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Abstract 

Background There is an unmet need for precise biomarkers for early non‑invasive breast cancer detection. Here, we 
aimed to identify blood‑based DNA methylation biomarkers that are associated with breast cancer.

Methods DNA methylation profiling was performed for 524 Asian Chinese individuals, comprising 256 breast 
cancer patients and 268 age‑matched healthy controls, using the Infinium MethylationEPIC array. Feature selection 
was applied to 649,688 CpG sites in the training set. Predictive models were built by training three machine learn‑
ing models, with performance evaluated on an independent test set. Enrichment analysis to identify transcription 
factors binding to regions associated with the selected CpG sites and pathway analysis for genes located nearby were 
conducted.

Results A methylation profile comprising 51 CpGs was identified that effectively distinguishes breast cancer patients 
from healthy controls achieving an AUC of 0.823 on an independent test set. Notably, it outperformed all four previ‑
ously reported breast cancer‑associated methylation profiles. Enrichment analysis revealed enrichment of genomic 
loci associated with the binding of immune modulating AP‑1 transcription factors, while pathway analysis of nearby 
genes showed an overrepresentation of immune‑related pathways.

Conclusion This study has identified a breast cancer‑associated methylation profile that is immune‑related to poten‑
tial for early cancer detection.
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Introduction
The earlier breast cancer is detected, the better the treat-
ment outcome [1]. Current technologies of early detec-
tion such as screening mammograms or clinical breast 
examinations still suffer from costly false positives and 
overdiagnoses [2–4]. Blood-based biomarkers of cancer 
show great promise in supplementing or even replacing 
these technologies for early detection: there are already 
commercially available blood-based diagnosis kits for 
various cancers, including breast cancer [5]. Here, we 
focus on peripheral blood DNA methylation, as it is easy 
to collect and process especially relative to cell-free DNA.

However, the search for an accurate peripheral blood 
DNA methylation profile for breast cancer is still far 
from complete [6]. Hitherto many studies on breast 
cancer have examined the 450,000 CpGs profiled by the 
HumanMethylation450 array in large-scale nested case–
control studies [7–10], but to the best of our knowledge 
there have not been any large-scale studies searching the 
850,000 CpGs profiled by the MethylationEPIC array. 
Furthermore, these studies investigate predominantly 
European populations. Since methylation is influenced 
by environment [11–13] and heritable to a certain extent 
[14, 15], it is not clear whether these previously identified 
breast cancer-associated methylation profiles are appli-
cable also in other populations of different ancestries in 
different environments. Finally, while the mechanism 
behind the association between cell-free DNA and vari-
ous cancers is likely via circulating tumor DNA [16], it 
is less clear which mechanisms drive the association of 
certain whole blood methylation profiles—comprising 
mostly of DNA from circulating blood cells—with breast 
cancer.

Herein we present the largest-to-date epigenome-wide 
study of breast cancer-associated methylation profiling 
in an Asian population, to the best of our knowledge. By 
profiling 850,000 CpGs for each breast cancer patient 
or healthy control, we identify a peripheral blood DNA 
methylation profile which can distinguish breast can-
cer patients from healthy controls when used in various 
machine learning algorithms. We benchmark this meth-
ylation profile alongside four breast cancer-associated 
methylation profiles previously identified in predomi-
nantly European populations. Enrichment analyses sug-
gest a link between activated immune cells and this newly 
identified breast cancer peripheral blood DNA methyla-
tion profile.

Methods
Study participants
This study included a total of 524 female subjects of Chi-
nese ethnicity, consisting of 256 breast cancer patients 
(affected) and 268 non-cancer controls (unaffected). The 

