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Abstract 

Background Epigenetic modifications, particularly DNA methylation (DNAm) in cord blood, are an important bio-
logical marker of how external exposures during gestation can influence the in-utero environment and subsequent 
offspring development. Despite the recognized importance of DNAm during gestation, comparative studies to deter-
mine the consistency of these epigenetic signals across different ethnic groups are largely absent. To address this gap, 
we first performed epigenome-wide association studies (EWAS) of gestational age (GA) using newborn cord blood 
DNAm comparatively in a white European (n = 342) and a South Asian (n = 490) birth cohort living in Canada. Then, we 
capitalized on established cord blood epigenetic GA clocks to examine the associations between maternal exposures, 
offspring characteristics and epigenetic GA, as well as GA acceleration, defined as the residual difference between epi-
genetic and chronological GA at birth.

Results Individual EWASs confirmed 1,211 and 1,543 differentially methylated CpGs previously reported to be associ-
ated with GA, in white European and South Asian cohorts, respectively, with a similar distribution of effects. We con-
firmed that Bohlin’s cord blood GA clock was robustly correlated with GA in white Europeans (r = 0.71; p = 6.0 ×  10–54) 
and South Asians (r = 0.66; p = 6.9 ×  10–64). In both cohorts, Bohlin’s clock was positively associated with newborn 
weight and length and negatively associated with parity, newborn female sex, and gestational diabetes. Exclusive 
to South Asians, the GA clock was positively associated with the newborn ponderal index, while pre-pregnancy 
weight and gestational weight gain were strongly predictive of increased epigenetic GA in white Europeans. Impor-
tant predictors of GA acceleration included gestational diabetes mellitus, newborn sex, and parity in both cohorts.

Conclusions These results demonstrate the consistent DNAm signatures of GA and the utility of Bohlin’s GA clock 
across the two populations. Although the overall pattern of DNAm is similar, its connections with the mother’s envi-
ronment and the baby’s anthropometrics can differ between the two groups. Further research is needed to under-
stand these unique relationships.
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Background
Epigenome-wide DNA methylation (DNAm) patterns 
across a variety of tissues and cells have been shown to 
accurately capture the “biological clock” in both adult 
[1–3] and pediatric populations [4–6], providing insights 
into an individual’s biological age, which can differ from 
their chronological age. These epigenetic clocks and their 
deviations from chronological age, otherwise known as 
accelerated aging, have been linked to a range of health 
outcomes and age-related diseases, suggesting that 
DNAm changes serve not just as markers of age, but also 
play a role in the mechanisms of aging that overlap with 
many chronic diseases [7, 8].

Chronological gestational age (GA) at birth—the actual 
time elapsed since the last menstrual period of a preg-
nant woman—is a fundamental component of neonatal 
care. Babies born preterm (before 37 weeks) or post-term 
(after 42  weeks of gestation) may have increased risks 
for various health conditions later in life [9–11], such as 
cardiovascular diseases, respiratory issues, and meta-
bolic syndrome. In turn, maternal exposures, such as the 
mother’s health and lifestyle choices, many of which are 
modifiable, can also influence GA [12, 13]. On the other 
hand, biological GA at birth has been conceptualized as a 
measurement of fetal development that can deviate from 
the chronological gestational age. It is typically measured 
using biomarkers, such as epigenetic [5] or metabolic 
markers [14], which allow for a more nuanced under-
standing of fetal development and the impact of mater-
nal exposures. In particular, epigenetic GA, which can be 
determined by DNAm GA clocks, has emerged as a more 
precise approach to measuring biological maturation 
in response to in-utero environmental exposures with 
potential predictive value for children’s future develop-
ment and health.

Considering that DNAm patterns are tissue-specific 
and can reflect gene expression changes, maternal 
exposures can act as potential triggers to induce tissue-
dependent DNAm alterations. For example, nutrition, 
cigarette smoking, alcohol use, parity, education, and 
physical health during gestation have been linked to 
DNAm shifts measured in the placenta [15–18] and 
newborn cord blood [19–37]. These exposures can 
reshape the epigenetic landscape of the fetus and pla-
centa, and influence health in later life [38–42]. Further, 
a pronounced acceleration in GA (GAA), measured by 
how much the predicted epigenetic age is higher than 
the chronological age at birth, has also been associated 
with maternal exposures and offspring characteristics, 
including older maternal age, a higher pre-pregnancy 
body mass index (BMI), maternal smoking, gestational 
diabetes mellitus (GDM), pre-eclampsia, mode of deliv-
ery, higher birth weight and length, as well as male sex 

in newborns [28, 43–50]. Meanwhile, placental and cord 
blood DNAm can provide complementary but distinct 
information, as placental DNAm reflects the interface 
between mother and fetus and its unique adaptations, 
while cord blood DNAm is more representative of the 
systemic fetal epigenetic profile at birth. Consequently, 
epigenetic clocks based on placental DNAm data do cor-
relate with those derived for cord blood, but differ in 
terms of the CpGs included, with very little overlap [18], 
possibly due to the transient nature of placenta tissue and 
how specific tissues respond to environmental exposures.

The majority of studies on epigenetic GA, GAA, and 
the characterization of their associations focused on 
white Europeans. In particular, epigenetic GA clocks were 
derived almost exclusively in white European populations 
[5, 6, 51–53] and knowledge about their performance 
in non-white populations is limited. The general lack of 
ethnic and racial diversity in omics research restricts the 
generalizability of these findings. Certain racial groups, 
such as Black and Asian, are at a disadvantage as they 
have on average a shorter gestation duration [54] and 
are at a higher risk for pregnancy complications [55, 56]. 
South Asian women, owing to their distinct genetic back-
grounds [57], environmental exposures [58], and socio-
cultural practices [59], are nearly two times more likely 
to develop GDM as compared to white European women 
[60, 61]. These genetic and environmental differences 
become especially pronounced in the length of gestation 
and its relationship with birth weight. Non-white popula-
tions, with their distinct set of genetic and environmental 
exposures, may present a different profile of epigenetic 
GA and GAA, which warrants a comparative study of the 
associated characteristics among diverse populations.

