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Abstract 

Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients 
with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired 
systolic function in the late stages. Accumulating researches have revealed the association between DCM and various 
epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other 
epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been 
broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic 
strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. 
We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM 
diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.
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Introduction
According to the International Diabetes Federation, the 
population with diabetes is estimated to reach 600 mil-
lion by 2045 [1], posing a critical threat to the health 
and safety of individuals and causing a heavy burden on 
medical care worldwide. Patients with diabetes primarily 
develop cardiovascular complications, which are the pri-
mary contributors to mortality. Diabetic cardiomyopathy 
(DCM), defined by Rubler et al. in 1972 [2], is a clinical 
condition caused by abnormal glycolipid metabolism that 
develops into heart failure without coronary heart dis-
ease, hypertension, or valvular disease [3]. As a typical 

metabolic cardiomyopathy, it includes the early subclini-
cal period, which manifests as diastolic dysfunction, char-
acterized by cardiac hypertrophy and myocardial fibrosis, 
and evolves to systolic dysfunction accompanied by heart 
failure with reduced ejection fraction [4]. Emerging stud-
ies have shown that patients with diabetes have a three 
to five times greater risk of adverse cardiovascular events 
than those without the disease [5]. Unfortunately, there 
are no specific drugs targeting the pathological mecha-
nism of DCM.

Continuous impairment and cascade reactions induced 
by hyperglycemia and insulin resistance cause irreversible 
cardiac damage owing to a combination of genetic and 
environmental factors [6]. Researchers have attempted 
to elucidate the underlying mechanisms of DCM, which 
are usually treated as determinants of uncontrollable 
persistent pathological changes, such as aberrant hyper-
glycemia, insulin resistance, excessive oxidative stress, 
inflammatory response, and mitochondrial dysfunction 
[7–9]. However, the pathological mechanisms involved 
in the pathophysiology of DCM have not yet been fully 
elucidated.

Epigenetics is a heritable and invertible pattern without 
alterations in the DNA sequence and is closely related to 
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environmental stimulations [10]. When first proposed 
by Waddington in 1942 [11], it had attracted researchers 
and has been applied to elucidate the underlying patho-
physiological processes. Epigenetics has expanded the 
understanding of the fundamental pathological changes 
in biological development. Several studies have con-
firmed that epigenetic regulation is involved in the devel-
opment of various diseases, particularly cardiovascular 
diseases. Given the genetic and environmental factors 
involved in the progression of DCM, we believe that fully 
elucidating the mechanisms underlying the pathogen-
esis of DCM based on epigenetic regulation will provide 
strong support for exploring effective therapeutic drugs. 
Recently, an increasing number of epigenetic regulatory 
mechanisms have been investigated with the develop-
ment of sequencing technology. In this review, we focus 
on the advanced epigenetic progress in DCM to provide 
scientific and theoretical support for identifying novel 
potential intervention targets for clinical translation.

Overview of epigenetics
Epigenetic regulation serves as a bridge between the 
environment and heritable disease phenotypes. The fun-
damental modes of epigenetic regulation can be classified 
into three types: DNA methylation, histone modification, 
and non-coding RNA (Fig. 1).

DNA methylation
DNA methylation was the earliest well-studied pattern of 
epigenetic modification in the 1960s [12], typically occur-
ring on the fifth carbon atom of cytosine (5mC). DNA 
modification is associated with many cellular biological 
processes, such as transcriptional regulation, genomic 
imprinting, and X-chromosome inactivation.

The effects of DNA methylation on gene activity pri-
marily depend on different genomic regions, including 
CpG islands, intergenic regions, and genomic regions. 
Genome-wide analysis has shown that CpG islands are 
present in 60% of the promoter regions of the human 
genome [13], suggesting that dynamic changes in DNA 
methylation influence gene transcription and may play 
a role in growth and development. Hypermethylation at 
the CpG island recruits repressive methyl-modulating 
factors and contributes to maintaining heterochromatin 
status. Therefore, DNA methylation inhibits gene expres-
sion. Similarly, in the intergenic regions, the expression 
of non-coding gene elements is negatively correlated 
with DNA methylation [14]. However, a few studies have 
shown that a high level of DNA methylation in the gene 
is associated with increased gene expression [15].