clinicopathological characteristics of the patients are 
shown in Table 1. Peripheral blood samples from breast 
cancer patients were collected from multiple sites in 
Singapore, namely the National Cancer Centre Singa-
pore (NCCS), National University Hospital (NUH), Tan 
Tock Seng Hospital (TTSH), and Lucence Diagnostics. 
The unaffected controls were recruited from the Sing-
Health Outram and Bukit Merah Polyclinics (n = 130) 
and KK Women’s and Children’s Hospital in Singapore 
(n = 138). Peripheral blood samples were obtained from 
participants undergoing routine mammogram screen-
ing at SingHealth Polyclinics, all of whom were negative 
for breast cancer. DNA samples from KK Women’s and 
Children’s Hospital were archival samples acquired from 
the DNA Diagnostic and Research Laboratory, which 
originated from the National Thalassemia Registry where 
blood samples were collected to screen for Thalassemia. 
Inclusion criteria for the breast cancer patients were that 
they were Chinese, eligible for genetic testing, and were 
BRCA -negative. Unaffected controls were selected from 
healthy females with no prior history of cancer and were 
individually matched with affected cases based on age 
(± 5 years). The study cohorts were divided into a train-
ing cohort, comprising 179 affected patients and 187 
unaffected controls, and a testing cohort of 77 affected 
cases and 81 unaffected controls. An overview of our 
study design is shown in Fig.  1. Written informed con-
sent was obtained from all participants, and this study 
was approved by the SingHealth Centralized Institutional 
Review Board (CIRB Ref: 2018/2147 and 2018/2874).

DNA extraction
Genomic DNA was extracted from whole blood or buffy 
coat using the QIAamp DNA Blood Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
DNA concentration was determined using QuantiFluor 
dsDNA system (Promega, Madison, WI), and fluores-
cence readings at 504nmEx/531nmEm were measured 
using a 96-well plate reader (TECAN, Austin). DNA 
quality was assessed using a Nanodrop ND-1000 spectro-
photometer (Thermo Scientific).

Epigenomic profiling
The DNA methylation profiles of peripheral blood sam-
ples were analyzed using the Infinium MethylationE-
PIC array (Illumina, San Diego, CA), which provides 
comprehensive coverage of over 850,000 CpG sites. A 
minimum of 600 ng of genomic DNA obtained from 
each participant was sent to Macrogen, Inc (Korea) for 
the EPIC microarray analysis. Genomic DNA was sub-
jected to bisulfite conversion using the EZ DNA meth-
ylation kit (Zymo Research, Irvine, CA). The resulting 
bisulfite-converted DNA was amplified, hybridized 
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onto MethylationEPIC bead chips, and scanned using 
the Illumina iScan scanner, following standard Illumina 
procedures.

Preprocessing
Microarray data were processed using the minfi R/Bio-
conductor package [17]. Probes located near known SNPs 
of any frequency, or probes known to be cross-reactive 
were removed. Then, each sample was normalized 

independently via intra-sample BMIQ normalization 
[18].

Patient-samples that were outliers in the principal 
component analysis (PCA) plot (Additional file 1: Figure 
S1) or in predicted cell-type composition were removed 
(Additional file 1: Figure S2, estimated by the minfi esti-
mateCellCounts function implementing a regression 
calibration approach on the subset of EPIC probes shared 
with the Illumina 450k microarray with default settings 

Table 1 Clinical characteristics of breast cancer patients and non‑cancer controls

a Clinical information for some patients was unavailable from one of the sites of this study due to the Institutional Review Board (IRB) approval obtained
b In some cases, patients have a family history of breast cancer as well as other types of cancer

Characteristics Training set Test set

Cancer (n = 175) Control (n = 187) Cancer (n = 75) Control (n = 81)

Age at breast cancer diagnosis

Median age, years (range) 39 (22–72) 40 (22–72) 39 (19–69) 40 (19–69)

 ≤ 40 111 (63%) 98 (52%) 48 (64%) 43 (53%)

 ≥ 41 64 (37%) 89 (48%) 27 (36%) 38 (47%)

