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Abstract 

Background Healthy sleep is vital for maintaining optimal mental and physical health. Accumulating evidence sug‑
gests that sleep loss and disturbances play a significant role in the biological aging process, early onset of disease, 
and reduced lifespan. While numerous studies have explored the association between biological aging and its drivers, 
only a few studies have examined its relationship with sleep quality. In this study, we investigated the associations 
between sleep quality and epigenetic age acceleration using whole blood samples from a cohort of 692 Korean 
adults. Sleep quality of each participant was assessed using the validated Pittsburgh Sleep Quality Index (PSQI), which 
encompassed seven domains: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep 
disturbance, use of sleep medication, and daytime dysfunction. Four epigenetic age accelerations (HorvathAgeAc‑
cel, HannumAgeAccel, PhenoAgeAccel, and GrimAgeAccel) and the pace of aging, DunedinPACE, were investigated 
for epigenetic aging estimates.

Results Among the 692 participants (good sleepers [n = 441, 63.7%]; poor sleepers [n = 251, 36.3%]), Dunedin‑
PACE was positively correlated with PSQI scores in poor sleepers ( γ=0.18, p < 0.01). GrimAgeAccel ( β=0.18, p = 0.02) 
and DunedinPACE ( β=0.01, p < 0.01) showed a statistically significant association with PSQI scores only in poor sleep‑
ers by multiple linear regression. In addition, every one‑point increase in PSQI was associated with a 15% increase 
in the risk of metabolic syndrome (MetS) among poor sleepers (OR = 1.15, 95% CI = 1.03–1.29, p = 0.011). In MetS 
components, a positive correlation was observed between PSQI score and fasting glucose ( γ = 0.19, p < 0.01).

Conclusions This study suggests that worsening sleep quality, especially in poor sleepers, is associated with accel‑
erated epigenetic aging for GrimAgeAccel and DundinePACE with risk of metabolic syndrome. This finding could 
potentially serve as a promising strategy for preventing age‑related diseases in the future.
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Background
Over the last few years, the impact of sleep on over-
all health has garnered significant public attention, as 
obtaining healthy sleep is recognized as essential to 
optimal physical and mental well-being [1]. Sleep qual-
ity, including sleep latency and efficiency, plays a crucial 
role in numerous biological processes, such as circadian 
rhythms, hormone secretion, glucose homeostasis, and 
chronic diseases [2, 3]. For example, circadian rhythms 
are controlled by a biological clock located in the brain, 
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and prolonged disruptions to the clock are associated 
with negative health consequences [4]. The associations 
between insufficient sleep duration and various health 
concerns, including obesity, elevated blood pressure, 
and an elevated risk of cardiovascular diseases, are well 
established [5, 6]. The accumulating evidence suggests 
that sleep loss and sleep disturbances play an important 
role as contributors to early disease onset and survival 
[7, 8].

As human life expectancy increases and the elderly 
population grows, there is a current trend of heightened 
attention toward age-related health conditions. One 
such condition is changes in sleep patterns across the 
lifespan, with older adults typically experiencing with a 
higher prevalence of sleep impairments in general pop-
ulation [9]. A growing body of research indicates that 
older individuals often experience more difficulty falling 
asleep and staying asleep compared to younger adults, 
with up to 50% of older people reporting difficulties in 
initiating and/or maintaining sleep [9]. Sleep disruption 
and insufficiency frequently occur among the elderly 
population and have been linked with dementia and all-
cause mortality [10]. Although the precise mechanisms 
remain incompletely elucidated, the relationship between 
sleep patterns and the aging process may share compa-
rable biological processes [11, 12]. Numerous studies 
have unraveled aging-related epigenetic modifications, 
including RNA modification, chromatin remodeling, 
and histone and DNA methylation [13]. Sleep depriva-
tion may serve as both a sign of ill health and a trigger for 
epigenetic changes associated with biological aging [11]. 
Poor sleep quality, short sleep duration, and diagnosed 
insomnia have also been linked to shorter leukocyte tel-
omere length, along with biological aging pathways such 
as increasing inflammation, DNA damage, and cellu-
lar senescence in varied populations of mid- to late-life 
adults [14]. Physiological stress and sleep deprivation-
induced chronic inflammation have been associated with 
accelerating biological aging through epigenetic regula-
tion [15–17]. However, the mechanism underlying their 
relationship remains inconclusive.

