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Abstract 

Background Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to rou‑
tine immunizations. They are also more likely to develop chronic respiratory diseases in later childhood. This study 
investigated the feasibility of epigenetic profiling to reveal endotype‑specific molecular pathways with potential 
for early identification and immuno‑modulation. Peripheral blood mononuclear cells from respiratory infection 
allergy/asthma‑prone (IAP) infants and non‑infection allergy/asthma prone (NIAP) were retrospectively selected 
for genome‑wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched 
for the low vaccine responsiveness (LVR) phenotype (Fisher’s exact p‑value = 0.02).

Results An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG asso‑
ciations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation 
and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mono‑
nuclear cells with monophosphoryl lipid A (MPL), a TLR agonist, partially reversed this signature at a subset of CpGs, 
suggesting the potential for epigenetic remodeling.

Conclusions This proof‑of‑concept study establishes a foundation for precision endotyping of IAP children and high‑
lights the potential for immune modulation strategies using adjuvants for future investigation.

Ş Full list of consortium members in Table S2.
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Background
Respiratory infections in early life are among the lead-
ing causes of childhood morbidity and mortality and the 
most common cause of respiratory admissions to hospi-
tals [1]. While vaccines can help prevent some respira-
tory diseases, some children exhibit a phenotype of low 
responsiveness to their routine schedule of vaccines [2] 
and are vulnerable to upper respiratory tract infections, 
particularly acute otitis media [3, 4]. A 10-year study of 
acute otitis media (AOM) children conducted in Roch-
ester, New York, revealed that children prone to AOM, 
termed otitis prone (OP), exhibit sub-protective IgG 
antibody levels to most of their scheduled pediatric vac-
cine antigens [5]. Clinically, they also experience sub-
stantially higher rates of subsequent allergies and asthma 
[5]. Otitis-prone children are more susceptible to res-
piratory infections due to associated nasopharyngeal 
(NP) and systemic immune deficits [6, 7]. Specifically, a 
reduced capacity to respond to infections is associated 
with reduced activation of Toll-like receptor (TLR) sign-
aling pathways and cytokine production [7], leading to 
attenuated stimulation of  CD4+ T cell responses, specifi-
cally Th17 responses to extracellular pathogens [8]. This 
disparity in immune development in children who suffer 
from high rates of otitis media, allergy and asthma consti-
tutes a unique endotype of ‘respiratory infection, allergy/
asthma-prone children’ (IAP) that merits focused inves-
tigation for the development of precision interventions.

Endotyping approaches to classifying diseases based 
on molecular and biological pathways, rather than clini-
cal symptoms, have the potential to lead to new options 
for early preventative treatments [9, 10]. In this study we 
undertook a precision endotyping approach focused on 
DNA methylation biomarkers (CpG methylation) which 
are regulatory base modifications to DNA that influence 
cellular immune responses across the life course [11]. 
Such modifications vary according to host genotypic var-
iation and environmental influences and therefore con-
tain information about both genome and environment 
[12]. Their potential utility for endotyping is supported 
by studies that demonstrate respiratory infections modify 
host CpG methylation in both nasal tissue and blood leu-
kocytes [13, 14].

Post-infectious epigenetic modifications to leuko-
cyte DNA can be retained at immune response genes, 
a concept known as ‘epigenetic scars,’ and these modifi-
cations can induce cellular non-responsiveness (‘toler-
ance’), increasing host susceptibility to severe infections 
and sepsis [15]. We postulated that DNA methylation 
profiling of PBMCs might reveal similar markers in IAP 
children that could be harnessed to develop endotype 
signatures. One feature of the ‘epigenetic scars’ concept 
is the potential to restore functionality using adjuvants 

that reverse specific nucleic acid base modifications [16, 
17]. As part of the mission of the National Institutes of 
Health (NIH)/National Institute of Allergy & Infectious 
Diseases (NIAID) Immune Development in Early Life 
(IDEAL) program, we sought to identify modifiable path-
ways of immune development with therapeutic potential 
by investigating the impact of a common adjuvant on 
endotype-specific molecular signatures. This approach 
may identify molecules with the potential to redirect the 
course of immune development in vulnerable children 
away from endotypes associated with disease and toward 
those associated with health [18].