Personal history of breast cancer

Unilateral 164 (94%) n/a 73 (97%) n/a

Bilateral 11 (6%) n/a 2 (3%) n/a

Histology

Ductal carcinoma in situ (DCIS) 13 (7%) n/a 4 (5%) n/a

Infiltrating ductal carcinoma (IDC) 109 (63%) n/a 44 (59%) n/a

Infiltrating lobular carcinoma (ILC) 6 (3%) n/a 3 (4%) n/a

Mucinous carcinoma 4 (2%) n/a 1 (1%) n/a

Medullary carcinoma 1 (1%) n/a 1 (1%) n/a

Invasive micropapillary carcinoma (IMC) 2 (1%) n/a 0 n/a

Invasive carcinoma (NST) 7(4%) n/a 3 (4%) n/a

Others 7 (4%) n/a 5 (7%) n/a

Subtype not  defineda 26 (15%) n/a 14 (19%) n/a

Family history of any cancers (n = 172)

At least first‑degree 82 (47%) n/a 23 (31%) n/a

At least second‑degree 33 (19%) n/a 21 (28%) n/a

Third‑degree 5 (3%) n/a 4 (5%) n/a

Unspecified 3 (2%) n/a 1 (1%) n/a

Family history of breast cancerb (n = 110)

At least first‑degree 55 (31%) n/a 15 (20%) n/a

At least second‑degree 18 (10%) n/a 11 (15%) n/a

Third‑degree 4 (2%) n/a 4 (5%) n/a

Unspecified 3 (2%) n/a 0 n/a

Recorded treatment history (n = 179)

Had surgery 43 (25%) n/a 18 (24%) n/a

Had radiotherapy 20 (11%) n/a 9 (12%) n/a

Had chemotherapy 34 (19%) n/a 15 (20%) n/a

Had hormone therapy 29 (17%) n/a 11 (15%) n/a

Blood storage duration

Median, days 2057 1063 1722 1088

Min–Max, days 292–7327 457–2589 322–7041 457–1582
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[19]). Outliers in PCA were defined as those being three 
interquartile ranges (IQRs) lower than the first quartile, 
or three IQRs above the third quartile; for both PCA1 
and PCA2 axes. Outliers in cell-type composition were 
identified as those with extreme cell-type compositions: 
for example, the complete absence of granulocytes.

Patient-samples were partitioned into training and test-
ing sets in a 70–30 split such that the training and test-
ing sets were matched in both their mean ages and in the 
proportion of affected patient-samples in the training 
or testing set with treatment data. After the removal of 

outliers, there were 175 affected cases and 187 unaffected 
controls in the training set, and 75 affected cases and 81 
unaffected controls in the testing set.

Feature selection
Feature selection was performed strictly on patient-sam-
ples of the training set only, using their BMIQ-normal-
ized methylation M-values.

First, CpG sites which were correlated with duration 
in storage of the DNA sample, or with any treatment 
were removed. Correlation with the duration in storage 

Fig. 1 Overview of this study. The number of CpGs at each step is indicated by “m = …”
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was tested using a regression model as implemented 
by the limma R/Bioconductor package [20], where 
methylation M-values was the outcome, and the log-
transformed duration was the predictor. Any CpG site 
with unadjusted p-value < 0.05 was removed. Likewise, 
treatment correlation was tested in the same manner, 
but with log-transformed time since last treatment 
as the predictor, and each test was repeated for each 
of four treatment types: surgery, chemotherapy, hor-
mone, and radiotherapy. Any CpG site with unadjusted 
p-value < 0.05 in any of the four tests was removed.

Next, CpG sites that were correlated with the 
affected/unaffected condition of the patient-sample 
were selected. Condition-correlation was tested using 
a limma regression model where methylation M-values 
was the outcome, and condition was the predictor. The 
top 30,000 CpG sites, ranked by unadjusted p-values, 
were selected.

Finally, CpG sites undergo boruta feature selection 
followed by simulated annealing with random forest or 
linear support vector machine (SVM) to yield the final 
list of features [21]. Simulated annealing was performed 
using the caret R package [22], optimizing for the area 
under the receiver operating characteristic curve (ROC 
AUC) in a random forest, using tenfold cross-valida-
tion, setting the maximum number of iterations with-
out improvement as 20, initial proportion of features as 
0.8, perturbation p as 0.75, for 512 iterations; all other 
parameters were left at their default values. We did 
not perform simulated annealing with xgbTree as each 
xgbTree iteration took much longer than a random for-
est or linear SVM iteration such that the overall time 
required for simulated annealing with xgbTree was 
unfeasibly large.