Here, we propose to comparatively examine EWAS of 
GA and association studies of epigenetic GA and GAA 
between white European and South Asian birth cohorts 
with all participants living in Canada. First, to under-
stand whether differences exist between the two popula-
tions, we contrasted characteristics of DNAm signatures 
at individual CpG levels using EWASs, and then at an 
aggregated level using epigenetic GA and GAA between 
the two populations. Second, to gain insights on whether 
these epigenetic markers are differentially or similarly 
influenced by prenatal factors in the two populations, 
we comprehensively examined associations of epigenetic 
GA, and GAA with an extensive collection of maternal 
exposures and offspring outcomes.

Methods
Study designs
CHILD is a prospective longitudinal birth cohort [62] 
that enrolled > 3,600 pregnant women who gave birth 
between 2009 and 2012, in Vancouver, Edmonton, 



Page 3 of 16Deng et al. Clinical Epigenetics           (2024) 16:74  

Winnipeg, and Toronto, Canada. The SouTh Asian biRth 
cohorT (START) study is a prospective longitudinal birth 
cohort [63] that focused exclusively on people who origi-
nated from the Indian subcontinents known as South 
Asians. START recruited South Asian women between 
18–40 years of age who were pregnant with a single fetus 
from the Peel region in Ontario, Canada between 2011 
and 2013. These cohorts were not enriched for any clini-
cal conditions and only singleton mothers were recruited. 
Our analyses focused on a subset of white European-
origin mother–offspring pairs from CHILD and South 
Asian mother–offspring pairs from START, all of whom 
provided cord blood samples for genome-wide DNA 
methylation profiling.

Cord blood DNA methylation data in CHILD and START 
Data quality processing has been described previously 
[64]. Briefly, 997 cord blood samples were hybridized 
to the Illumina Human-Methylation450K BeadChip 
(HM450K) array, covering CpG or 5’—C—phosphate—
G—3’ sites in the entire genome [65]. We followed stand-
ard quality control procedures designed for HM450K 
using the R “sesame” package [66] and generated the 
β-matrix for further processing. Suppl. Table  1 summa-
rizes the sample and probe inclusion/exclusion criteria. 
Briefly, duplicated probes, probes with detection thresh-
old p-value < 0.05, more than 10% missing, or known to 
be cross-reactive or overlap with single nucleotide poly-
morphisms were removed [67, 68]. Further, for CpG 
probes with a missing rate < 10%, mean imputation was 
used to fill in the missing values. At each CpG site, the 
β-value reflects the ratio of methylated signals relative 
to total signals and is a continuous measure between 
0 and 1. The cleaned datasets contain 504 START sam-
ples with 361,234 CpGs and 352 CHILD samples with 
358,113 CpGs, covering CpG sites on autosomes and 
X chromosomes. Finally, we estimated cell-type pro-
portions (CD8T, CD4T, Natural Killer cells, B cells, 
monocytes, granulocytes, and nucleated red blood 
cells) following a reference-based approach developed 
for cord blood [69] using the R package “FlowSorted.
CordBloodCombined.450 k”.

Maternal variables
Participants in the START and CHILD cohorts com-
pleted self-reported, study-specific questionnaires, which 
were used to derive standardized variables on personal 
and family medical histories, as well as social and cultural 
practices. Maternal diet was assessed using a previously 
validated ethnic-specific food frequency questionnaire 
(FFQ; [70] in START and a semi-quantitative multiethnic 
FFQ (created by the US-based Fred Hutchinson Cancer 
Center) in CHILD [70].

Three validated maternal diet patterns [71] were 
derived from the FFQs: 1) the plant-based pattern was 
characterized by vegetables, legumes, fermented dairy, 
whole grains, nonmeat dishes, and a lack of red meat; 2) 
the Western pattern had a high loading of sweets, red and 
processed meats, French fries, starchy vegetables, con-
diments, and sweet drinks; and 3) the health-conscious 
pattern was characterized by seafood, poultry, and red 
meats; eggs; cruciferous vegetables; leafy greens; fruit; 
refined grains; stir-fried dishes; and condiments. Mater-
nal smoking history (current, quit during pregnancy, 
quit before pregnancy, never-smoker) and household 
smoking exposure (hours per week) were self-reported. 
Maternal education questions were harmonized between 
CHILD and START to produce a single variable indicat-
ing the number of years in school. Socioeconomic status 
was captured by the validated social disadvantage index, 
a composite measure of household income, marital sta-
tus, and maternal employment [72], and was weakly 
correlated with maternal education (r2 < 0.05). Clini-
cal variables of interest included maternal age at deliv-
ery, pre-pregnancy BMI (kg/m2), pre-pregnancy weight 
(kg), gestational weight gain (kg), GDM status, gesta-
tional hypertension, pre-eclampsia, and parity (defined 
as the number of births before current pregnancy). 
GDM was determined by self-report only in CHILD, 
while in START, it was determined by a combination 
of oral glucose tolerance test (OGTT), self-report, and 
reported diabetic treatments, including insulin, pills, and 
restricted diet. The OGTT threshold (> = 5.2 at baseline 
or >  = 7.2 at 2  h) for South Asian women proposed in 
Born in Bradford [73, 74] was used in START.

Offspring characteristics
Chronological GA at birth, reported in weeks and days, 
was collected from participants’ birth charts. As an addi-
tional quality control step, we excluded 10 newborns 
from CHILD and 16 from START who either lacked 
GA data or were born before 36  weeks, such that the 
remaining newborns had gestation at birth between 36 
and 42  weeks. Offspring anthropometrics are available 
at birth from medical charts or measured at < 2 days old, 
and subsequently measured at the 1, 2, 3, and 5-year 
follow-up visits. These included height (cm), weight (g), 
ponderal index (PI; kg/m3), and BMI (kg/m2), at all visits; 
and the sum of skinfolds (triceps and subscapular skin-
folds in mm), waist circumference (cm), hip circumfer-
ence (cm), and waist-hip ratio (WHR) at 3- and 5-year 
visits.

