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Abstract 

Introduction Walking stands as the most prevalent physical activity in the daily lives of individuals and is closely 
associated with physical functioning and the aging process. Nonetheless, the precise cause‑and‑effect connection 
between walking and aging remains unexplored. The epigenetic clock emerges as the most promising biologi‑
cal indicator of aging, capable of mirroring the biological age of the human body and facilitating an investigation 
into the association between walking and aging. Our primary objective is to investigate the causal impact of walking 
with epigenetic age acceleration (EAA).

Methods We conducted a two‑sample two‑way Mendelian randomization (MR) study to investigate the causal 
relationship between walking and EAA. Walking and Leisure sedentary behavior data were sourced from UK Biobank, 
while EAA data were gathered from a total of 28 cohorts. The MR analysis was carried out using several methods, 
including the inverse variance weighted (IVW), weighted median, MR‑Egger, and robust adjusted profile score (RAPS). 
To ensure the robustness of our findings, we conducted sensitivity analyses, which involved the MR‑Egger intercept 
test, Cochran’s Q test, and MR‑PRESSO, to account for and mitigate potential pleiotropy.

Results The IVW MR results indicate a significant impact of usual walking pace on GrimAge (BETA = − 1.84, 95% CI 
(− 2.94, − 0.75)), PhenoAge (BETA = − 1.57, 95% CI (− 3.05, − 0.08)), Horvath (BETA = − 1.09 (− 2.14, − 0.04)), and Han‑
num (BETA = − 1.63, 95% CI (− 2.70, − 0.56)). Usual walking pace is significantly associated with a delay in epigenetic 
aging acceleration (EAA) (P < 0.05). Moreover, the direction of effect predicted by the gene remained consistent 
across RAPS outcomes and sensitivity MR analyses. There is a lack of robust causal relationships between other walk‑
ing conditions, such as walking duration and walking frequency, on EAA (P > 0.05).

Conclusion Our evidence demonstrates that a higher usual walking pace is associated with a deceleration 
of the acceleration of all four classical epigenetic clocks acceleration.

Key messages 

In recent years, observational studies have found that there is a correlation between walking and aging, but the spe‑
cific relationship is not clear

We used a Mendelian randomization approach to test the causal effect of walking and sedentarism on epigenetic 
clock acceleration
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Mendelian randomization studies have found that faster walking speed may delay physiological aging 
through causal analysis at the genetic level

Keywords Aging, Walking, Epigenetic clock, Mendelian randomization study, Epigenetic age acceleration, Usual 
walking pace, GrimAge, Hannum, PhenoAge, Horvath

Introduction
The aging process is a complex phenomenon character-
ized by cumulative changes in life activities, resulting 
in diseases and eventual mortality [1]. While life expec-
tancy has increased, the prevalence of chronic diseases 
remains high [2]. Traditional metrics like life span may 
not fully capture the intricacies of aging, prompting a 
contemporary shift in research focus toward interven-
tions that address aging itself rather than isolated aspects 
like life span or individual diseases. Unlike chronological 
aging, biological aging is a modifiable process, and recent 
advancements in aging research have identified biomark-
ers, particularly methylation time clocks, as promising 
predictors of aging [3, 4]. In recent years, its plausibility 
as a predictor of biological age has been strongly sup-
ported [5–8]. DNA methylation, a crucial epigenetic 
process involving the addition of a methyl group to the 
cytosine ring, plays a pivotal role in growth, develop-
ment, and aging. [9] It is a form of epigenetic modifi-
cation in which DNA is directly methylated through 
covalent linkage of the methyl group to the fifth posi-
tion of the cytosine ring to generate 5-methylcytosine 
(5mC) [10]. Dynamic changes in DNA methylation pat-
terns, especially in CpG dinucleotide-rich regions, occur 
with age, leading to the development of epigenetic clocks 
that measure biological age [11]. Typically, CpGs in pro-
moter regions are hypermethylated during aging, while 
other CpGs are hypomethylated [12]. DNA methylation 
patterns have been used as a measure of biological age, 
currently known as the epigenetic clock. These clocks, 
particularly those based on methylation, have demon-
strated correlations with age-related morbidity, mor-
tality, and various other factors. This underscores their 
potential to predict and identify risks associated with 
aging. As our understanding of aging advances, the focus 
on epigenetic measures provides insights into the intri-
cate processes underlying aging, offering avenues for 
targeted interventions to promote healthier aging. This 
shift toward a more holistic view of aging, encompassing 
biological and epigenetic aspects, represents a promising 
approach in the quest for interventions to enhance the 
quality of life in aging populations.