In this proof-of-concept study, we retrospectively 
selected children from a longitudinal child cohort 
enrolled and followed prospectively in Rochester from 
6 to 60 months of age. PBMCs from 14 IAP infants col-
lected in the first year of life were matched to 16 non-res-
piratory infection allergy/asthma-prone (NIAP) controls 
using extremes of phenotype design. Sample classifica-
tions for vaccine responsiveness determined from anti-
body responses to primary vaccinations were previously 
available on this cohort [19]. PBMCs collected from these 
children, were cultured with vehicle control (PBS) or with 
monophosphoryl lipid A (MPL) which is a TLR4 agonist. 
At culture endpoint, cells were harvested for methylome- 
and genome-wide association analysis using infinium 
microarray technology. Using differential analysis, we 
identified an endotype signature of epigenetic differences 
in unstimulated cells that was partially modifiable using 
MPL adjuvant following in vitro stimulation.

Results
Study participant characteristics
The characteristics of the participants are presented in 
Table  1. The IAP group consisted entirely of Caucasian 
ancestry, whereas the NIAP group comprised 81% Cau-
casians and 19% other ethnicities. Principal component 
analysis (PCA) of genotypes confirmed that the study 
cohort was predominantly of Caucasian ancestry, with 
three individuals clustering with middle clines reflect-
ing Latino and African-American ancestry compo-
nents (Additional file  1: Fig. S1). The IAP group were 
enriched with the low vaccine responder (LVR) phe-
notype (Fisher’s exact p-value = 0.02) and had a higher 
burden of stringently defined otitis media (Fisher’s Exact 
p-value < 0.001).

Epigenome‑wide association study of endotype‑linked 
methylation patterns
We conducted an epigenome-wide association study 
(EWAS) comparing unstimulated (PBS) mononuclear 
cells from IAP infants vs. NIAP infants. This analy-
sis identified 813 differentially methylated regions 
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(DMRs) encompassing 268 lead CpG associations with 
genome-wide significance (Fig. 1A, see Additional file 3: 
Table S2). Notably, most regions exhibited higher meth-
ylation (hypermethylation) in the IAP group (60.4%, 491 
regions).

To assess the role of genetic variation in shaping this 
endotype-associated methylation signature, methyla-
tion quantitative trait loci (mQTL) analysis was per-
formed using individual regression models for SNP-CpG 
pairs within a ± 500  kb window of endotype-associated 
CpGs (1,079,685 SNP markers). This analysis revealed 
52 unique SNP associations with methylation levels at 5 
CpG dinucleotides (FDR < 0.05) (Fig. 1B).

Gene ontology analysis showed enrichment for 
genes involved in mucin-type O-glycan biosynthesis 
in both hyper- and hypomethylated DMRs (Fig.  1C). 

Hypermethylated regions contained the genes B3GNT3, 
B3GNT6, GALNT9, ST3GAL1, FUT11. Hypomethyl-
ated regions included GALNT2, GALNT18, GALNT9, 
suggesting potential links to epithelial dysfunction [20, 
21]. Notably several relevant disease pathways including 
asthma, diabetes, graft rejection and antigen processing 
pathways were enriched in hypermethylated regions. The 
latter involved genes within the major histocompatibility 
complex (class I member HLA-F, class II members HLA-
DPA1 and HLA-DPB1and protease subunit PSMB8) 
[22–24].

Additional hypermethylation was observed in genes 
associated with the inflammasome pathway in IAP 
children, including PCSK6 [25], NLRP1 [26], FLT4 
and IL18RAP [27] 28, suggesting deficits in anti-viral 
defenses. Furthermore, hypermethylation was also 

Table 1 Demographics of study cohort

P-values are determined using Fisher’s exact for categorical variables and t-test for quantitative variables