EWAS of GA
The final datasets with cleaned DNAm and chron-
ological GA at birth consisted of 342 and 490 
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mother-newborn pairs from CHILD and START, 
respectively. We performed an EWAS separately in 
each cohort, testing the association between DNAm 
β-values at each CpG and GA using a linear regression 
model. Contrary to existing EWASs where the meth-
ylation values are typically treated as the outcome and 
the exposure as the predictor; we reversed the regres-
sion such that the methylation levels were the predic-
tors and chronological GA at birth as the outcome. 
This reverse regression approach is statistically more 
robust as GA is roughly normally distributed and pro-
duces similar evidence of association between the two 
sets of variables as the original approach [75]. Further, 
this reverse regression is consistent with our subse-
quent analysis using DNAm GA clock, a linear com-
bination of additive effects over multiple CpGs, as the 
predictor and chronological GA at birth as the out-
come. Though neither the plate or the row number, the 
two main sources of batch effects [76], was associated 
with GA using an omnibus test, there was more vari-
ability in the pairwise differences of GA between plate 
numbers (p = 0.005–0.94 in CHILD and p = 0.01–0.94 
in START). Among the subset of samples with genetic 
data, there was no association between the first 10 
genetic principal components and chronological GA 
at birth in START (adjusted R2 = − 0.0057, n = 480, 
p-value = 0.7) or CHILD (adjusted  R2 = 0.0022, n = 290, 
p-value = 0.4). Considering the reduced sample size and 
the absence of evidence indicating confounding, we 
concluded that further adjustment for genetic ances-
try within each cohort was not necessary. Thus, the 
final model adjusted for the plate number to correct 
for potential batch effects, the estimated compositions 
of cord blood cell types, maternal age, maternal edu-
cation, maternal smoking history, social disadvantage 
index, parity, and newborn sex (coded as 0 for male 
and 1 for female). For association testing of X chromo-
some CpGs, we adopted a robust 2 degrees of freedom 
test proposed for X chromosome genetic associations 
to mitigate the influence of unknown X-inactivation 
[77]. We then meta-analyzed association results from 
CHILD and START using an inverse variance-weighted 
fixed-effect model, and CpGs that showed heteroge-
neity in effects were retained for further clarification. 
CpG sites located within genes have been labeled using 
the UCSC reference gene names provided by the anno-
tation file from Illumina (‘HumanMethylation450_15
017482_v.1.2.bpm’). For each EWAS or meta-analysis, 
the false discovery rate (FDR) adjustment was used 
to control for multiple testing and an FDR-adjusted 
p-value < 0.05 was considered statistically significant. 
We further contrasted our primary findings with CpGs 
that were previously linked to GA using cord blood 

DNAm as reported in Bohlin [51]. The concordance 
between signals from Bohlin and each EWAS, and 
those between START and CHILD, was tested using a 
two-sample proportion test.

EWAS functional analysis
Differentially methylated regions (DMRs) were identi-
fied using DMRcate [78], which is a data-driven method 
that incorporates only spatial annotations. The algo-
rithm combines robust estimates at individual CpG sites 
via a Gaussian kernel within a given window to produce 
a smoothed estimate. We followed the recommended 
default parameters (e.g., ≥ 2 CpGs, Gaussian kernel band-
width of 1000) to call DMRs. A DMR was deemed sig-
nificant if the observed smoothed estimate was more 
extreme than its expected value given the same spa-
tial information at an FDR-adjusted Stouffer’s p < 0.05. 
Using genes that overlap with significant DMRs called 
in CHILD, START, and additionally, genes mapped from 
significant CpGs in Bohlin et al., we examined for enrich-
ment in biological pathways using g:Profiler [79] (https:// 
biit. cs. ut. ee/ gprofi ler/ snpen se; accessed on March 28, 
2024) based on several databases, including gene ontol-
ogy (GO), Kyoto encyclopedia of genes and genomes 
(KEGG), Reactome, and WikiPathways. HGNC gene 
symbols that had multiple ensemble IDs match were 
removed from the query. We deemed a pathway to be 
relevant if the adjusted p-value < 0.05. Finally, special 
consideration was given to the intersection of genes asso-
ciated with type 2 diabetes (T2D) and GDM, informed 
by our preliminary findings on the EWAS and epige-
netic GA clock. Specifically, we investigated whether 
significant CpGs were enriched in T2D and GDM genes, 
by searching the GWAS catalog [80] for genetic vari-
ants associated with T2D or GDM at genome-wide sig-
nificance (p < 5 ×  10–8). We only selected genetic variants 
reported in studies with a discovery sample size > 100,000 
and published in the last five years, using the keywords 
“type 2 diabetes mellitus” (EFO ID: MONDO_0005148) 
and “gestational diabetes” (EFO ID: EFO_0004593). This 
approach not only ensures that our search reflects the 
most recent scientific findings but also assumes that any 
previously established relevant genetic variants would be 
sufficiently represented and validated within these large, 
well-powered studies.

Epigenetic GA and GAA 
Epigenetic GA was estimated using Bohlin’s cord blood 
[51], Knight’s cord blood [5], and Mayne’s placenta [50] 
GA clocks developed for HM450K data, as well as Lee’s 
placenta [6] and Haftorn’s cord blood [52] clock for EPIC 
data. These algorithms are implemented in the R package 
“methylclock” [81]. GAA was calculated as the residual 

https://biit.cs.ut.ee/gprofiler/snpense
https://biit.cs.ut.ee/gprofiler/snpense
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from a linear regression using the estimated epigenetic 
GA as the outcome and the chronological GA as the pre-
dictor such that GAA would be uncorrelated with epige-
netic GA. A positive GAA indicates acceleration whereby 
the newborn’s epigenetic GA is older than the chrono-
logical GA, and a negative value implies deceleration. We 
empirically assessed whether the GA clocks and the cor-
responding GAA were transferrable to the START cohort 
by examining the distribution of these scores between 
START and CHILD using a t-test.