The discovery and study of the epigenetic clock offers 
great opportunities to explore interventions in aging. 
Acceleration of aging, also known as epigenetic age 

acceleration (EAA), can be generated by comparing bio-
logical age with chronological age. Exploring the effects 
of different interventions on aging through changes in 
apparent age can provide means to delay and reverse 
aging.

The daily activity of walking is an essential daily activ-
ity for everyone. For individuals, walking is good for both 
physical and mental health [13, 14]. For society, walking 
can effectively reduce healthcare costs [15]. However, 
most of the previous studies were small-scale clinical 
intervention studies or observational studies, and the 
evidence had certain limitations, such as limited sam-
ples, lack of specificity, and lack of clear causality. In this 
study, we employed a Mendelian randomization (MR) 
approach to investigate the causal relationship between 
various walking conditions, including walking speed, 
walking duration, 4-week walking frequency, and epige-
netic aging acceleration (EAA) at the genetic level. These 
walking conditions were compared against sedentary lei-
sure behavior. Our findings reveal a causal relationship, 
indicating that faster walking is associated with slower 
epigenetic aging.

Method
Study design
In this study, a two-sample bidirectional Mendelian 
randomization (MR) approach was used to investigate 
the causal relationship between walking and epigenetic 
age acceleration (EAA). This MR method is typically 
employed to obtain the association between genetic vari-
ant exposure and genetic variant outcome in two differ-
ent participant samples [16].

The MR study is based on three basic assumptions: (1) 
the instrumental variables (IVs) are strongly related to 
the exposure of interest; (2) the IVs are not affected by 
confounding factors; (3) the IVs represent the outcome 
caused by exposure rather than directly affecting the out-
come (Fig. 1).

For hypothesis 1, SNPs that were strongly associated 
with exposure were selected as instrumental variables. 
For hypothesis 2, instrumental variables required the 
exclusion of confounders related to exposure and out-
come. This criterion does not apply here due to the lack 
of intermediate confounders between aging, walking, 
and sitting. For hypothesis 3, we excluded instrumental 
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variables that were strongly correlated with the outcome 
but weakly correlated with exposure, ensuring that the 
instrumental variables related to exposure were indeed 
causing the outcome.

We first explored the effects of walking and sedentary 
behavior (exposure) on epigenetic age acceleration (out-
come) and then reversed the analysis to examine the 
effects of epigenetic age acceleration on walking and sed-
entary behavior.

Data sources
Walking data were derived from the UK Biobank, a study 
of 501,726 UK residents aged between 40 and 69 years at 
the time of recruitment. Participants attended the assess-
ment visits at 23 research centers in England, where a 
wide range of phenotypic data were collected. Partici-
pants provided informed consent, and ethical approval 
for the UK Biobank study was obtained from the North-
west National Research Ethics Committee (REC refer-
ence 11/NW/0274).

Genotyping, imputation, and quality control were per-
formed by the UK Biobank. Genotyping was carried out 
using the UK BiLEVE Axiom array and the UK Biobank 
Axiom array, and imputation was done using the Hap-
lotype Reference Consortium panel, which includes 
approximately 96 million variants. General walking speed 
data involved 459,915 individuals. Subjects were asked, 
“How would you describe your usual walking pace?” with 
options: slow pace, steady average pace, and brisk pace. 
Slow pace was defined as less than 3 miles per hour, 
steady as 3–4 miles per hour, and brisk as more than 4 
miles per hour, excluding participants unable to walk.

Walking duration data involved 395,831 individuals, 
who were asked how many minutes they usually walked 
in a day. The average was taken if the duration varied 

greatly during the week. Data on the frequency of walk-
ing for pleasure in the last 4  weeks involved 328,320 
individuals, who were asked, “How many times in the 
last 4 weeks did you go walking for pleasure?” Data were 
accessed from GWAS MRC IEU and further informa-
tion can be found at UK Biobank [17]. Sedentary data 
involved 437,887 individuals, and candidate genetic tools 
for leisure sedentary behavior phenotypes were extracted 
from the IEU GWAS database [18].