Variable Category IAP NIAP Overall P‑value

Vaccine responsiveness 0.019

High vaccine response (1) 7% (5) 31% (6) 20%

Normal vaccine response (6) 43% (10) 62% (16) 53%

Low vaccine response (7) 50% (1) 6% (8) 26%

Otitis‑prone status  < 0.001

Stringently defined otitis prone (10) 71% (0) 0% (10) 33%

Non‑otitis prone (4) 29% (16) 100% (20) 67%

Atopy 0.675

Eczema (4) 29% (3) 18% (7) 23%

Sex 0.44

Female (3) 21% (6) 38% (9) 30%

Male (11) 79% (10) 62% (21) 70%

Age (months) Mean 9.9 ± 2 10.76 ± 1.59 10.36 ± 1.81 0.211

Ancestry 0.485

African‑American (0) 0% (1) 6% (1) 3%

Caucasian (14) 100% (13) 81% (27) 90%

Other (0) 0% (2) 12% (2) 7%

Daycare 0.142

Yes (11) 79% (8) 50% (19) 63%

No (3) 21% (8) 50% (11) 37%

Breastfeeding 0.883

Breastfed (4) 29% (3) 19% (7) 23%

Formula fed (8) 57% (10) 62% (18) 60%

Both (2) 14% (3) 19% (5) 17%

Smokers in home 1.00

Yes (0) 0% (1) 6% (1) 3%

No (14) 100% (15) 94% (29) 97%

Siblings 0.457

Yes (7) 50% (11) 69% (18) 60%

No (7) 50% (5) 31% (12) 40%
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observed in immune response genes including MAP3K6, 
KSR1 [29] and PARP9 [30], implicated in the IFN-γ 
response. AKT1 involved in the PI3K/AKT/mTOR path-
way [31], and MYD88, crucial for TLR signaling also 
exhibited hypermethylation [32]. Conversely, hypo-
methylated DMRs were primarily enriched with genes 
involved in cellular metabolism, such as glutathione 

metabolism (GCLC, GSTA4 and GSTM3) [33], and 
starch and sucrose metabolism (HK2 and PYGB) [34, 35] 
(Fig. 1A).

To decipher the cellular specificity of this endotype sig-
nature, immune cell subset deconvolution of peripheral 
blood methylation profiles was performed using differ-
entially methylated cell type (DMCT) analysis [36]. This 

Fig. 1 Epigenome‑wide association study of IAP and NIAP infants demonstrates differentially methylated regions enriched with immune response 
genes. A Volcano plot of differentially methylated regions significantly associated with IAP status. X‑axis represents the average methylation 
change from NIAP group (delta methylation ratio), and the y‑axis shows the log region size in base pairs. Points are colored according to maximum 
observed methylation difference in region. N = 30 B Circular visualization of significant SNP‑CpG association pairs showing chromosomal location 
of associated markers. C Dot chart of summary statistics from gene ontology enrichment analysis of the infection‑prone associated methylation 
signature highlighting significantly enriched pathways. The y‑axis shows gene set nomenclature, point size reflects total count of differentially 
methylated genes, points are ranked by the percentage of genes in the set covered, and colored according to false discovery rate adjusted 
P‑value. Diff Differentially, DMRs differentially methylated regions, IAP infection allergy/asthma prone, max maximum, bp base pairs, P.DE p‑value 
for over‑representation of the GO or KEGG term, Coverage percentage of genes identified within specified pathway
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analysis did not reveal differentially methylated cell types, 
suggesting a generalized signature across immune cell 
subsets (Additional file 1: Fig. S2).

In vitro MPL stimulation alters DNA methylation in 
endotype‑associated genes
To explore how innate immune activation might affect 
disease-linked methylation patterns, PBMCs from the 
same study participants were stimulated with MPL 
for 24  h and analyzed via EWAS. Compared to PBS-
treated cells, MPL stimulation induced modest methyla-
tion changes (average effect size ~  ± 5%) in 113 regions 
(FDR < 0.05), encompassing both hypermethylation (60 
regions) and hypomethylation (53 regions). Immune cell-
type distributions remained unchanged after stimulation 
(Additional file 1: Fig. S2, Additional file 4: Table S3).

Gene ontology analysis revealed enrichment of similar 
pathways as the endotype signature (e.g., asthma, type 
1 diabetes) and additional pathways linked to inflam-
masome signaling (NF-κB signaling, Th17 cell differ-
entiation), suggesting the potential of MPL to target 
endotype-associated methylation (Fig.  2A). A modest 
but significant overlap (P = 0.002 hypergeometric test) 
between endotype- and stimulation-associated regions 
was detected (Fig.  2B). Interestingly, 183 of 268 signifi-
cant CpGs differentiating NIAP and IAP groups lost sig-
nificance after MPL treatment (FDR P ≥ 0.05), indicating 
specific methylation pattern modulation by MPL.

Bland–Altman visualization (Fig. 2C) confirmed effect 
size modulation on inter-group methylation variability. 
Notably, 8 CpGs displayed > 5% modulation of the IAP-
NIAP group difference by MPL stimulation (FDR P < 0.05, 
interaction test, Fig. 2D).