Statistical analysis
The performance of various GA clocks to predict chron-
ological GA was quantified using Pearson’s correlation 
coefficient in both cohorts. The GA clock that most 
strongly correlates with the chronological GA was used 
as the estimated epigenetic GA in all subsequent analy-
ses. We then explored maternal characteristics that were 
predictive of GA, epigenetic GA, and GAA using a step-
wise model selection method. The search would yield a 
final deterministic model with a subset of the variables as 
evaluated by the Akaike information criterion. For com-
pleteness, we further tested the univariate association 
between GA, epigenetic GA, and GAA and individual 
traits in the following categories: 1) newborn sex, and 
birth anthropometrics [4 variables]; 2) offspring anthro-
pometrics at each follow-up visit [20 variables]; and 3) 
maternal exposures [14 variables], using simple linear 
regression. An FDR adjustment was applied to univariate 
results and q-values were reported whereby we claimed 
suggestive evidence of association when q < 0.1. For off-
spring anthropometrics, whenever appropriate, the 
model adjusted for children’s age and sex at each visit. 
The reported effect sizes were based on the original scale 
of each variable for ease of interpretation. Missing data 
were imputed using a random forest imputation algo-
rithm implemented in the R package “missforest” [82]. 
All data processing and analyses were conducted in R 
v.4.1.0 [83].

Results
Study sample characteristics
Demographic characteristics and relevant covariates of 
the epigenetic subsamples (Table  1) were not statisti-
cally different (p > 0.001) from their respective full cohort 
after controlling for multiple hypothesis (Suppl. Table 2). 
Maternal characteristics, including parity, maternal age, 
pre-pregnancy weight, GDM, smoking history, educa-
tion, social disadvantage index, and diet patterns, were 
significantly different between South Asian and white 
European women. Specifically, there was a much higher 
rate of GDM (36% in START vs. 4% in CHILD), and preg-
nant South Asian women in START were exclusively 

Table 1 Sample characteristics of CHILD and START cohorts

CHILD START P-value
(N = 342) (N = 490)

Maternal

Mother’s Age

 Mean (SD) 32.7 (± 4.4) 30.1 (± 3.9)  < 0.001

 Missing 4 (1.2%) 0 (0%)

Parity

 Mean (SD) 0.72 (± 0.89) 0.80 (± 0.81) 0.191

 Missing 0 (0%) 13 (2.6%)

Pre-pregnancy BMI

 Mean (SD) 24.7 (± 5.2) 23.7 (± 4.4) 0.0236

 Missing 131 (38.3%) 2 (0.4%)

Pre-pregnancy weight

 Mean (SD) 68.8 (± 15.2) 62.6 (± 11.8)  < 0.001

 Missing 126 (36.8%) 0 (0%)

Gestational weight gain

 Mean (SD) 15.4 (± 6.2) 14.3 (± 7.5) 0.0413

 Missing 120 (35.1%) 9 (1.8%)

Gestational diabetes mellitus

 No 328 (95.9%) 313 (63.9%)  < 0.001

 Yes 14 (4.1%) 176 (35.9%)

 Missing 0 (0%) 1 (0.2%)

Gestational hypertension

 No 326 (95.3%) 479 (97.8%) 0.0801

 Yes 16 (4.7%) 11 (2.2%)

Pre-eclampsia

 No 331 (96.8%) 486 (99.2%) 0.0217

 Yes 11 (3.2%) 4 (0.8%)

Smoking history

 Never smoked 241 (70.5%) 487 (99.4%)  < 0.001

 Quit before this pregnancy 68 (19.9%) 1 (0.2%)

 Quit during this pregnancy 17 (5.0%) 1 (0.2%)

 Currently smoking 11 (3.2%) 0 (0%)

 Missing 5 (1.5%) 1 (0.2%)

Smoking exposure (hr/week)

 Mean (SD) 1.0 (± 7.8) 0.33 (± 2.7) 0.13

 Missing 12 (3.5%) 39 (8.0%)

Years of education

 Mean (SD) 17.0 (± 3.1) 15.8 (± 2.4)  < 0.001

 Missing 9 (2.6%) 0 (0%)

Social disadvantage index

 Mean (SD) 0.41 (± 0.95) 1.8 (± 1.4)  < 0.001

 Missing 37 (10.8%) 69 (14.1%)

Plant-based diet

 Mean (SD) − 0.48 (± 0.46) 1.6 (± 1.1)  < 0.001

 Missing 21 (6.1%) 16 (3.3%)

Health-conscious diet

 Mean (SD) 0.21 (± 0.81) − 0.42 (± 0.79)  < 0.001

 Missing 21 (6.1%) 16 (3.3%)

Western diet
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non-smoking during pregnancy. There was also a notice-
able difference in the pattern of phenotypic correlations 
between the two cohorts, both in size of correlation and 
directions (Suppl. Figure  1). In terms of newborn char-
acteristics, the mean GA at birth in START (39.3 ± 1.1) 
was lower than in CHILD (39.6 ± 1.3) when restricted 
to gestation superior or equal to 36 weeks. As expected, 
South Asians had a lower birth weight (3.3 ± 0.45  kg vs. 
3.5 ± 0.48 kg), but were of similar length as compared to 
white Europeans. Even after accounting for chronological 
GA at birth, newborn sex, social disadvantage index, and 
GDM, the difference in birth weight persisted (p < 0.001).