To benchmark our methylation profiles, four previous 
articles on breast cancer-associated blood methylation 
were identified from the literature [7–10]. Methylation 
values for CpGs of methylation profiles from these pre-
vious studies were extracted from the BMIQ-normalized 
methylation M-values of our cohort without any CpG-
removing preprocessing steps, in order to maximize 
the number of available CpGs for analysis. Nonetheless, 
though most CpGs from those previous studies were 
also measured in our study, some are missing due to dif-
ferences in the HumanMethylation450 BeadChip used 
by all four previous studies, and the MethylationEPIC 
BeadChip used in our study (Additional file 2: Table S1, 
Additional file  1: Figure S3). Three of the four methyla-
tion profiles comprise only CpGs; though one included 
five “DNA methylation (DNAm) estimators,” each rep-
resenting a single numeric value computed from many 
CpGs, quantifying a phenotype such as age acceleration 
or abundance of monocytes.

DNA methylation estimators
The five DNAm estimators (PhenoAgeAccel, RajAgeAc-
cel, CD8T, Mono, and CD8pCD28nCD45RAn) used in 
one of the methylation profiles from previous studies 
were obtained from the DNA Methylation Age Calcula-
tor [23], accessed 24 May 2023. The DNA methylation 
age (DNAmAge) from the DNA Methylation Age Calcu-
lator was also used to compare the DNA methylation age 
acceleration of affected cases and unaffected controls.

Model training and evaluation
Using caret, the random forest-simulated annealing 
methylation profile and methylation profiles from previ-
ous studies were each used to train a random forest with 
optimal mtry values, or xgbTree with maximum depth of 
six and 1,000 rounds; optimizing for ROC AUC in tenfold 
cross-validation using the training set only. In addition, 
the linear SVM-simulated annealing methylation pro-
file and methylation profiles from previous studies were 
each used to train a linear SVM with grid-tuned cost in 
[0.0001, 0.0002, …, 0.1000], in similar tenfold cross-val-
idation. All other parameters were left to their defaults.

The trained models were then tested and evaluated 
on the testing set. Missing values in the testing set were 
interpolated as the mean methylation value of that CpG 
in the training set.

A two-sided test for Pearson’s correlation coefficient 
on the logit predicted probability of having cancer versus 
the log number of days in storage or number of days since 
last treatment plus one was used to check for the possible 
association of storage duration or treatment effects and 
model performance, respectively (Additional file  1: Fig-
ure S4).

Enrichment analysis
Enrichment analysis of transcription factors that bind to 
the genomic loci of selected CpGs was analyzed using 
the UniBind Enrichment Analysis webtool (https:// unibi 
nd. uio. no/ enric hment/, accessed 19 June 2023) [24]. The 
background set of genomic loci was configured to be 
the set of CpGs after removal of storage-correlated and 
treatment-correlated features. Aggregated p-values were 
computed using unweighted Lancaster p-value aggrega-
tion from the aggregation R package [25], and thereafter, 
q-values for each transcription factor were obtained by 
the qvalue R/Bioconductor package [26] applied on the 
Lancaster-aggregated p-values.

Enrichment analysis of pathways for genes associated 
with select CpGs was analyzed using the GOmeth func-
tion of the missMethyl R/Bioconductor package [27]. The 
background set of CpGs was also configured to be the set 
of CpGs after removal of storage-correlated and treat-
ment-correlated features.

https://unibind.uio.no/enrichment/
https://unibind.uio.no/enrichment/
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Linear regression
For each cell type, a linear regression model was built 
to model that cell type’s estimated proportion as a 
function of CpG methylation from the selected CpGs. 
Using R, the combination of CpGs used in each linear 
model was chosen by bidirectional stepwise optimiza-
tion of the model’s Bayesian information criterion, and 
p-values were adjusted for multiple testing by Benja-
mini–Hochberg correction.