Discussion
This study introduces a novel approach to identifying 
children vulnerable to respiratory infections and low 
vaccine responsiveness through precision epigenetic 
endotyping. This approach holds potential to revolu-
tionize early detection and guide targeted interventions, 
ultimately improving immune resilience and preventing 
chronic disease in this at-risk group. Aligning with the 
NIH/NIAID’s IDEAL consortium mission, our work aims 
to personalize immunizations and prevent infectious dis-
eases in early life by combining disease- and adjuvant-
associated molecular signatures to identify molecules 
capable of reversing disease pathways. These results 
pave the way for larger-scale validation studies with the 
hope of personalized immunotherapies, transforming 
healthcare for children at high risk of severe respiratory 
illnesses.

Children within this long-term Rochester cohort 
experiencing a high burden of recurrent infections 

in their first five years of life [37] exhibited a distinct 
molecular signature in mononuclear immune cells col-
lected during infancy. This endotype signature was 
characterized by increased methylation in genes gov-
erning pro-inflammatory immune responses includ-
ing inflammasome formation, antigen processing and 
glycan biosynthesis. This suggests a potential role in 
heightened susceptibility to respiratory infections [20, 
38]. While our analysis indicated minimal influence 
from genetic risk variants, implying the disease signa-
ture reflects more of a developmental programming 
element, further studies with larger sample sizes are 
needed to solidify this conclusion.

Notably, this study demonstrates the ability of our 
methylation profiling approach to identify clinically 
relevant signatures that corroborate existing clinical 
and immunological findings in IAP children [2, 4, 6, 7, 
39–43]. For example, we observed increased methyla-
tion at several MHC genes, consistent with the previous 
reports of reduced surface expression of MHC II proteins 
in this population [2]. Additionally, our findings regard-
ing increased methylation in MyD88, a key component 
of PRR-mediated signaling, align with previous observa-
tions of reduced IRF7 mRNA expression and IFN-α pro-
duction [2, 8, 41, 44]. Similarly, increased methylation of 
inflammasome-related genes (NLRP1, IL18RAP, PCSK6, 
FLT4) in IAP children is consistent with reduced IL-1β-
mediated T-helper 17 immunity reported in children 
prone to AOM [8].

While increased methylation at identified genes sug-
gests potential dysregulation in relevant pathways, the 
functional consequences require further investigation. 
Hypermethylation often impedes DNA accessibility, 
potentially reducing gene expression and contributing to 
the IAP phenotype [45]. However, the context-dependent 
nature of methylation necessitates additional functional 
follow-up studies. Importantly, it is critical to recognize 
that the observed changes may not reflect causal drivers 
but could also arise from gene–environment interactions 
or disease manifestations.

While our findings reveal minimal overall overlap 
between endotype- and stimulation-associated meth-
ylation patterns, the selective modulation of 8 CpGs 
by MPL suggests its potential to fine-tune methylation 
landscapes and potentially influence downstream tran-
scriptional and functional pathways. It remains unclear 
how MPL modulates endotype-associated pathways, 
and limited insights can be gleaned from bulk epige-
netic data. Further investigations using single-cell epi-
genetic analysis and functional assays will be needed 
to define the pathways by which adjuvants impact their 
target genes. Developing a computational epigenetic 
signatures database could provide a valuable resource 
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Fig. 2 Stimulation with MPL adjuvant modifies a subset of endotype‑associated CpGs. A Dot chart of summary statistics from gene ontology 
enrichment analysis for the MPL‑associated differentially methylated regions highlighting significantly enriched pathways (n = 30). The y‑axis 
shows gene set nomenclature, point size reflects total count of differentially methylated genes, points are ranked by the percentage of genes 
in the set covered, and colored according to false discovery rate adjusted P‑value. B Venn diagram of overlapping regions showing counts 
of unique and overlapping regions. C Bland–Altman visualization of methylation difference after MPL stimulation for 183 MPL‑sensitive CpGs. 
Y‑values represent the difference in log2 fold‑change (NIAP – IAP) between PBS and MPL condition. X‑axis shows mean methylation value for each 
CpG. Upper and lower 95% confidence intervals are shown as red lines. D Boxplot of median and quartile range for the four most significantly 
ranked endotype‑associated CpGs modified by MPL treatment. DMRs differentially methylated regions, MPL monophosphoryl lipid A, P.DE p‑value 
for over‑representation of the GO or KEGG term, Coverage percentage of genes identified within specified pathway. Hypermeth hypermethylated 
regions. Hypometh hypomethylated regions.*** = P < 0.001, ** = P < 0.05–0.05, ns = P > 0.05, two‑sided t‑test
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for precision immunization approaches in vulnerable 
populations and a starting point for pre-clinical studies.

