sequencing library preparation
Enzymatic conversion for DNA library preparation was 
carried out following the protocol provided by the NEB-
Next® Enzymatic Methyl-seq Kit (NEB). In summary, 
the process began with the ligation of cfDNA at a con-
centration ranging from 5 to 10  ng with amplification 
adaptors that featured methylated cytosines. This was 
followed by DNA fragmentation end repair and A-tailing. 
Subsequently, in the initial step of enzymatic conver-
sion, the adaptor-ligated DNA was subjected to oxida-
tion facilitated by TET2 and an oxidation enhancer. This 
step aimed to protect 5-methylcytosine and 5-hydroxym-
ethylcytosine from potential deamination in subsequent 
stages. In the second phase of enzymatic conversion, 
APOBEC was utilized to convert cytosine into uracil, 
while ensuring that the oxidized forms of 5-methylcy-
tosine and 5-hydroxymethylcytosine remained stable. 
Following this, the enzymatically modified DNA under-
went an amplification process using sequencing index 
primers, involving eight cycles of PCR amplification as 
per the provided guidelines. At each stage of the process, 
DNA purification was executed with the utilization of 
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NEBNext sample purification beads, following the manu-
facturer’s recommended protocol. All constructed librar-
ies were quantified using the Qubit dsDNA HS Assay 
Kit (Thermo Fisher Scientific) and the D1000HS tape 
with the 4150 TapeStation system (Agilent Technolo-
gies). Paired-end 150 bp reads from these libraries were 
sequenced on the Illumina Novaseq 6000 platform.

Sequencing data processing
We performed enzymatic methylation sequencing (EM-
seq) [33] on the collected samples with 53.72 Gbp (Giga 
base pair) on average. FASTQ files were generated from 
the EM-seq libraries using Illumina NovaSeq 6000 sys-
tem. Illumina adapter sequences and poly-g tails were 
trimmed by fastp (ver. 0.20.1), and low-quality reads, 
which have a lower average Phred quality score than 20 
or are shorter than 20 bp or N-bases more than 2, were 
filtered by fastp (ver. 0.20.1) [34]. The preprocessed reads 
were aligned to the bisulfite-converted hg38 reference 
genome sequence using Bismark (ver. 0.22.3) [35]. In this 
alignment step, unpaired or not uniquely mapped reads 
were removed by Bismark (ver. 0.22.3). Finally, duplicate 
reads were removed by MarkDuplicates in Picards (ver. 
2.25.0). These preprocessed BAM files were used for the 
following analysis.

Definition of genome‑wide colon cancer‑specific 
hypermethylated (CaSH) regions
The discovery cohort for identifying genome-wide colon 
cancer-specific hypermethylated (CaSH) regions con-
sisted of 41 cancer and 47 normal colon tissues. The 
methylation ratios (β values) of genome-wide CpG sites 
were obtained from BAM files using BismarkExtrac-
tor (ver. 0.22.3). These β values were merged into a sin-
gle value for each CpG site using bedtools (ver. 2.29.1), 
based on the Cytosine (C) positions in the hg38 human 
reference genome. Colon cancer-specific hypermethyl-
ated CpGs were defined as those with a difference in β 
value (βtumor tissue–βnormal tissue > 0.3) and a false discovery 
rate (FDR) < 0.05 between cancer and normal tissues. 
The most critical step involved excluding methylated 
CpGs in the healthy controls, which had β value thresh-
olds higher than 0.05 in 190 healthy plasma samples. This 
step enhanced the sensitivity and specificity of our CpG 
marker selection by comparing cancer-specific methyla-
tion patterns with those of healthy controls. Additionally, 
we excluded CpG sites with β values unavailable in more 
than half of the samples. Considering the maximum read 
length of 150  bp, we merged adjacent hypermethylated 
CpG sites within a 75 bp range up/downstream, forming 
a CaSH fragment. Fragments containing fewer than ten 
CpGs were excluded to maintain the sensitivity of ctDNA 
quantification. Finally, the region encompassing the first 

and last CpG in the merged CaSH fragment was defined 
as a CaSH region.