Results
A methylation profile distinguishes breast cancer patients 
from non‑cancer controls
Peripheral blood of 256 ethnic Chinese cancer patients 
recruited from genetic testing clinics and 268 age- 
and ethnicity-matched non-cancer controls (n = 524) 
was profiled for DNA methylation at 866,238 CpGs 
(Table 1). Pre-processing removed 181,575 sites known 
SNPs and then 29,823 sites with cross-reactive probes, 
resulting in 654,840 remaining high-quality CpGs. Six 
outlier patients were removed due to outlying values in 
principle component analysis and estimated cell-type 
composition (Additional file 1: Figures S1 and S2).

Feature selection was performed on a training set 
comprising 175 cancer patients and 187 non-cancer 
controls (n = 362) on BMIQ-normalized M-values, 
beginning with 649,688 CpGs with non-missing val-
ues in all training set patients. Thereafter, storage-cor-
related and treatment-correlated CpGs were removed, 
and the top 30,000 CpGs correlated with cancer were 
selected. Next, boruta feature selection chose 79 CpGs 
which were further finalized to a methylation profile 
comprising 51 CpGs via tenfold cross-validated random 
forest-simulated annealing (Additional file 2: Table S1). 
This final methylation profile of 51 CpGs was used to 
train an xgbTree machine learning algorithm with AUC 
of 0.902 in the training set (Fig. 1).

On an independent testing set of 75 cancer patients 
and 81 non-cancer controls (n = 156), the selected 
methylation profile with xgbTree could distinguish can-
cer patients from healthy controls with 75% sensitivity 
and 78% specificity (AUC = 0.827, Figs.  2 and 3). We 
did not observe any evidence of confounding by treat-
ment for cancer patients nor by the duration for which 
DNA samples were stored prior to methylation profil-
ing (p ≥ 0.064, Additional file  1: Figure S4). The same 
methylation profile trained with a random forest (RF) 
machine learning algorithm did not perform as well as 
the xgbTree, nor did a methylation profile derived from 
linear SVM-simulated annealing paired with a linear 
SVM (LSVM) algorithm (Fig. 2).

Better performance relative to previously identified breast 
cancer methylation profiles
The selected methylation profile of 51 CpGs outper-
formed four other sets of breast cancer methylation pro-
files identified previously in predominantly European 
populations (Fig. 2, Table 2, Additional file 1: Figure S5) 
[7–10], when trained on our training set and tested on 
our testing set of patients. The four previously identified 
methylation profiles were highly heterogeneous in per-
formance, with the worst performing methylation profile 
performing only slightly better than by random chance 
(AUC = 0.525), and best performing methylation profile 
achieving a performance close to the best performing 
profile in this study (best AUC in previous methylation 
profiles = 0.792, best AUC in this study’s methylation 
profiles = 0.827) (Fig. 2).

Despite all four previous methylation profiles using the 
same HumanMethylation450 array, and the extensive 
overlap of HumanMethylation450 CpGs and the Methyl-
ationEPIC array used in this study, the specific CpG sites 
within the methylation profiles never overlapped with 
each other, except in expected cases where they were 
derived from similar feature selection steps by the same 
research group (Additional file  1: Figure S3). Predictive 
performance was stratified predominantly by methyla-
tion profile rather than the predictive model being used 
(Fig. 2). Limiting the testing set to only patients with no 
recorded history of any treatment, the selected methyla-
tion profile still outperforms the others (Additional file 1: 
Figure S6).