This was a proof-of-concept study with some caveats, 
including a small and highly selected sample group and 
a lack of functional studies. We utilized an extremes of 
phenotype design; while this approach does not provide 
a perfectly representative sample of the entire cohort, it 
is a common strategy in pilot studies, aiming to maxi-
mize the contrast between groups and increase the like-
lihood of detecting meaningful differences when the 
sample sizes are small. This study establishes the foun-
dation for future research into a precision epigenetic 
endotyping approach, potentially improving health out-
comes in children at high risk for respiratory illnesses.

Methods
Sample selection
Participants in a prospective trial conducted in Roches-
ter NY, USA, were children recruited from community-
based primary care pediatric practices, as previously 
described [5]. Infection asthma-prone (IAP) status 
was determined from unsupervised clustering analysis 
of illness visits over the first 5  years of life, described 
in [5]. Briefly, the frequency of illness and allergy epi-
sodes were expressed as a binary vector for each study 
participant, and multi-dimensional scaling (MDS) 
performed. Unsupervised K-means clustering was 
performed to illness and allergy data and identified a 
cluster that was highly enriched for respiratory illness. 
For the current study, a subset of 30 participants was 
selected, 14 of which were IAP cases and 16 NIAP con-
trols. Participant selection was intentionally guided to 
emphasize the extremes of clinical phenotypes, that 
is, respiratory infection allergy/asthma-prone children 
(IAP) enriched for low vaccine responder (LVR) phe-
notype vs. non-respiratory infection allergy/asthma 
prone (NIAP) (Table  1). Briefly, among the IAP sub-
set we selected study participants that were prone to 
otitis media as it is strongly correlated to low vaccine 
responsiveness (unpublished observations) with avail-
able PBMC. Among the NIAP we randomly selected 
study participants from those with multiple PBMC 
vials available. Vaccine responsiveness was determined 
from normalized IgG titers to six vaccine antigens 
measured at one year of age following their primary 
immunizations. LVRs are defined as the bottom 25th 
percentile of the geometric mean of the 6 normalized 
titers, as detailed in [19]. Briefly, VR was separated into 
three categories: low vaccine response, normal vaccine 
response and high vaccine response. The percentile 
cutoffs were determined for each age group between 6 
and 36 months.

PBMC stimulation in vitro
Cryopreserved PBMCs were thawed by dropwise addi-
tion of cold RPMI 1640 medium (Gibco) supplemented 
with penicillin/streptomycin (Gibco), 2 mM l-glutamine 
(Gibco) and 10% bovine serum (Hyclone). Stimuli 
included Phosphate-Buffered Saline (PBS) as a vehicle 
control, and synthetic Monophosphoryl Hexa-acyl Lipid 
A, 3-Deacyl (3D(6A)PHAD, Avanti Polar Lipids), abbre-
viated to MPL. MPL was used at a concentration of 1 µg/
mL. MPL was prepared at 10X the desired concentration, 
and 20 µL was added to flat-bottom sterile, pyrogen-
free 96-well culture dish wells (Corning). PBMCs were 
washed with RPMI, counted, and viable cells determined 
by Trypan Blue staining (Gibco) were resuspended 
in RPMI supplemented with penicillin/streptomycin, 
2 mM l-glutamine, and 10% autologous plasma at a con-
centration of 2.78 million cells/mL. 180 µL of cell sus-
pension (500.000 PBMCs) was plated on top of stimuli. 
Plates were incubated for 24  h in a humidified incuba-
tor with 5% CO2. After 24 h, culture supernatants were 
stored at − 80 °C and cells were centrifuged for 3 min at 
500 rpm. Cell pellets were resuspended in 500 µL RNAl-
ater (Sigma-Aldrich) for downstream DNA methylation 
profiling and frozen at -80 degrees. Each clinical sam-
ple (n = 30) had a vehicle-only (PBS) condition, and a 
matched MPL condition (total n = 60), both cultured for 
24 h.