EWAS of GA
Figure  1 highlights the 1,652 and 2,136 differentially 
methylated CpGs associated with GA after FDR correc-
tion (above the red dashed line and in Suppl. Table  3) 
in CHILD and START, respectively. The number of sig-
nificant CpGs overlapping between the two cohorts was 
599 (Suppl. Figure  2). While the signal overlap between 
the START and CHILD was smaller than expected, the 
majority of signals separately from CHILD (73%) and 
START (72%) agreed with those reported in Bohlin’s 
EWAS [51] in a much larger sample (n > 1000). Across 
these EWASs, there was considerable empirical inflation 

at various significance thresholds as well as overall infla-
tion at the medium (Suppl. Table  4), however, the level 
of inflation was comparable across the studies and had 
been similarly observed in the context of other -omics 
studies as a result of widespread true associations [84, 
85]. The meta-analysis of all CpGs with heterogeneity 
p-value > 0.01 identified an additional 4664 CpGs (7492 
CpGs total) that were significantly associated with GA. 
Only 108 CpGs that were significant in the meta-analysis 
showed marginal evidence for heterogeneity of effects 
(heterogeneity p-value < 0.01), however, the estimated 
effects of these associations were always in the same 
direction (Suppl. Figure  3). Approximately 78% of the 
CpGs identified as significant in Bohlin’s EWAS (11,337 
of the 14,501 reported in the EWAS catalog using ultra-
sound-estimated GA at birth) were also significant in 
both CHILD and START. To benchmark our results, we 
highlighted these CpGs in Fig.  1 in purple. In general, 
there was good agreement in signals identified between 
CHILD and START, as well as those between CHILD or 
START and Bolin’s (Suppl. Figure 4). We identified 1479 
and 9142 DMRs in CHILD and START, respectively, fol-
lowing the default FDR adjustment (Suppl. Tables 5 and 
6). The largest DMR for CHILD contained 53 CpGs and 
was mapped to the B3GALT4 and WDR46 genes, while 
the largest DMR for START (5 CpGs) overlapped with 
the PRR5L gene. On average, there was equal represen-
tation of significant DMRs across the genome, however, 
we observed significant DMRs identified in START to 
contain more CpGs than in CHILD on average (Suppl. 
Figure 5). At an FDR-adjusted p-value threshold of < 0.05, 
451 out of 489 pathways identified for CHILD and 675 
out of 906 in START were identical to those identified 
using the significant CpGs from Bohlin (Suppl. Table 7). 
The top pathways across the three EWASs captured 
biological processes related to fetal development and 
immune system function, such as proliferation, migra-
tion, differentiation of different types of cells, and ana-
tomical structure development.

We retained 1509 unique gene regions from the GWAS 
catalog, of which 1508 were linked to T2D and 7 were 
associated with GDM. Of these, 130 were represented 
in genes mapped onto by significant CpGs identified in 
either CHILD, START, or both (Suppl. Table 8). In both 
CHILD and START, we found the number of genes con-
taining at least one significant CpG to be overrepresented 
among known T2D genes (Suppl. Figure  6). Specifi-
cally, 71 out of 921 genes identified in CHILD (binomial 
test for proportion p = 9.9 ×  10–5) and 97 out of 1158 
genes identified in START (binomial test for proportion 
p = 1.3 ×  10–7) were represented in genes reported in T2D 
or GDM GWASs (Suppl. Table 9).

Table 1 (continued)

CHILD START P-value
(N = 342) (N = 490)

 Mean (SD) − 0.16 (± 0.64) − 0.51 (± 0.65)  < 0.001

 Missing 21 (6.1%) 16 (3.3%)

Newborn

Gestational age (weeks)

 Mean (SD) 39.6 (± 1.3) 39.3 (± 1.1)  < 0.001

Newborn sex

 Male 187 (54.7%) 234 (47.8%) 0.0581

 Female 155 (45.3%) 256 (52.2%)

Birth length (cm)

 Mean (SD) 51.7 (± 2.5) 51.5 (± 2.6) 0.381

 Missing 65 (19.0%) 7 (1.4%)

Birth weight (kg)

 Mean (SD) 3.5 (± 0.48) 3.3 (± 0.45)  < 0.001

 Missing 4 (1.2%) 1 (0.2%)

Newborn BMI (kg/m2)

 Mean (SD) 13.1 (± 1.4) 12.3 (± 1.4)  < 0.001

 Missing 66 (19.3%) 7 (1.4%)

Newborn ponderal index (kg/
m3)

 Mean (SD) 25.4 (± 3.1) 24.0 (± 3.2)  < 0.001

 Missing 66 (19.3%) 7 (1.4%)
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Epigenetic GA and GAA 
Out of the six epigenetic GA clocks tested, the Knight 
and Bohlin clocks designed for the HM450 array had 
better overlap with CpGs in our data as compared to the 
EPIC clocks with high missingness (Table  2). In terms 
of performance, the cord blood-based Knight and Boh-
lin clocks had better correlation with the chronological 
GA, with the Bohlin clock being consistently the best in 
START (r = 0.66; p = 6.9 ×  10–64) and CHILD (r = 0.71; 
p = 6.0 ×  10–54), producing the highest correlation coef-
ficient and the smallest median absolute difference 
(Table 2). Thus, all subsequent results were based on epi-
genetic GA estimated using Bohlin’s cord blood clock. 
The estimated epigenetic age using Bohlin’s clock and the 
chronological GA roughly followed a linear relationship, 

while the residual approach ensured that GAA was 
uncorrelated with the chronological age (Fig. 2). Finally, 
there was no statistically significant difference between 
the mean estimated epigenetic GA in white Euro-
pean (40.6 ± 0.81) and South Asian (40.6 ± 0.74) new-
borns, respectively. Similarly, there was no difference 
in the GAA derived using the residual approach (Suppl. 
Table 10).