Enrichment of immune‑related transcription factors 
and pathways
In order to gain biological insight into the selected meth-
ylation profile of 51 CpGs, we tested for the enrichment 
of transcription factors binding to the genomic loci of 
those 51 CpGs by performing meta-analysis across the 
multiple transcription factor–DNA binding datasets 
for the human cell lines of the UniBind database [24]. 
After controlling for false discoveries, we identified 
three enriched transcription factors all from the AP-1 
transcription family which function as regulators of the 
immune system: JUND, BATF3, and FOS [28]. Likewise, 
enrichment analysis of the functional pathways rep-
resented by genes in close proximity with the selected 
methylation profile of 51 CpGs identified an enrichment 
of immune-related pathways related to IL-12, IL-21,  Th17 
cell lineage commitment, and NK cell activation in the 
list of top ten enriched pathways (Table  3). There was 
no difference in the DNA methylation age acceleration 
of cancer patients and non-cancer controls (Additional 
file 1: Figure S7).
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Discussion
In this study, we have identified a breast cancer-asso-
ciated methylation profile comprising 51 CpGs from 
Asian patients. In a machine learning algorithm, this 
methylation profile can distinguish Asian breast can-
cer cases from healthy controls better than previously 
reported breast cancer-associated methylation pro-
files. Enrichment analyses of transcription factor–DNA 
binding and functional pathways of genes associated 
with the 51 CpGs both suggest that the host immune 
response against cancer may play a role in driving the 
difference between methylation profiles of breast can-
cer cases and healthy controls.

Whereas the search for breast cancer-associated meth-
ylation profiles in peripheral blood DNA has mostly been 
targeted at cancer genes [6, 29, 30], our results suggest 
that the inclusion of DNA methylation of immune-related 
genes or pathways could improve the performance of 
peripheral blood screening for breast cancer. Our results 
saw an enrichment of IL-12, IL-21,  Th17 cell lineage 
commitment, and NK cell activation pathways: Natu-
ral killer cells recognize and cytolyze tumor cells during 
normal immunosurveillance or as part of the immune 
response to tumors [31]. The potency of these NK cells 
is enhanced by both IL-12 and IL-21 [32, 33].  Th17 cells 
are a rare subset of T helper cells whose role in the tumor 

Fig. 2 Predictive performance of each methylation profile paired with each algorithm when tested in an independent testing set, 
for the methylation profile from this study and profiles from four previous studies
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Fig. 3 Heatmap of 51 CpGs in the selected methylation profile for unaffected and affected patients of the training set and of the testing set

Table 2 Four previous studies of breast cancer‑associated blood methylation used for benchmarking

orig., the original number of CpGs reported in that study; unavail., the number of CpGs in the originally reported list of CpGs which were not measured in this 
study due to differences in microarrays used; Pre-dx, blood was drawn before cancer diagnosis; Pre-tx, blood was drawn before cancer treatment; DNAm est., DNA 
methylation estimators from the DNA Methylation Age Calculator, each representing a single estimated quantity computed from many individual CpGs, such as DNA 
methylation age acceleration

First author (year) Features (orig. − unavail. here) Cohort size 
(cases + controls)

Cohort country of origin Pre‑dx Pre‑tx

Yang 2019 450 − 26 CpGs 124,572 + 106,857 USA Yes Yes

Kresovich 2021 19 − 0 CpGs, 5 DNAm est 1090 + 851 United States, Italy Yes Yes

Xu 2020 72 − 4 CpGs 1371 + 1401 United States, Italy Yes Yes

Joo 2018 24 − 3 CpGs 87 + 123 Australia Mixed Unknown
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microenvironment is context-dependent and not yet 
well understood [34], though they have been observed 
to secrete IL-21 [35]. Conversely, IL-12 stimulates the 
expansion of  Th17 cells [36]. Concurrently, there was an 
enrichment of transcription factors from the multifunc-
tional AP-1 transcription factor family, which has roles in 
different aspects of the immune system including in the 
immune response against cancer [28]. In mice, knock-
out of BATF3 results in more metastases in a NK cell-
dependent manner [37] and regulates the activity of  Th17 
through IL-12 production though this regulation was not 
demonstrated in the context of cancer [38]. Furthermore, 
we found that the estimated cell-type proportions of the 
samples could be predicted using the 51 CpGs of the 
selected methylation profile (Additional file 2: Table S2). 
All these suggest that the DNA methylation profile iden-
tified in this study reflects the host immune response 
against cancer, to such an extent that it can distinguish 
breast cancer cases from healthy controls.