While a substantial body of research exists on the rela-
tionship between aging and sleep, investigations into the 
association of methylation age with and sleep quality 
are limited. In this study, we considered four epigenetic 
age (EA) markers: PhenoAge [18], GrimAge [19], Hor-
vathAge [20], and HannumAge [21], and pace of aging 
marker, as measured by DunedinPACE [22], as candi-
date markers for sleep quality. We assessed self-reported 
sleep quality and investigated association between sleep 
quality scores and epigenetic age accelerations (EAAs) to 
identify potential causal relationship for chronic diseases 
in a Korean population.

Material and methods
Study participants
This cohort study, as a part of the KoGES (Korean 
Genome and Epidemiology Study), was conducted pri-
marily to evaluate the association between lifestyle fac-
tors and genetic risk factors with the incidence of chronic 
diseases in a Korean population, which began in 2001 
with 8,842 participants aged 40–69  years and was con-
ducted every two years thereafter [23]. Our data were 
collected from 2009 to 2010, during which 701 partici-
pants were asked to complete questionnaires covering 
demographic information, lifestyle, medical history, 
and health conditions. All participants were residents of 
Ansan City in South Korea. The study was approved by 
the Institutional Review Boards of the National Institutes 
of Health of Korea and Seoul National University (IRB 
No. E2209/001-001).

Data collection
To assess participants’ characteristics, a self-reported or 
interview-based questionnaire was administered, which 
included participant’s age, sex, smoking habit, alcohol 
consumption, physical activity, household income and 
medical history. Smoking status was categorized into 
current, former, and never smokers. Former smokers 
were defined as individuals who had ceased smoking and 
had a history of having smoked less than 400 cigarettes 
during their lifetime. Alcohol consumption was also cate-
gorized into current, former, and never drinkers. Former 
drinkers were defined as individuals who had abstained 
from consuming alcohol for a period of at least one year. 
Monthly household income, as an indicator of economic 
status, was classified into two groups: < 2 million South 
Korean Won (KRW) (approximately < 890 US dollar in 
2018), and ≥ 2 million KRW. Physical activity was evalu-
ated using metabolic equivalent of task (METs-hour/day) 
using the International Physical Activity Questionnaire 
[24]. Medical records pertaining to diagnosed conditions 
such as type 2 diabetes, hypertension, and dyslipidemia 
were recorded.

Biochemical data and anthropometric measurements, 
including blood pressure (BP), height, weight, and waist 
circumference (WC), were obtained using established 
methods [23]. Body mass index (BMI) was defined as 
body weight divided by the square of height in meters 
(kg/m2). Participants with missing data on at least one 
phenotype or methylation were excluded from the 
analysis.

Metabolic syndrome definition
Metabolic syndrome (MetS) was defined according to the 
modified criteria of the National Cholesterol Education 
Program-Adult Treatment Panel III (NCEP-ATP III) with 
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the appropriate WC cutoff points for central obesity in 
Korean population [25]. Diagnosis of MetS was defined if 
individuals exhibited at least three of the following com-
ponents: (1) WC ≥ 90 cm for men and ≥ 85 cm for women, 
(2) triglyceride (TG) level ≥ 150  mg/dL or undergoing 
pharmacologic treatment, (3) high-density lipoprotein 
(HDL) cholesterol level < 40 mg/dL in men and < 50 mg/
dL in women or undergoing pharmacologic treatment, 
(4) systolic/diastolic BP (SBP/DBP) ≥ 130/85  mmHg or 
receiving antihypertensive medication, and (5) fasting 
glucose (FAG) level ≥ 100 mg/dL or undergoing pharma-
cologic treatment.

Assessment of sleep quality
Assessment of sleep quality was conducted using the 
Pittsburgh Sleep Quality Index (PSQI) self-rated ques-
tionnaires, which provide measures of 7 domains: (1) 
subjective sleep quality, (2) sleep latency, (3) sleep dura-
tion, (4) sleep disturbance, (5) sleep efficiency, (6) use 
of sleep medication, and (7) daytime dysfunction scores 
[26]. These domains are rated on a 3-point ascend-
ing scale, with 0-point indicating ideal sleep quality and 
3-point indicating poor sleep quality. The global PSQI 
score, which ranges from 0 (indicating the best sleep 
quality) to 21 points (indicating the worst sleep quality), 
was calculated.