Methylation clock data were derived from a meta-anal-
ysis of 28 cohorts of individuals of European ancestry, 
including 34,710 participants. The age of the sample in 
the meta-analysis ranged from 27.2 to 79.1 years (mean 
54.8  years), with 57.3% being women. Epigenetic age 
was calculated using Horvath’s epigenetic age cal-
culator software (DNA methylation age or by using 
scripts provided by Steve Horvath and Ake Lu). The 
measures used were age-adjusted Hannum age [19], 
the Intrinsic DNA methylation Horvath [20], Pheno-
Age [5], and GrimAge age [21]. Evaluate the following 
output: inner epigenetic age—“IEAA” faster, Hannum 
age—“AgeAccelerationResidualHannum” faster, phe-
notypic age—“AgeAccelPheno” faster, and GrimAge 
acceleration—“AgeAccelGrim.”

For each cohort, methylation values beyond ± 5 stand-
ard deviations were considered outliers and excluded 
from the analysis. For more comprehensive details 
regarding the samples and methodology, we refer readers 
to the original GWAS meta-study [22].

Instrumental variables
In our study, we carefully selected independent single 
nucleotide polymorphisms (SNPs) that exhibited signifi-
cant associations with the exposure at the genome-wide 
level (p < 5 × 10^−  8) to serve as instrumental variables 

Fig. 1 Schematic representation of the three assumptions and study design. IVs Instrumental variables. SNPs Single nucleotide polymorphisms. 
Assumption 1: The selected genetic IVs are robustly associated with the exposure. Assumption 2: The chosen IVs are not associated with potential 
confounders. Assumption 3: The IVs can only influence the risk of the outcome dependently through exposure
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(IVs). To prevent issues related to linkage disequilibrium, 
we excluded SNPs with an r^2 greater than 0.001 within 
a 10,000-kilobase (10,000  KB) range. Linkage disequi-
librium is measured by two parameters: r^2 and KB. An 
r^2 value of 1 indicates complete linkage disequilibrium, 
while an r^2 value of 0 indicates complete random distri-
bution. The KB parameter indicates the genomic region 
length considered for linkage disequilibrium, where 
closer genetic loci suggest a stronger genetic relationship 
[23].

We also tested the strength of genetic SNPs using the 
F-statistic. Traditionally, an F-statistic less than 10 indi-
cates a weak instrumental variable, reflecting low power 
for the SNP-exposure association and potential bias. A 
weak instrumental variable explains the exposure with 
low genetic variation, meaning the strength of this asso-
ciation is not very high, thus differing from an invalid 
instrumental variable. The primary cause of weak instru-
mental variable bias is insufficient sample size.

The F-statistic is calculated as follows:

where N represents the sample size in the GWAS study, k 
represents the number of IVs, and r^2 is the coefficient of 
determination for the IV-exposure association.

MR analysis
We applied various Mendelian randomization (MR) sta-
tistical methods, including inverse variance weighting 
(IVW), weighted median, weighted mode, and MR-Egger. 
Among these methods, IVW is considered the most 
crucial. IVW is proposed by Burgess and utilized in MR 
studies of multi-instrumental variables [24, 25]. IVW is 
generally acknowledged as the most accurate and stable 
method for estimating causality [24]. Assume that G {G1, 
G2,… GJ} represents the instrumental variables, X is the 
exposure factor, and Y is the outcome variable. For the 
instrumental variable G1, the effects on the exposure fac-
tor and the outcome are βXG1 and βYG1, respectively, with 
corresponding standard errors σβXG1 and σβYG1. Fixed or 
random effects models were then used to obtain causal 
effect sizes between exposures and outcomes. However, 
IVW assumes that SNPs are not pleiotropic, which may 
introduce significant bias if pleiotropy is present.

To address this concern, we conducted a horizontal 
pleiotropy test using the MR-Egger intercept. While IVW 
forces the intercept of the linear regression to be 0, MR-
Egger measures the average pleiotropic effect between 
instrumental variables through the intercept term [26]. 
Additionally, we utilized MR-pleiotropy residual and 
outlier (MR-PRESSO) to identify and remove SNPs 
with pleiotropic effects [27]. MR-PRESSO calculated 

F = (N − k − 1)/k ∗ R
2/ 1− R

2

the squared residuals between the IVW results before 
and after the removal of each SNP, which were summed 
as the total sum of squared residuals. A larger sum of 
squared residuals indicated more significant horizontal 
pleiotropy, and SNPs with larger squared residuals were 
considered potential outliers. If outliers were present, 
the IVW results were recalculated after removing these 
outliers.