DNA methylation profiling
PBMC pellets were thawed and washed in PBS prior to 
genomic DNA extraction using the Chemagic DNA 400 
kit H96 (cat # CMG-1491). DNA samples were quanti-
fied using the Quant-iT HS kit (cat# Q33120) and ran-
domized by endotype label prior to being sent to the 
Australian Genome Research Facility in Melbourne, 
Western Australia, for bisulfite conversion and genotyp-
ing using Illumina Infinium MethylationEPIC BeadChip 
v1 arrays. Bisulfite-converted genomic DNA was ana-
lyzed using Illumina’s Infinium Human Methylation EPIC 
BeadChips, which enable methylation measures at over 
850,000 CpG sites. Raw.iDAT files were pre-processed 
using the Minfi [46] package from the Bioconductor pro-
ject (http:// www. bioco nduct or. org) in the R statistical 
environment (http:// cran.r- proje ct. org/ version 4.2.2). 
Sample quality was assessed using control probes on the 
array, and no samples were removed. Array normaliza-
tion employed the stratified quantile method to correct 
for type 1 and type 2 probe biases. Probes exhibiting 
a P-detection call rate of > 0.01 in one or more samples 
were removed (44,881 probes) prior to analysis. Probes 
containing SNPs at the single base extension site or at the 
CpG assay site were removed, as were probes measuring 

http://www.bioconductor.org
http://cran.r-project.org/
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non-CpG loci (30,015 probes). Probes reported to have 
off-target effects by McCartney et  al. [47] were also 
removed (39,489 probes). After filtering, the final dataset 
consisted of 120 samples and 751,474 probes. Methyla-
tion ratios were derived as β values (methylated alleles)/
((unmethylated + methylated) × 100)) with log 2 transfor-
mation to M values for statistical analysis.

Genotyping and imputation
Aliquots of genomic DNA samples were genotyped by 
the Australian Genome Research Facility using the Illu-
mina Global Screening Array v3 with a multi-disease 
drop-in. Genotype calling was performed using the gen-
call algorithm in GenomeStudio (Illumina). Quality con-
trol was performed using the plinkQC package (v 0.3.4) 
[48] to remove samples with > 5% missing data, with high 
relatedness (PI_HAT > 0.2) in identity-by-descent analy-
sis for all pairs of samples, or with mismatched ances-
try estimates based on principal component analysis of 
merged data with the 1000 genomes phase 3 dataset. We 
also excluded SNPs characterized by > 5% missing val-
ues, a Hardy–Weinberg equilibrium p-value < 0.001 and 
a minor allele frequency of < 5%. Quality-controlled data 
were then imputed with the Haplotype Reference Con-
sortium hg19 r1.1 reference panels using Beagle 5.4 on 
the Michigan imputation server. Imputed genotypes were 
filtered to remove SNPs with a minor allele frequency 
of < 5% and Hardy–Weinberg equilibrium p-value < 0.001, 
with an r2 value > 0.3.

Statistical analysis
Linear regression modeling employed the R statistical 
environment using the limma package [49] to test the 
association between DNA methylation, IAP status and 
stimulation conditions. A factorial model with main 
effects on disease status and stimulation, including covar-
iate adjustment for cell-type proportions, the 1st five 
principal components of the methylation dataset, 1st two 
principal components of the SNP dataset, sex and age, 
was fitted to the methylation ratios (M-values). We used 
the corfit function to adjust the variance estimates for 
the repeated-measures samples. To determine endotype-
specific signatures, we compared unstimulated samples 
for the main effect of disease status adjusted for covari-
ates. Summary statistics from the model fit were used to 
identify differentially methylated regions (DMR) using 
the R package DMRcate [50]. DMRs were defined using 
a lambda of 1000, min. cpgs of 4 and adjusted p-cutoff 
of 0.05. To derive stimulus-specific signatures, we com-
pared each stimulation with the unstimulated control 
samples, adjusting for disease status and covariates. Gene 
ontology enrichment analysis of all differentially meth-
ylated regions was conducted using the missMethyl R 

package [51]. Cell-type proportions and deconvolution 
were estimated using the EpiDish (Epigenetics Dissec-
tion of Intra-Sample Heterogeneity) package in R [36]. 
The cis-meQTL test for association of nearby SNPs with 
DNA methylation measurements was carried out using 
the MatrixEQTL R package (v2.3) [52], with covariate 
adjustment for sex, and the five principal components of 
methylation array control probes and genotyping array 
ancestry estimates.

Data management and deposition
Data management for this project utilized a centralized 
cloud computing-based management approach as previ-
ously described [53, 54]. Using quality control (QC) pro-
cedures for clinical, immunologic and epigenetic data, we 
implemented rigorous checks to ensure the reliability and 
accuracy of the datasets. Quality assurance (QA) involved 
systematic processes to validate the integrity and consist-
ency of the generated data. This included verifying data 
completeness across datasets, conducting checks for 
accuracy and ensuring adherence to predefined stand-
ards. We also addressed potential issues, such as missing 
values, outliers and discrepancies.
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