The PSQI assesses usual sleep habits (sleep qual-
ity and disturbances) over a 1-month time. For exam-
ple, the PSQI survey evaluates habitual prolonged sleep 
latency rather than occasional instances of prolonged 
sleep latency. Based on the time taken to fall asleep 
each night, the questionnaire assigns a score ranging 
from 0 to 3 (0 = falls asleep in ≤ 15  min, 1 = falls asleep 
in 16–30 min, 2 = falls asleep in 31–60 min, and 3 = falls 
asleep in > 60  min).  Sleep duration was obtained from a 
single-item question asking about typical sleep duration 
on the PSQI and fewer than 7  h per night was catego-
rized as unhealthy sleep duration [27]. The global PSQI 
score > 5 indicated poor sleep quality, in accordance with 
published recommendations [26].

Epigenetic age estimates
Blood-based DNA methylation (DNAm) levels at CpG 
sites were quantified using the Illumina HumanMeth-
ylationEPIC BeadArray (Illumina, Inc., San Diego, CA, 
USA), which covers over 850,000 CpG sites for 701 indi-
viduals. The DNAm data were preprocessed using R 
package ChAMP [28] based on the following exclusion 
criteria: (1) poor-quality samples with detection p-value 
less 0.01, (2) probes with fewer than three beads in at 
least 5% of samples per probe, (3) all SNP-related probes. 
Additionally, non-CpG probes, multi-hit probes, and 
probes located on chromosome X and Y were excluded. 

Beta-values, representing the methylation score for each 
CpG, were normalized using the Beta MIxture Quantile 
dilation (BMIQ) method [29]. To account for methylation 
differences between cell types, the cell-type composition 
was estimated using GLINT [30] and batch effect was 
corrected by ComBat method [31].

DNAm data (N = 724,619 probes remained) from whole 
blood samples were submitted to the online DNAmAge 
Calculator (https:// dnama nage. genet ics. ucla. edu/) and 
DNAm age was calculated. Four distinct EA estimates 
and estimates of EAA, including HorvathAgeAccel, Han-
numAgeAccel, PhenoAgeAccel, GrimAgeAccel, were cal-
culated. HannumAgeAccel is an estimate derived from 
the Hannum methods based on 71 CpGs, and Horvath-
AgeAccel is derived from the Horvath method based 
on 353 CpGs that is independent of blood cell counts 
[20, 21]. GrimAge is an EA marker enriched for DNAm 
sites that are surrogate biomarkers for blood plasma pro-
teins [32]. DunedinPACE, a DNAm biomarker of pace of 
aging, was calculated using a publicly available R package 
(https:// github. com/ danbe lsky/ Duned inPACE).

Statistical analysis
Demographic, lifestyle, clinical, and sleep characteristics 
of study participants were expressed as means (SDs) or 
median (25th percentile, 75th percentile) for continuous 
variables and numbers (percentage) for categorical vari-
ables. The study participants were categorized into either 
good sleepers (the global PSQI score ≤ 5) or poor sleep-
ers (the global PSQI score > 5). The differences between 
the groups were analyzed with independent t-test or 
Mann–Whitney U-test for normally distributed continu-
ous variables or Kruskal–Wallis rank sum test for skewed 
distributed continuous variables. Chi-square test was 
used for categorical variables. Incomplete questionnaires 
missing the variables of interest were excluded from the 
analysis. Sex, age, smoking status, drinking status, and 
physical activity were considered potential confounding 
factors. A p-value threshold of 0.05 was set to determine 
statistical significance. Pearson’s correlation coefficients 
between each EAA (GrimAgeAccel, PhenoAgeAccel, 
HorvathAgeAccel, HannumAgeAccel, and Dunedin-
PACE) and PSQI were calculated to evaluate prediction 
accuracy. To address the prediction model between PSQI 
and EAAs, linear regression models adjusted for covari-
ates including chronological age, BMI, smoking, drink-
ing, monthly income, and physical activity were applied. 
Subsequently, the associations between PSQI score and 
the incident of diseases (binary outcome) were evaluated 
using logistic regression. All statistical analyses were per-
formed using R version 4.3.2 (The R Foundation, Vienna, 
Austria).