We assessed SNP heterogeneity through Cochran’s Q 
statistic [28]. Based on the results, we employed fixed or 
random effects models (fixed-effect model for p > 0.05, 
random-effect model in cases of heterogeneity).

To handle bias and assess causality, including situa-
tions with substantial variation arising from weak SNPs, 
we used robust adjusted profile scores (RAPS) [29]. 
RAPS proposes a consistent and asymptotically normal 
estimator by adjusting the profile score and tackling idi-
osyncratic pleiotropy through robustifying the adjusted 
profile score.

All MR analyses were conducted using the “Munge-
Sumstats,” “TwoSampleMR,” and “MR-PRESSO” R 
packages in R statistical software (version 4.2.2). Fur-
ther research methods can be found at MRC IEU 
TwoSampleMR.

Result
A bidirectional two‑sample MR analysis
We first calculated the F-statistics for the SNPs for usual 
walking speed, walking time, and walking frequency 
in the last four weeks, each of which had an F-statistic 
above 10. The detailed results of the F-statistics are 
provided in Supplementary Table  2. It can be consid-
ered that the selected SNPs are not weak instrumental 
variables. As shown in Table  1, after removal of link-
age disequilibrium and deletion of repetitive SNPs, 
usual walking pace was inversely associated with the 
acceleration of the four classical aging clocks, GrimAge 
(-1.842(−  2.937, −  0.747), P < 0.001), PhenoAge (1.567 
(3.052, 0.082), P = 0.039), Horvath (1.089 (2.142, 0.035), 
P = 0.043), and Hannum (−  1.626(−  2.695, −  0.557), 
P = 0.003) (Fig.  2). There is often a genetic causal rela-
tionship between walking speed and epigenetic age 
acceleration. The results obtained using RAPS method 
also proved this point, GrimAge (−  1.721(−  2.731, 
−  0.711) P < 0.001), PhenoAge (−  1.261(−  2.722, 
−  0.178), P = 0.025), Horvath (−  1.105079(−  2.131, 
− 0.079) P = 0.035), and Hannum (− 1.359455(− 2.353, 
− 0.365) P = 0.007) (Fig. 3). However, walking time and 
the frequency of walking in the last four weeks did not 
have a causal effect on the four epigenetic age accel-
erations (P > 0.05). We observed a significant positive 
association between leisure sedentary behavior and 
GrimAge EAA. However, there was a lack of reliable 
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causality with the other three classical epigenetic clocks 
acceleration. (Table  1) We then performed inverse MR 
Tests, which showed no causal effects of acceleration 

of the four epigenetic clocks on walking speed, time, 
near-four-week frequency or leisure sedentary behavior 
(P > 0.05). (Supplementary Table 1).

Fig. 2 Causal estimates from genetically predicted usual walking speed to four epigenetic age acceleration (GrimAge, PhenoAge, Horvath, 
and Hannum) were obtained using IVW methods

Fig. 3 Causal estimates from genetically predicted usual walking speed to epigenetic clock acceleration (GrimAge, PhenoAge, Horvath, 
and Hannum) were obtained using RAP methods

Table 2 Association walking with epigenetic age acceleration using heterogeneity test, pleiotropy test, MR‑PRESSO and MR‑Egger

MR-PRESSO Pleiotropy residual and outlier, RAPS Robust adjusted profile scores

Exposures Outcomes Cochran’s Q (P) MR‑Egger (P) MR‑PRESSO (P)