Maternal characteristics that are predictive of GA, 
epigenetic GA, and GAA 
The final models for each outcome are summarized in 
Table 3. Between CHILD and START, the common set of 
predictors for GA included pre-eclampsia and GDM, but 
maternal age and dietary patterns were specific to START, 

Fig. 1 Manhattan plots of the EWAS results of gestational age in CHILD (left) and START (right). Manhattan plots summarized the association 
p-values between cord blood DNA methylation levels and gestational age in CHILD (left) and START (right). The red line denotes the smallest 
-log10(p-value) that is below the FDR correction threshold of 0.05. The red dots represent established associations with gestational age based 
on ultrasound [51]

Table 2 Performance of cord blood DNA methylation gestational age clocks in CHILD and START 

Dataset Clock Tissue CpGs used (total) Pearson’s r P-value MAD (days)

CHILD (n = 342) Knight Cord blood 132 (148) 0.60 5.74E-35 9

Bohlin Cord blood 79 (96) 0.71 5.98E-54 4

Mayne Placenta 54 (62) 0.12 1.18E-02 6

Lee.RPC Placenta 950 (1125) 0.20 9.50E-05 6

Lee.CPC Placenta 950 (1125) 0.33 1.81E-10 7

Haftorn-EPIC Cord blood 71 (176) 0.13 7.73E-03 6

START (n = 490) Knight Cord blood 132 (148) 0.44 4.09E-25 14

Bohlin Cord blood 79 (96) 0.66 6.90E-64 4

Mayne Placenta 54 (62) 0.13 0.0030 11

Lee.RPC Placenta 958 (1125) 0.024 0.59 10

Lee.CPC Placenta 958 (1125) 0.15 7.40E-04 9

Haftorn-EPIC Cord blood 74 (176) 0.028 0.53 8
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while pre-pregnancy weight, BMI, and gestational weight 
gain were unique predictors for GA in CHILD alone. These 
models explained 8.03% and 7.90% of the GA variance 
in CHILD and START, respectively. Meanwhile, parity, 
GDM, and newborn sex were important predictors in both 
CHILD and START for epigenetic GA, with gestational 
weight gain, pre-pregnancy weight and BMI being addi-
tionally implicated in CHILD. In particular, GDM was neg-
atively associated with epigenetic GA, but more severely in 

CHILD with a reduction of 0.66 ± 0.19 weeks as compared 
to the 0.16 ± 0.07 weeks in START. Together, these predic-
tors explained 8.52% and 4.50% of the epigenetic GA vari-
ance, which was higher than that for GA in CHILD but 
lower than that in START. Both parity and newborn female 
sex were also negatively associated with GAA in CHILD 
and START, but GDM was only associated with GAA in 
CHILD while dietary patterns, gestational weight gain, and 
maternal smoking were uniquely associated with GAA in 
START (Table 3).

Fig. 2 Relationship between newborn epigenetic gestational age at birth based on cord blood DNA methylation data, chronological gestational 
age at birth, and gestational age acceleration. Panels A-B) show the scatterplot of chronological gestational age at birth and Bohlin’s gestational age 
clock in CHILD and START, respectively. Panels C-D) show the scatterplot of chronological gestational age at birth and gestational age acceleration 
in CHILD and START, respectively. The black lines are the best-fitted line using ordinary least squares, with equations displayed in Panels A) and B). 
The red lines indicate the reference line of y = x
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Univariate association of maternal and offspring 
characteristics with epigenetic GA and GAA 
Newborns from mothers with GDM on average had 
a lower epigenetic GA in both CHILD (0.6  weeks, 
p = 2.98 ×  10–3, q = 0.02; Suppl. Table  11) and START 
(0.18  weeks, p = 6.58 ×  10–3, q = 0.039; Suppl. Table  12), 

but more severely in CHILD as compared to START. 
Parity was significantly associated with epigenetic GA 
in both CHILD (p = 0.0016, q = 0.013) and START 
(p = 1.0 ×  10–4, q = 0.0014), indicating that the number of 
previous births reduces epigenetic GA. Additionally, in 
START, the age of the mother was negatively associated 

Table 3 Multivariable models using maternal characteristics to predict gestational age, epigenetic gestational age, acceleration of 
gestational age in CHILD and START 

CHILD

GA DNAm GA GAA 

Estimate Error P-value Estimate Error P-value Estimate Error P-value

Intercept 39.73 0.54 2.14E− 209 41.33 0.34 5.10E-281 0.21 0.26 0.43

Predictors Age (mother) 0.01 0.01 0.068

Parity − 0.14 0.07 0.061 -0.14 0.04 0.0015 -0.11 0.03 0.0011

BMI − 0.10 0.04 0.017 -0.04 0.02 0.085

Weight 0.04 0.01 0.0051 0.015 0.01 0.071

Weight gain 0.05 0.01 1.04E04 0.023 0.01 0.0025

Diabetes mellitus − 1.01 0.33 0.0023 -0.66 0.19 7.39E-04 -0.27 0.14 0.055

Pre-eclamp − 0.62 0.37 0.096

Smoking

Smoke

Disadvantage

Conscious diet

Western diet

Plant-based diet

Newborn sex -0.15 0.08 0.058 -0.17 0.06 0.0023

Model Metric P-value 6.19E− 06 2.77E− 06 1.71E− 04

squared 8.03% 8.52% 5.29%

START 

GA DNAm GA GAA 

Estimate Error P-value Estimate Error P-value Estimate Error P-value

Intercept 41.91 0.64 1.04E− 243 41.90 0.44 3.72E−317 0.25 0.10 0.012

Predictors Age (mother) − 0.04 0.01 3.1E04 -0.01 0.01 0.13

Parity -0.11 0.04 0.0095 -0.09 0.03 0.0033

BMI

Weight

Weight gain −0.01 0.00 0.034

Diabetes mellitus − 0.34 0.10 8.76E−04 -0.16 0.07 0.019

Pre-eclamp − 0.76 0.53 0.15 -0.58 0.35 0.10

Smoking 0.38 0.24 0.11

Smoke

Disadvantage

Conscious diet − 0.14 0.06 0.028

Western diet 0.16 0.07 0.034 -0.08 0.04 0.033

Plant-based diet

Newborn sex -0.11 0.07 0.11 -0.08 0.05 0.084

Model Metric P-value 1.35E− 08 2.51E− 05 0.00056

squared 7.90% 4.50% 3.40%
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with both GA and epigenetic GA (Suppl. Table 12). How-
ever, a subsequent subset analysis revealed that maternal 
age was not associated with epigenetic age when adjusted 
for parity (p = 0.49) and that it was not associated with 
epigenetic GA when stratified based on the number of 
previous pregnancies (Suppl. Figure 7). Further, male sex 
was only associated with GAA in CHILD (p = 0.0044; 
FDR-adjusted p = 0.036; Suppl. Table  11) but not in 
START (p = 0.14; Suppl. Table 12).