The status of total DNA methylation is regulated by 
three regulators: reader, writer, and eraser, which identi-
fies, catalyzes, and removes, respectively. Transcription 

factors with sequence-dependent mCpG-binding activ-
ity bind to specific sequences, initiating the methyla-
tion process [16]. The production and maintenance of 
DNA methylation highly depend on three DNA methyl-
transferases (DNMTs) with different functions: Dnmt1, 
Dnmt3a, and Dnmt3b. Dnmt3a and Dnmt3b catalyze 
the unmodified DNA chain and mediate de novo meth-
ylation, whereas Dnmt1 participates in DNA replication 
and repair by methylating hemimethylated DNA [17, 
18]. Removal of DNA methylation is mediated by the 
ten-eleven translocation (TET) enzyme families, includ-
ing tet1, tet2, and tet3. The Dnmt and Tet families are 
closely associated with multiple cardiovascular diseases 
under various pathological conditions and environmental 
stress [19]. Dnmt3a/3b protein levels in the myocardium 
are reduced during the development from fetal to adult 
stages but are reactivated in transverse aortic constric-
tion-induced cardiac hypertrophy due to increased CpG 
methylation in the myh6 promoter region [20]. CRISPR-
Cas9-mediated Dnmt3a knockout in mice was found to 
aggravate severe cardiac dysfunction and fibrosis, and 
Dnmt1 participated in anti-apoptotic signaling pathways 
by regulating cardiac-specific gene methylation in the 
promoter [21]. Erasers such as tets promote cardiomyo-
cyte differentiation at the cardiac progenitor stage during 
mouse and human cardiac development by deactivating 
the Wnt signaling pathway [22, 23].

Histone modifications
A vast amount of genetic information can be preserved 
and precisely regulated by the folded and supercoiled 
chromatin structures in cells. Nucleosomes contain five 
types of conserved histones (H1, H2A, H2B, H3, and 
H4) and spiral DNA of approximately 146  bp, which is 
the basic structure of eukaryotic chromatin. Various 
post-translational modifications, such as acetylation, 
methylation, phosphorylation, ubiquitination, phase 
polymerization, and ADP ribosylation, occur at the tail 
or acid pocket of histones, particularly of H3 and H4, 
which regulate gene expression by altering chromatin 
accessibility.

The modulating patterns of histone modifications are 
classified as activating and inhibitory histone modifica-
tions according to the regulatory effects of the process 
on gene expression. Lysine acetylation is usually asso-
ciated with gene activation, particularly at histone H3 
lysine 27. Histone H3 lysine 27 acetylation (H3K27ac) 
significantly loosens the folded and supercoiled structure 
of chromatin, which is beneficial for recruiting various 
transcription factors and coactivators to gene promoters, 
enhancing gene transcription [24, 25]. Owing to its sig-
nificant effect on enhancing gene transcription, H3K27ac 
is considered a molecular marker of super-enhancers. 
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Trimethylated histone H3 at lysine 27 (H3K27me3) 
is a typical repressive histone modification that com-
presses the chromatin to suppress gene transcription. 
The dynamic balance between the two types of histone 

modifications in chromatin determines disease progres-
sion. Professor C. David Allis proposed the histone code 
hypothesis, which states that the crosstalk between dif-
ferent histone modifications amplifies gene-modulating 

Fig. 1 Diagrammatic representation of three main epigenetic models. The gene expression could be modulated at multiple levels, 
including histone modifications, DNA methylation, and non-coding RNAs. Briefly, the histone post-translational modifications are categorized 
as two types. Repressive histone modifications including H3K27me3 and H3K9me3 mainly distributed in the heterochromatin region, 
where the chromatin structure is tight. Active histone modifications are divided into H3K4me1, H3K4me3, and H3K27ac. They are mainly 
distributed in the autochromatin region, which is more conducive to the gene transcription. DNA methylation on CpG islands plays different roles 
in gene expression depending on the number of methyl as well as the modification sites. Various non-coding RNAs generated by transcription 
of non-coding regions also regulate gene expression in the nucleus or cytoplasm at transcriptional or post-transcriptional levels
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signals, leading to a greater effect on the chromatin struc-
ture of target genes. This has gained increasing attention 
from researchers.