Leisure sedentary behavior GrimAge 0.507 0.392 0.396

PhenoAge 0.435 0.209 0.165

Horvath 0.179 0.982 0.163

Hannum 0.023 0.126 0.030

Usual walking pace GrimAge 0.272 0.861 0.364

PhenoAge 0.091 0.019 0.057

Horvath 0.562 0.112 0.719

Hannum 0.307 0.899 0.305

Duration of walks GrimAge 0.299 0.660 0.458

PhenoAge 0.042 0.113 0.080

Horvath 0.303 0.490 0.424

Hannum 0.878 0.517 0.856

Frequency of walking for pleasure in last 
4 weeks

GrimAge 0.052 0.031 0.072

PhenoAge 0.587 0.738 0.702

Horvath 0.531 0.730 0.688

Hannum 0.624 0.276 0.710
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Stage II: sensitivity analysis
We calculated the statistical values of SNPs for the epi-
genetic age acceleration in the four methylation time 
clocks, and the F values were also all above 10. In the 
subsequent sensitivity analysis, the heterogeneity results 
revealed significant heterogeneity between walking time 
and PhenoAge EAA SNPs (P = 0.042), as well as between 
leisure-time sedentary behavior and Hannum EAA SNPs 
(P = 0.023). The newly calculated results using the ran-
dom effects model indicated that there may still be no 
causal relationship between walking time and Pheno-
Age EAA (P = 0.956) or between leisure-time seden-
tary behavior and Hannum EAA (P = 0.559). All other 
results showed no heterogeneity (P > 0.05). Among the 
horizontal pleiotropy results, MR-Egger results showed 
that there may be horizontal pleiotropy between SNPs 
with accelerated PhenoAge and those with usual walk-
ing pace (P < 0.019). MR-PRESSO was employed to iden-
tify potential pleiotropic SNPs, revealing the presence of 
pleiotropic SNPs between leisure sedentary behavior and 
Hannum EAA (P = 0.030). However, the results remained 
unchanged even after the removal of outliers. The results 
of IVW method are reliable. There was no horizontal 
pleiotropy between the other SNPs for walking speed, 
time, frequency of walking in the last four weeks, or lei-
sure sedentary behavior on the four epigenetic age accel-
erations (Table 2).

Discussion
This represents the inaugural large-scale two-sample 
Mendelian randomization (MR) study uncovering the 
causal link between walking and epigenetic aging. Our 
results illuminate a consistent and significant causal 
association, indicating that increased walking speed cor-
relates with the deceleration of epigenetic aging. Essen-
tially, brisk walking appears to exert a beneficial influence 
on slowing down the aging process. Notably, this causal 
relationship persists uniformly across all four classical 
epigenetic clocks. Furthermore, a thorough sensitivity 
analysis was conducted, underscoring the robustness of 
our findings. The results maintained stability even after 
rigorous testing for horizontal pleiotropy and adjust-
ments for heterogeneity. In contrast, alternate facets of 
walking, including walking duration and frequency over 
the past four weeks, did not exhibit resilient causality 
concerning accelerated epigenetic aging. Additionally, a 
comparative analysis using sedentary behavior revealed 
that leisurely sedentary behavior induced GrimAge EAA. 
While no conclusive causal link was identified in the 
analysis of sedentary behavior on the remaining three 
epigenetic clocks, the heightened correlation of GrimAge 
with behavioral lifestyle suggests a potential association 
between sedentary behavior and accelerated aging.

MR results offer valuable insights into the precise 
relationship between walking and the aging process. 
In previous observational studies, walking has consist-
ently been recognized as closely linked to aging, with 
walking speed serving as a significant indicator of the 
aging process. As individuals age, their walking speed 
tends to slow down significantly, emphasizing the role 
of walking in assessing age-related changes [30, 31]. 
Simultaneously, several studies have identified a strong 
correlation between gait speed and the onset of vari-
ous age-related physical conditions and adverse events. 
For instance, a Chinese study involving 3,009 individu-
als with an average age of 66.4 years found that slower 
walking speed was associated with a more pronounced 
future cognitive decline. This underscores the sig-
nificance of gait speed as a comprehensive marker for 
assessing not only the aging process, but also a range 
of related health outcomes and cognitive changes. [32, 
33] Indeed, one study has already used walking speed 
to train a new epigenetic clock to evaluate physical con-
dition. [34]

These additional studies have consistently demon-
strated that increased gait speed is associated with 
a reduced likelihood of cognitive impairment and 
enhanced cardiovascular and cerebrovascular function. 
These findings underscore the potential advantages of 
preserving or improving gait speed in promoting cogni-
tive well-being and overall cardiovascular health [35, 36]. 
Furthermore, a lower incidence of movement disorders 
and reduced mortality rates has been closely linked to 
gait speed [37, 38].