The selected methylation profile identified here, with 
an AUC of 0.823, outperforms four others previously 
identified in the literature [7–10]. We note that the 
improvement in performance is modest when compared 
to the best previous study (AUC = 0.792) [9], despite 
this study utilizing almost twice as many CpGs on the 
MethylationEPIC array. This could suggest that further 

improvements in CpGs coverage are not as important as 
developing better algorithms or incorporating additional 
modalities of data. Furthermore, the best performing 
previously reported breast cancer-associated methylation 
profile was trained on a predominantly European popula-
tion [9] yet performed reasonably well in our cohort of 
Asian patients. This suggests that methylation biomark-
ers can be generalized from one population to another 
within reason, though further study is required to char-
acterize the extent of loss of performance. 

The lack of replication among CpG sites identified in 
previous studies as well as in our own may stem from var-
ious factors, including methodological disparities in sam-
ple processing, data analysis, and statistical approaches, 
as well as differences in study designs and sample char-
acteristics, such as population demographics. Heteroge-
neity in genetic backgrounds or environmental exposures 
could also contribute to these discrepancies. Given the 
low reproducibility observed in epigenome-wide asso-
ciation studies (EWAS), it is essential to perform single-
assay validation, such as pyrosequencing, quantitative 
methylation-specific PCR, and other complementary 
techniques, to independently confirm the findings of 
EWAS. These validation efforts serve to enhance the 
robustness and reliability of the identified CpG sites and 
their associations with breast cancer.

Table 3 Enrichment analysis for the selected methylation profile of 51 CpGs

Transcription factor enrichment analysis (showing aggregated q‑value < 0.05)

Transcription factor Negative log10 p‑values Aggregated p‑value Aggregated 
q‑value

JUND 1.46e‑05 0.00391

BATF3 2.41e‑04 0.03235

FOS 4.14e‑04 0.03700

Pathway enrichment analysis (showing top 10 enriched pathways)

Pathway p‑values Genes in 51 CpGs 
(number of genes in 
pathway)

Positive regulation of interleukin‑12 production 0.00057 IL23A, MAPK11 (41)

Interleukin‑21‑mediated signaling pathway 0.00096 IL21R (1)

Response to interleukin‑21 0.00096 IL21R (1)

Cellular response to interleukin‑21 0.00096 IL21R (1)

Interleukin‑12 production 0.00135 IL23A, MAPK11 (61)

Regulation of interleukin‑12 production 0.00135 IL23A, MAPK11 (61)

Positive regulation of T helper 17 cell lineage commitment 0.00162 IL23A (4)

Regulation of defense response to virus 0.00261 IL23A, CCDC92 (73)

Natural killer cell activation 0.00263 IL21R, IL23A (74)

Protein initiator methionine removal involved in protein maturation 0.00271 METAP2 (2)
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Our study is limited due to possible confounding 
from storage duration or treatment effects. However, 
we have tried to alleviate these effects in feature selec-
tion by removing storage-correlated and treatment-cor-
related CpGs. Indeed, we have shown that the predictive 
model is not associated with any of these confounders. 
It should be noted as well that a minority of CpGs of 
previously identified breast cancer-associated methyla-
tion profiles were not included in the benchmark as they 
are not covered in the MethylationEPIC array (Table 2). 
Additionally, using an orthogonal method to verify the 
immune-related DNA methylation profile would have 
been desirable, but this was not possible due to insuffi-
cient blood samples. To establish the specificity of these 
markers in a screening population, it will be crucial to 
assess the identified methylation profile in larger breast 
cohorts and in patients with other cancer types. Finally, 
the patients in our cohort were recruited from various 
genetic testing clinics such that all had either early-onset 
and/or a family history of breast cancer, so the applicabil-
ity of these results to early detection of sporadic breast 
cancer should be taken with care.

Conclusions
The development of an accurate blood-based biomarker 
assay for early detection of breast cancer has the poten-
tial to drastically reduce the costs associated with false 
positives and overdiagnosis in current screening pro-
grams, and more importantly overall breast cancer mor-
tality. To that effect, we have identified a whole blood 
methylation profile with better predictive performance 
in benchmark against previously identified methylation 
profiles. Furthermore, we provide evidence for a plausible 
mechanism in the immune response against cancer as the 
driver behind the association of whole blood-methylation 
profiles and breast cancer.
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