https://dnamanage.genetics.ucla.edu/
https://github.com/danbelsky/DunedinPACE
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Results
Study participants and baseline characteristics
Of the total 701 study participants, who were asked 
to complete the questionnaire, 9 (1.3%) with at least 
one missing variable related to health conditions were 
excluded. Among the total 692 participants included for 
final analysis, 63.7% were categorized as good sleepers 
(n = 441) and 36.3% as poor sleepers (n = 251). Table  1 
presents the baseline demographic, lifestyle, and clinical 
characteristics of the study participants according to their 

sleep quality. PSQI scores ranged between 0 and 19 with 
a median score of 4 (interquartile range [IQR], 3–6). The 
median chronological age of good sleepers (53.0  years, 
IQR 50.0–59.0) was not significantly different from that 
of poor sleepers (56.9, IQR 50–61.5). Compared to good 
sleepers, poor sleeper had higher proportion of females 
(48.2% vs. 34.5%, p < 0.01) and lower monthly income ( ≤ 
200 million KRW) (29.9% vs. 22.7%, p < 0.05). Lifestyle 
behaviors (including physical activity, smoking status, 
and drinking status) and clinical conditions (including 

Table 1 Baseline demographic, lifestyle, and clinical characteristics of the study participants according to the sleep quality

PSQI Pittsburgh Sleep Quality Index; PA physical activity; MET metabolic equivalent test; BMI body mass index; KRW Korean Won; HbA1C glycosylated hemoglobin A1c; 
HDL high-density lipoprotein; hs-CRP high sensitive-C reactive protein; WBC white blood cell count. Data are presented as median (25th percentile, 75th percentile) 
or mean (SD) for continuous variables and number (%) for categorical variables. adiagnosed by medical doctor. Independent t test for normally distributed data or 
Willcoxon rank sum test for non-normally distributed data was used for continuous variables, and Chi-square test was used for categorical variables. Poor sleepers are 
PSQI score > 5

Characteristics Total (N = 692) Good sleepers (N = 441) Poor sleepers (N = 251) p-value

PSQI 4.0 (3.0–6.0) 3.0 (2.0–4.0) 7.0 (6.0–9.0)  < 0.01

Age, years 54.0 (50–60) 53.0 (50.0–59.0) 55.0(51.0–61.5) 0.08

Sex (%)

 Male 420 (60.6) 289 (65.5) 130 (51.8)  < 0.01

 Female 273 (39.4) 152 (34.5) 121 (48.2)

Monthly income (%)

  ≤ 200 million KRW 175 (25.3) 100 (22.7) 75 (29.9)  < 0.05

  > 200 million KRW 518 (74.7) 341 (77.3) 176 (70.1)

BMI (kg/m2) 24.4 (22.6–26.2) 24.4 (22.7–26.4) 24.2 (22.6–26.0) 0.59

PA (MET‑hour/day) 41.8(5.7) 42.2 (5.7) 41.0 (5.7) 0.43

Smoking status (%)

 Non‑smoker 345 (49.8) 234 (47.7) 111 (55.0) 0.09

 Former smoker 223 (32.3) 165 (33.6) 59 (29.2)

 Current smoker 124 (17.9) 92 (18.7) 32 (15.8)

Drinking status (%)

 Non‑drinker 345 (43.4) 209 (42.6) 92 (45.5) 0.45

 Former drinker 224 (3.3) 16 (3.2) 7 (3.5)

 Current drinker 124 (53.3) 266 (54.2) 103 (51.0)

HbA1C (%) 5.5 (5.3–6.2) 5.5 (5.3–6.1) 5.5 (5.3–6.4) 0.32

HDL (mg/dL) 42.0 (36.0–50.0) 42.0 (36.0–50.0) 42.0 (35.0–50.0) 0.89

Triglyceride (mg/dL) 118.0(85.0–171.2) 115.0 (84.0–167.0) 123.0(86.5–174.5) 0.72

Total cholesterol (mg/dL) 195.5(171.0–219.2) 195.0 (171.0–218.0)) 198.0(172.0–222.0) 0.18

Fasting glucose (mg/dL) 94.0(88.0–107.2) 94.0 (88.0–107.0) 93.0 (87.0–110.0) 0.63

Blood pressure (mmHg)