As expected, the associations between epigenetic GA 
and newborn weight and length were significant in both 
South Asian and white European cohorts (q < 0.0025; 
Suppl. Tables  11 and 12). The most interesting contrast 
was the association with newborn PI, whereby a posi-
tive association with GA (0.063  weeks; q = 2.89 ×  10–4) 
and epigenetic GA (0.034 weeks; q = 0.005) was observed 
in START, but it was negatively associated with GAA 
in CHILD (0.032  weeks; p = 0.0009; q = 0.019), despite 
newborn weight and height being similarly positively 
associated with GA and epigenetic GA in both cohorts. 
Both epigenetic GA and GAA were positively associated 
with 1-year length in CHILD (q < 0.02), and additionally 
GAA with 1-year PI and 2-year length (q < 0.05; Suppl. 
Table  11). We did not observe any association between 
anthropometrics at subsequent follow-up visits and GA, 
epigenetic GA, or GAA in START (Suppl. Table 12).

Discussion
This is the first study to comparatively examine DNAm 
signatures of GA in two ethnic populations (living in the 
same country) using cord blood. We found consistent 
DNAm signatures of gestational age at individual CpG 
levels and confirmed that Bohlin’s epigenetic GA clock 
correlated well with chronological GA in white Europe-
ans and can be generalized to South Asians. In both pop-
ulations, the GA clock was positively linked to newborn 
weight and length, and negatively to gestational diabetes, 
newborn female sex, and parity. Unique to South Asians, 
the GA clock was also associated with a higher newborn 
PI. We confirmed the associations of parity and newborn 
sex with GAA in both populations and discovered that 
white European newborn males exhibited twice as much 
accelerated GA as compared to South Asians.

Previous EWASs of GA have found overlapping sig-
nals with other outcomes, such as birth weight, while 
EWASs of birthweight were enriched for CpGs previ-
ously associated with prenatal smoking, folic acid intake, 
and maternal hypertension or pre-eclampsia [26, 53, 
86]. Since the strongest association we found with the 
epigenetic GA clock was GDM, we were interested in 
whether GDM or T2D genetics could be implicated in 
the epigenetics of GA. We found two CpGs significantly 
associated with GA in START that were present in the 

TCF7L2 gene, whose risk alleles increase the risk of T2D 
by reducing insulin secretion and are also associated with 
a lower BMI [87, 88]. This lends support to the hypoth-
esis that GDM in South Asians is predominantly due to 
insulin deficiency, which is consistent with their lower 
birth weight [89], whereby comparatively white Euro-
peans may have a stronger insulin resistance compo-
nent. Meanwhile, GLIS3 is another recognized gene for 
diabetes that is associated with the development of beta 
cells [90] and neonatal diabetes [91]. Further, ADA gene, 
which has been linked to T2D [92] and several serum 
metabolites [93], was also mapped to CpGs significantly 
associated in START but was just below statistical signifi-
cance in CHILD. Overall, there was an overrepresenta-
tion of genes that were known to associate with T2D in 
both START and CHILD, but with a more pronounced 
enrichment in START. The shared genes could be part 
of the mechanisms through which metabolic risks are 
transmitted from mothers to offspring, contributing to a 
transgenerational cycle of metabolic disorders [94–96].

Despite widespread differences in DNAm patterns 
between South Asians and white Europeans in an adult 
population [97], at an aggregate level, the Bohlin clock 
consisting of 132 CpGs produced a robust measure of 
biological GA with comparable performance in both 
cohorts. While the epigenetic GA clocks can adequately 
capture biological GA in both populations, they displayed 
subtle yet differential associations with maternal expo-
sures and effects on offspring. The multitude of maternal 
exposures, ranging from nutrition, substance use, and 
metabolic factors to chronic health conditions, presented 
a complex tapestry of influences on GA, epigenetic GA 
and GAA. In general, South Asian women had low to 
no smoking and a diet that was mostly plant-based, and 
their newborns often exhibited a lower birthweight and 
a lower GA as compared to white Europeans. In this par-
ticular population, we found evidence of Western dietary 
pattern to influence GA and GAA. But this should be 
interpreted in the context of differences in the correlation 
between two populations: a plant-based diet score was 
positively correlated with Western and health-conscious 
diets in South Asian women (r = 0.35 and 0.32), but a 
choice of plant-based diet implied a reduced Western 
diet (r = − 0.21) and a strong preference for health-con-
scious diet (r = 0.64) in white European women (Suppl. 
Figure 1).

In both cohorts, parity and newborn female sex were 
found to be negatively associated with epigenetic GA 
and GAA. While both maternal age and parity have been 
shown to associate with GAA [18, 49], our univariate 
and multivariable analyses pointed to parity being inde-
pendently associated with epigenetic GA and GAA, but 
not maternal age. Consistent with this claim, a previous 
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study showed a negative association between parity and 
maternal telomere length, which is an indicator of cellu-
lar aging. Advanced maternal age (e.g., > 35) is typically 
considered a risk factor for pregnancy-related outcomes 
[98, 99]. Here we showed that maternal age was nega-
tively associated with GA and epigenetic GA in the 
univariate analysis, but only in the South Asian cohort, 
suggesting it could be capturing the effect of parity. This 
was supported by the observation that parity was more 
strongly correlated with maternal age in START (Pear-
son’s r = 0.45) than CHILD (r = 0.27), reflecting a higher 
proportion of older mothers being multiparous among 
South Asians. This could also explain why maternal age 
has the most significant impact on negative outcomes in 
South Asian women [100]. On the other hand, our find-
ing that newborn males have accelerated GA in both 
CHILD and START is consistent with established litera-
ture that male sex was associated with accelerated aging 
in newborns [43] and in adult populations [101].