Identification of differentially hypomethylated CpGs 
and regions in colon cancer
The differentially hypomethylated CpGs were defined 
as CpGs with a difference in β value (βnormal tissue–βtumor 

tissue) > 0.3 and FDR < 0.05 between cancer and normal 
tissue. Following that, to enhance the sensitivity and 
specificity of defining cancer-specific hypomethylated 
CpGs, we excluded methylated CpGs based on β value 
thresholds of lower than 0.95 in 190 healthy plasma sam-
ples. The process of defined regions was the same as the 
previous section.

Calculate ctDNA candidate count index (ctCandi)
CaSH-based ctCandi counts reads with a read meth-
ylation density (RMD) higher than 0.6, while being 
completely contained within the CaSH region. In hypo-
methylated regions, reads with a lower read methyla-
tion density than 0.3 were classified as candidate ctDNA 
reads. The number of candidate ctDNA reads for each 
CpG site was normalized using CPM (counts per mil-
lion mapped reads). The ctCandi was calculated as the 
average of the normalized candidate ctDNA count of all 
regions.

Validation of CaSH regions using the Cancer Genome Atlas 
(TCGA) and gene expression omnibus (GEO)
CaSH regions were validated using Infinium Methyla-
tion 450 K array data obtained from the Gene Expression 
Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 
comprising 263 colon tumor tissue samples and 35 colon 
normal tissue samples from TCGA, along with 656 
healthy blood samples from GSE40279. CpG sites with β 
values unavailable in more than half of the samples were 
excluded. Subsequently, CpG sites on the Methylation 
450  K array were classified into those overlapping with 
the CaSH regions and those that did not overlap. Aver-
age β values of CpG sites were calculated for each group. 
Rank-sum test was conducted to compare between the 
groups.

Correlation between gene expression and methylation
We examined the association between methylation lev-
els and transcription levels of genes IRF4 and GPC6 in 
the CaSH region in colon cancer patients. We utilized 
258 colon cancer tissue samples from TCGA, each with 
available Infinium Methylation 450  K array and RNA-
seq data. Then, Spearman’s correlation analysis was per-
formed to calculate the correlation between methylation 
and expression levels using the overlapping CpG sites of 
these genes.
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in silico validation
We performed an in silico test to evaluate the quantita-
tive correlation of ctCandi on colon cancer. To generate 
raw in silico data, we use ten healthy plasma data and 
six colon tissue samples considering age and sex. During 
all this process, splitting and merging reads from BAM 
files were carried out using GATK (ver. 4.19.0) [36]. We 
generated six simulated healthy plasma data containing 
approximately 10 × reads from the entire healthy plasma 
reads. Using the data, the mixture ratios ranged from 
0.1% to 5% and six sets of simulated data were created 
for each ratio. We calculated ctCandi using these in silico 
data. Through Spearman’s correlation analysis, we identi-
fied a significant positive correlation between the propor-
tion of cancer tissue and ctCandi using the in silico data.

Gene annotation and enrichment analysis
A total of 797 genes were identified through annotation 
using the R package annotateR (ver. 1.20.0) [37], based on 
901 CaSH regions. Subsequently, the enrichment analysis 
was conducted for these regions. The enrichment analy-
sis utilized the shinyGO (ver. 0.77) [38]. For gene ontol-
ogy analysis, the focus was on the ‘Molecular Function’ 
category, using data from Ensembl version 92. In the 
gene set enrichment analysis, we used the result of Meth-
CancerDB in the other category [39].

Model construction
We constructed the logistic regression model based on 
the methylation signature of cfDNA to distinguish colon 
cancer from healthy control. The normalized ctDNA 
candidate counts about the regions were used as input 
features. The models were performed three  fold cross-
validation with 60 healthy controls and 49 colon cancer 
patients. The models were conducted without the pen-
alty, and all remaining options were default settings.

Bioinformatic and statistical software
Scripts for data analysis were written in Python3. The 
python package Pysam (ver. 0.21.0) was used to compute 
methylation from the reads in BAM files. The python 
package Pandas (ver. 1.5.3) was used for manipulation of 
tabular data. The python package Scipy (ver. 1.11.1) was 
used for statistical analysis, including the calculation of 
Spearman’s correlation coefficients and a Wilcoxon rank-
sum test. The python package Sklearn (ver. 1.2.2) was 
used to construct the machine learning models. For gen-
erating graphs and figures, R package ggplot2 (ver. 3.4.4) 
and grid (ver. 4.2.0) packages were used (R version 4.2.0).
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