 Systolic BP 113.0(105.0–123.0) 113 (106.0–124.0) 114.0(103.0–122.0) 0.18

 Diastolic BP 76.0 (69.0–81.0) 76 (70.0–82.0) 76 (69.0–80.0) 0.10

 Insulin (µIU/mL) 8.2 (6.2–10.7) 8.1(6.1–10.6) 8.5 (6.4–10.9) 0.25

 hs‑CRP (mg/L) 0.7 (0.3–1.2) 0.7 (0.4–1.2) 0.6 (0.3–1.3) 0.61

 WBC (Thous/µL) 5.4 (4.5–6.5) 5.4 (4.6–6.5) 5.4 (4.5–6.5) 0.79

Chronic diseases

  Hypertensiona (%) 34 (4.9) 23 (5.2) 11 (4.4) 0.76

  Diabetesa (%) 21 (3.0) 9 (2.0) 12 (4.8) 0.07

  Hyperlipidemiaa (%) 22 (3.2) 11(2.5) 11 (4.4) 0.26

 Metabolic syndrome (%) 226 (32.7) 139 (31.5) 87 (34.7) 0.45
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glycosylated hemoglobin A1c (HbA1C), HDL, TG, total 
cholesterol, FAG and BP) did not show significant differ-
ences between two groups.

Correlations between methylation age and sleep quality
Significant correlations were observed between chrono-
logical age and each EAs: HorvathAge ( γ = 0.76, p < 0.01), 
HannumAge ( γ=0.81, p < 0.01), PhenoAge ( γ=0.75, 
p < 0.01), and GrimAge ( γ=0.83, p < 0.01). These results 
suggest a valid high accuracy of the epigenetic estima-
tor used in this study (Fig.  1). There were no statistical 
differences in EA levels between good and poor sleepers 
(Table  2). The mean (SD) values of HorvathAge, Han-
numAge, PhenoAge and GrimAge were 46.43 (5.33), 
53.28 (5.81), 39.14 (6.33), and 64.14 (7.07), respectively. 
Unexpectedly, the mean level of GrimAgeAccel was sig-
nificantly higher in good sleepers compared to poor 
sleepers (0.65 vs. 0.03, p = 0.02).

Correlation between EAAs and PSQI scores was inves-
tigated, stratified by sleep quality (good vs. poor). Dun-
edinPACE was positively correlated with PSQI scores in 
poor sleepers (Fig. 2, γ=0.18, p < 0.01 for poor sleepers; γ
=− 0.04, p = 0.36 for good sleepers). No association was 
observed between other DNA methylation accelerations 
and PSQI scores in either group (Supplementary Fig. 1).

Linear regression models between methylation age 
accelerators and sleep quality
Given the positive correlation observed between Dun-
edinPACE and PSQI scores in poor sleepers, unique 
predictive power of sleep quality on different EAAs 

Fig. 1 Correlation of chronological age and epigenetic ages among Korean adults. Chronological age correlates with various DNAmAge 
(HorvathAge, HannumAge, PhenoAge, and GrimAge). The figure shows scatter plots of chronological age (X‑axis) against epigenetic age (Y‑axis) 
of a HorvathAge, b HannumAge, c PhenoAge, and d GrimAge in whole blood

Table 2 Methylation age and its acceleration between good 
and poor sleepers

AgeAccel epigenetic age acceleration; EA epigenetic age; EAA epigenetic 
age accelerator. Data were shown as mean (standard deviation). p-value was 
calculated using t test or Mann–Whitney U-test

EA or EAA Total (N = 692) Good 
sleepers 
(N = 441)

Poor 
sleepers 
(N = 251)

p-value

HorvathAge 46.43 (5.33) 46.30 (5.28) 46.60 (5.41) 0.25

HannumAge 53.28 (5.81) 53.2 (5.75) 53.51 (5.92) 0.12

PhenoAge 39.14 (6.33) 39.05 (6.29) 39.30 (6.41) 0.42

GrimAge 64.14 (7.07) 64.08 (6.96) 64.26 (7.26) 0.23

HorvathAgeAc‑
cel

0.80 (3.37) 0.82 (3.39) 0.76 (3.33) 0.93

Hannum‑
AgeAccel

0.82 (3.01) 0.79 (2.97) 0.88 (3.09) 0.31

PhenoAgeAc‑
cel

1.10 (4.23) 1.23 (4.23) 0.88 (4.22) 0.23

GrimAgeAccel 0.42 (3.94) 0.65 (3.88) 0.03 (4.03) 0.02

DunedinPACE 1.02 (0.08) 1.02 (0.08) 1.02 (0.09) 0.41
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was further investigated using different regression 
models. Two different prediction models were estab-
lished through linear regression of EAAs against PSQI 
scores: Model 1 was adjusted for sex as a covariate. 
Model 2 was adjusted for chronological age, smoking 
status, drinking status and BMI, in addition to sex. In 
all models, GrimAgeAccel and DunedinPACE showed 
a statistically significant association with PSQI scores 
only in poor sleepers (Table 3).