In maternal health outcomes, the observed prevalence 
of GDM was consistent with those reported for the two 
populations in general [102, 103]. We observed a negative 
relationship between GDM and epigenetic GA in both 
cohorts, as well as GDM and GAA in CHILD. The direc-
tion of associations was in line with a previous report 
[48]. However, there was no evidence to support the 
role of GDM on GAA in the South Asian cohort despite 
much higher prevalence and sample size. We were able 
to replicate previous findings of pre-pregnancy weight 
and BMI having an impact on epigenetic GA in CHILD 
[43], but there was a coherent indication that gestational 
weight gain might be the more relevant exposure to GA 
and epigenetic GA in both cohorts.

The findings of this study should be interpreted in the 
light of several limitations. Cord blood DNAm in new-
borns reflects the regulation of gene activity during 
embryonic development, cellular differentiation, and 
response to environmental factors, and is thus a valu-
able source of information for assessing maternal risk 
factors and predicting future health outcomes. How-
ever, depending on the tissue types, resolution of the 
epigenetic data (e.g., single cell vs. tissue), technology 
(HM450K vs. EPIC), and method of GA clock construc-
tion, the performance of existing GA clocks varied sub-
stantially. The main observation is that the barriers to 
trans-ethnic EWAS analysis lie in various choices of 
technical and study design. While tissue-specific clocks 
generated roughly similar results between the South 
Asian and the white European cohorts (Table 3), we also 
observed that the robust Lee clock designed for preg-
nancies without complications produced very different 
results, possibly due to the large difference in GDM cases 
(36% in START vs. 4% in CHILD). For example, different 

tissue types might reveal tissue-specific responses, a pla-
cental clock could produce an elevated association with 
maternal exposures vs. offspring outcomes [6], which 
is complementary to existing studies of GA using cord 
blood. We have shown that DNAm clock, while universal 
in its foundational concept, can exhibit specific patterns 
and variations when analyzed across different ethnic 
groups. Factors contributing to these disparities might 
range from genetic backgrounds to varied environmen-
tal and socio-cultural practices that might not be readily 
available, such as alcohol consumption [34, 104] and air 
pollution [105, 106], both are known to alter epigenetics. 
These discrepancies, while enriching our understand-
ing of epigenetic variability between ethnic groups, also 
serve as a clarion call for tailored healthcare and research 
approaches across populations.

In summary, this paper comparatively examined the 
transferability and health implications of epigenetic 
GA and GAA in white European and South Asian birth 
cohorts living in the same country. Two key findings are 
the consistent associations of parity, GDM, and newborn 
sex with epigenetic GA in both South Asian and white 
European cohorts, but with weaker effects observed in 
the South Asian cohort; and the positive association 
between epigenetic GA and newborn ponderal index 
that is exclusive to South Asian newborns. The epige-
netic GA clock presents a promising avenue to bridge 
our understanding of maternal exposures and offspring 
health outcomes, and these differentiating characteris-
tics of associations across the cohorts, enrich this nar-
rative. Further research in the South Asian population, 
both adult and pediatric, is needed to strengthen these 
findings.
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Additional file3 Figure S2. A Venn Diagram for significant CpGs identi-
fied in CHILD, START and Bohlin

Additional file4 Figure S3. Relationship between CpG association 
effect size and heterogeneity of effect. Panel A) shows the scatterplot 
of estimated association effect in CHILD (x-axis) and START (y-axis) for 
CpGs that were significant in the meta-analysis (FDR adjusted p < 0.05) 
that also were heterogenous in their effects (Heterogeneous p < 0.01) 
(#CpG = 108); for the same set of CpGs, Panel B) shows the relationship 
between the absolute difference in beta-values (taken as the mean 
difference of CHILD and START) and the -log10 Wilcox test p-values, 
where Wilcox test p-value > 0.05 corresponded to no evidence for 
difference in distribution of CpG between CHILD and START, and those 
between 0.05 and 1×10–5, 1×10–5 and 1×10–10, and < 1×10–10 as small, 
medium and large difference. Each CpG that had been mapped to 
a gene using the “sesame” annotation package was labeled with the 
corresponding gene. The solid gray line is the best fitted line for the 
linear relationship between the effect sizes and the dashed gray line 
represents the reference of y=x

Additional file5 Figure S4. Distributions and scatterplots of CpGs 
association effect sizes identified in CHILD, START, and Bohlin. Panel A) 
shows the distribution of estimated association effects for CpGs that 
were significant in either CHILD or START (#CpG = 3164); Panel B) is the 
scatterplot of estimated effects in CHILD (x-axis) vs. START (y-axis) for all 
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Additional file6 Figure S5. Distributions of the number of CpGs and 
DMRs. Panel A) shows the distributions of the number of CpGs that 
were in the significant DMRs identified in CHILD and START; Panel B) 
is a scatterplot of the number of DMRs identified in CHILD (x-axis) vs. 
START (y-axis) across the chromosomes. The dashed line represents the 
reference of y=x

Additional file7 Figure S6. Overlap of Significant CpG-Mapped Genes 
with Known Type 2 Diabetes and Gestational Diabetes Genes Identified 
in GWAS Studies. This karyogram illustrates the chromosomal distribu-
tion of previously identified T2D or GDM genes from GWAS catalog in 
the human genome. Each chromosome is represented by a distinct 
bar, with the p-arm on the left and the q-arm on the right. Highlighted 
bands on each chromosome indicate the cytogenetic bands that 

have been stained and the centromeres are highlighted in red. Genes of 
interest are marked with black vertical lines along the chromosomes, with 
only the names of genes that were mapped to CpGs identified in either 
START (red) or CHILD (green) or both (black) annotated to their respective 
locations

Additional file8 Figure S7. Scatterplots of maternal age and DNA methyla-
tion predicted gestational age. Panel A) shows the relationship stratified 
by parity with p-value for each level displayed in the left margin, Panel B) 
shows the overall relationship and the estimated linear model
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