A new observational study has found that walking is 
associated not only with aging in older adults, but also 
with accelerated apparent age and older faces in younger 
adulthood [39]. This suggests that walking may be a 
potential intervention for senescence rather than just an 
aging feature. The above observational studies have pro-
vided many new suggestions for the relationship between 
walking and aging, but they still have some observational 
limitations because they cannot provide clear causality 
due to the lack of powerful interventions. Our MR results 
can provide further valuable insight into the precise rela-
tionship between walking and the aging process in the 
current study, suggesting that walking acceleration may 
be a potential daily measure to slow the rate of aging.

MR studies stand out as a powerful approach for estab-
lishing causal relationships, particularly rooted in genetic 
factors. This potency is exemplified by the observed 
larger effects of associations between risk factors and 
health outcomes in MR studies compared to what is sug-
gested by observational or interventional studies, as seen 
in contexts such as blood pressure and lipid levels [40–
42]. This difference is attributed to MR studies measuring 
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lifetime exposure, while observational studies capture 
exposure at a single time point, and interventional stud-
ies track changes over relatively short time frames [43].

The unique strengths of MR studies, including lifetime 
exposure measurement and extensive sample sizes, prove 
invaluable when investigating complex phenomena like 
gait speed. Routine intervention studies often struggle to 
achieve comparable sample sizes and comprehensive life-
time exposure data. Furthermore, the chronic effects of 
walking speed on the aging process pose challenges due 
to the lack of reliable markers based on age-related char-
acteristics. MR studies, characterized by their genetic 
foundation and large-scale scope, bridge this research 
gap and provide a more thorough understanding of the 
causal relationship between walking speed and aging.

Horvath’s epigenetic clock, among the earliest meth-
ylation clocks, demonstrates a remarkable correlation 
between DNAm age and chronological age (0.96) [20, 44]. 
Renowned for its accuracy and versatility across diverse 
tissues and cell types, this model has been validated using 
hundreds of datasets [45]. Its applicability spans various 
tissues and organs, including whole blood, cerebellum, 
colon, kidney, liver, and lung. As a result, its accelera-
tion serves as a reflective indicator of aging across differ-
ent tissues within the body [20]. The Hannum epigenetic 
clock, based on 450  K methylation data from whole 
blood samples, complements Horvath’s epigenetic clock 
by exhibiting increased accuracy in predicting adult 
blood samples [19]. PhenoAge, constructed from 513 
age-related CpG sites across three methylation chip plat-
forms, distinguishes itself with cross-platform applicabil-
ity, mortality risk differentiation among individuals of the 
same chronological age, and a stronger correlation with 
behavioral lifestyle compared to Horvath’s epigenetic 
clock [5]. GrimAge, featuring DNA methylation-based 
plasma protein markers and smoking pack-years, prior-
itizes lifestyle and age-related diseases, resulting in more 
accurate lifespan predictions [21]. Its acceleration mitiga-
tion by walking speed suggests an association between 
higher gait speed and lower mortality.

The investigation into the causal effects of walking 
on four classical epigenetic clocks provides a nuanced 
understanding of how walking influences accelerated 
aging. The emergence of the aging clock not only serves 
as a crucial assessment tool for aging research, but also 
presents an avenue for interventions aimed at delaying 
or potentially reversing the aging process. Our findings 
indicate that increasing daily walking speed may serve as 
a viable lifestyle strategy to slow down the aging process. 
However, the effects of walking duration and frequency 
on aging deceleration lack convincing evidence.

The study boasts technical and conceptual strengths, 
being the first to explore the bidirectional relationship 

between epigenetic aging acceleration and walking speed. 
Leveraging multiple large datasets, including summary 
statistics from the UK Biobank GWAS meta-analysis and 
apparent time-clock acceleration data from a substantial 
GWAS meta-analysis, enhances the robustness of our 
findings. However, limitations include the exclusive use 
of data from individuals of European ancestry, impact-
ing population diversity, and the unknown mechanism 
through which walking affects aging, necessitating fur-
ther exploration of potential mediators. Additionally, 
future studies are crucial to determining the specific rela-
tionship between different walking speeds and the degree 
of aging acceleration, paving the way for the development 
of more scientific anti-aging walking protocols.

Conclusion
Our study demonstrates that a faster usual walking speed 
is significantly associated with a delay in epigenetic age 
acceleration. This finding highlights the potential benefits 
of maintaining a brisk walking pace for slowing down the 
aging process, as supported by our analysis of the four 
classical epigenetic ages.
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