Associations between PSQI scores and MetS risk in poor 
sleepers
Table  4 presents the associations between PSQI scores 
and the incidence of chronic diseases, including type2 
diabetes, hypertension, hyperlipidemia and MetS in poor 
sleepers. The results showed that there were no rela-
tionships between PSQI scores and diabetes, hyperten-
sion, and hyperlipidemia in poor sleepers in both Model 
1 (adjusted for chronological age and sex) and Model 2 

Fig. 2 Correlation of DunedinPACE and PSQI score between good and poor sleepers. DunedinPACE was positively correlated with PSQI scores 
in poor sleepers ( γ =0.18, p < 0.01 for poor sleepers; γ = − 0.04, p = 0.36 for good sleepers). PSQI, Pittsburgh Sleep Quality Index

Table 3 Linear regression analysis for PSIQ score and methylation age acceleration between good and poor sleepers

Model 1 presents the results from linear regression model analysis of PSQI on methylation age accelerator (dependent variables) adjusted for sex. We additionally 
adjusted for chronological age, smoking status, drinking status, and BMI (Model2)

Age accelerators Good sleepers (N = 441) Poor sleepers (N = 251)

ꞵ SE p-value ꞵ SE p-value

Model 1

 HorvathAgeAccel  − 0.098 0.122 0.422 0.085 0.083 0.307

 HannumAgeAccl  − 0.126 0.107 0.238 0.137 0.077 0.079

 GrimAgeAccel 0.111 0.110 0.315 0.179 0.076 1.94 ×10
−2

 PhenoAgeAccel 0.016 0.151 0.918 0.114 0.106 0.285

 DunedinPACE  − 0.002 0.003 0.533 0.006 0.002 5.54 ×10
−3

Model 2

 HorvathAgeAccel 0.082 0.107 0.446 0.071 0.085 0.402

 HannumAgeAccl  − 0.118 0.108 0.273 0.100 0.076 0.188

 GrimAgeAccel 0.078 0.099 0.430 0.167 0.066 1.16 ×10
−2

 PhenoAgeAccel 0.022 0.154 0.887 0.082 0.107 0.446

 DunedinPACE  − 0.001 0.003 0.960 0.004 0.002 3.63 ×10
−2
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(adjusted for chronological age, sex, smoking status, and 
DunedinPACE). However, in both models, significant 
associations were observed between PSQI and risk of 
MetS in poor sleepers. For every one-point increase in 
PSQI score, there was a 16% increase in the risk of MetS 
in poor sleepers (Model 2 OR = 1.16, 95% CI = 1.04–1.30, 
p < 0.01).

Additionally, the association between PSQI scores and 
each MetS component in poor sleepers was investigated. 
A positive correlation was observed between PSQI score 
and FAG ( γ = 0.19, p < 0.01).

Discussion and conclusions
With the continuous increase in life expectancy, there is 
a growing interest in healthy aging, which depends on 
the interplay of the physiological, psychological, social, 
and environmental conditions. To date, multiple studies 
have suggested that biological age is a strong risk factor 
for various aging-related diseases such as chronic, meta-
bolic, and neurodegenerative diseases. Biological aging is 
a complex phenomenon involving a multitude of biologi-
cal processes from various organs and systems. Over the 
past decades, biological age has been estimated using a 
variety of biomarkers from our body at the cellular level 
[33]. Accumulating evidence indicates that epigenetic 
regulations such as DNA methylation, chromatin remod-
eling, and RNA modification play important roles in the 
aging process. DNA methylation ages with different algo-
rithms were associated with inflammation, age-related 
health outcomes and mortality. Currently, the most com-
prehensive and accurate biological age test can be made 
through investigating epigenetic changes, such as epige-
netic clocks in blood samples [33].

Sleep disturbance may be a candidate driver of the bio-
logical aging process. Given the increasing body of evi-
dence linking sleep disruption to a magnitude of health 
issues, it is important to understand sleep as a vital physi-
ological process. Sleep involves in many types of tissues 
and body systems, affecting circadian rhythms, hormone 
regulations, the immune system, and metabolic pro-
cesses [34, 35]. Insufficient sleep disrupts critical neural 
processes and can lead to brain disorders [36]. Notably, 
insufficient sleep has been linked to the altering of physi-
ological homeostasis and the development of several 
chronic diseases and conditions, including diabetes, car-
diovascular disease, obesity, and mental health disorders 
[6, 37]. Recently, Kang et al. reported a significant asso-
ciation between poor sleep quality (PSQI > 5), shorter 
sleep durations (< 6 h), and MetS in the older age group 
(≥ 40 years) in a Korean population [38].

A few studies have investigated the association between 
sleep quality and accelerating biological aging. Decreased 
sufficient sleep duration is associated with accelerated 
epigenetic clocks in older females [39], during the post-
partum period in women [14], and among freshmen 
in university [16]. Sleep physiology undergoes changes 
with the age, and many sleep disorders become more 
prevalent in the elderly. While differences in sleep pat-
terns exist between younger and older adults, the aging 
process varies depending on sleep quantity and quality 
[40]. Decreased sleep latency, or taking a shorter time to 
fall asleep, is associated with increased longevity among 
centenarians [41]. Recently, Gau et al. reported that poor 
sleep quality, as determined by their own algorithm, was a 
causal factor in the acceleration of biological aging, indi-
cated by KDM-biological age and PhenoAge [42]. While 
numerous factors related to aging have been investigated, 
the aspect of sleep quality has seemingly been overlooked 
until now. Therefore, we selected four aging acceleration 
markers and DunedinPACE as markers for biological 
age, which may be associated with sleep quality. In our 
study, we identified that the extent of poor sleep quality 
across seven major domains may be involved in acceler-
ating biological ages of GrimAge and DundinPACE. In 
line with this finding, we observed that people with wors-
ening sleep index in poor sleepers were associated with 
an increased risk of MetS [43]. Another study found that 
62% of individuals with glucose levels in the pre-diabetes 
range were likely to have poor sleep, compared to 46% 
of individuals with normal glucose levels [44]. Disturbed 
sleep patterns have a significant impact on how the body 
processes glucose after meals, underscoring impaired 
glucose metabolism [45]. Given this observation, biologi-
cal age estimation may provide a good candidate marker 
for investigating the biological mechanisms underlying 
the interplay between sleep- and aging-related health 

Table 4 Risk of type 2 diabetes, hypertension, hyperlipidemia, 
and metabolic syndrome by PSQI in poor sleepers

OR odds ratio; CI confidence interval. Model 1 is adjusted for chronological 
age and sex. Model 2 includes chronological age, sex, smoking status, and 
DunedinPACE as covariates

Chronic diseases Poor sleepers (N = 251)

OR 95% CI p-value

Model 1

 Type2 diabetes 1.02 0.76, 1.27 0.89

 Hypertension 1.10 0.87, 1.33 0.36

 Hyperlipidemia 1.08 0.85, 1.31 0.49

 Metabolic syndrome 1.18 1.06, 1.32  < 0.01

Model 2

 Type2 diabetes 1.01 0.75, 1.26 0.96

 Hypertension 1.07 0.84, 1.31 0.50

 Hyperlipidemia 1.06 0.82, 1.30 0.62

 Metabolic syndrome 1.16 1.04, 1.30  < 0.01
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outcomes. One of the strengths of our study is that we 
used nationally representative samples and a relatively 
large sample size with validated assessment of sleep 
quality (Cronbach’s alpha = 0.7). However, there are sev-
eral limitations in this study. Firstly, we did not assess 
the direction of causality between EAA and sleep qual-
ity using genetic determinants. Identifying a causal role 
of sleep conditions would be beneficial in elucidating 
biological mechanisms and providing potential preven-
tive and treatment strategies. In addition, the epigenetic 
aging markers used in our study are not consistent with 
previous findings [42], which suggested that PhenoAg-
eAccel could have a causal effect on sleep duration. We 
hypothesize that differences in study ethnic groups and 
the assessment of sleep quality may have caused the 
inconsistent results. Further validation of our findings in 
more diverse populations will enhance the generalizabil-
ity of our study. Even though the PSQI is one of the most 
widely used tools for assessing subjective sleep quality, 
PSQI does not provide objective physiological measure-
ments for sleep quality.

In this study, worsening sleep quality, particularly 
among poor sleepers, is associated with accelerated epi-
genetic aging as indicated by GrimAgeAccel and Dun-
dinePACE, which in turn increases the risk of MetS 
including FAG. Our findings can potentially serve as a 
promising strategy for preventing age-related diseases in 
the future.
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