Notably, multiple crucial molecules combine to main-
tain a balance in the regulatory network of histone modi-
fications. For lysine acetylation, histone acetyltransferases 
(HATs) and histone deacetylases (HDACs) catalyze the 
acetylation and deacetylation of phosphorylated RNA Pol 
II, respectively [26]. Various studies have indicated those 
both are critical in cardiac pathological processes, such 
as myocardial hypertrophy, cardiac fibrosis, endothelial 
hyperplasia, and smooth muscle cell migration [27–32]. 
Bromodomain protein 4 (BRD4) is a well-known member 
of the bromodomain and extra-terminal domain (BET) 
family. As a vital transcriptional activator and regulator, 
BRD4 specifically recognizes histone acetylation sites via 
its bromine domain, recruits many transcription com-
plexes, and promotes acetylation [32].

Given the central role of BRD4 in gene activation in 
tumors and heart failure, researchers have attempted to 
develop its inhibitors and targets, such as JQ1, which has 
been widely used in basic research and clinical trials. Sim-
ilarly, for lysine methylation, there are numerous types 
of histone methyltransferases and demethylases (KDM 
family, comprising the LSD family with flavin adenine 
dinucleotide-dependent monoamine oxidases (MAO) 
and another family with Fe- (II) and α-ketoglutarate-
dependent dioxygenases), to maintain chromatin home-
ostasis. Disruptor of telomeric silencing 1-like has been 
reported to regulate H3K79me2 of core transcription fac-
tors-nuclear factor kappa-B (Nf-κB), mediating inflam-
mation in atherosclerosis development [33]. The widely 
studied methyltransferase, enhancer of zeste homolog 2 
(EZH2, the subunit of multi-comb inhibitory complex 2 
[PRC2]), whose inhibitors have been used in tumor ther-
apy, participates in gene expression silencing by catalyz-
ing H3K27me3 [34]. In addition, the switch from EZH2 
to EZH1 reportedly mediates cardiac regeneration [35].

Non‑coding RNAs
Even with the rapid development of high-throughput 
technology, scientists were surprised to discover that less 
than 2% of transcripts have protein-encoding potential in 
the human genome [36]. Several non-coding RNAs (ncR-
NAs) are considered to be gene-expressive noise and par-
ticipate in regulating gene expression.

ncRNAs are usually classified into long non-coding 
RNA (lncRNAs) and small non-coding RNAs accord-
ing to their sequence length. lncRNAs are long ncR-
NAs with lengths of > 200 nt, some of which can encode 
short peptides. They are less conserved across species 
and are highly cell-type-specific. Their functions are 
complex and are associated with their location. Diverse 

modulation models have been reviewed by Mendell 
et  al. [37]. Nuclear lncRNAs are involved in many pro-
cesses, such as chromatin dynamics and RNA splicing, by 
recruiting transcription factors or binding to transcrip-
tional regulatory complexes, whereas cytoplasmic lncR-
NAs act as scaffolds for chromatin remodeling complex 
combinations or microRNA (miRNA) sponges to par-
ticipate in mRNA transport and protein stability. Small 
non-coding RNAs can be further classified as miRNAs, 
circularRNAs, tRNA-derived small RNAs, and PIWI-
interacting RNAs. Unlike lncRNAs, small non-coding 
RNAs are relatively conserved. miRNAs recruit miRNA-
induced silencing complexes (MiRISCs) and bind to the 
3’ untranslated region (UTR) of their target genes, inhib-
iting gene translation. Similarly, nuclear miRNAs modu-
late target genes at the transcriptional level by binding to 
the promoters of the target gene.

Epigenetic regulation modes do not exist indepen-
dently; they rather have interrelated influences, forming 
a complex regulatory network that collectively main-
tains the epigenetic regulatory homeostasis of genes. For 
example, a typical lncRNA-Hotair has been investigated 
to be related to multiple cardiovascular diseases. A pre-
vious study showed that Hotair could recruit the histone 
modification writer PRC2, affecting cell proliferation, 
differentiation, and metabolism by changing chromatin 
structure [38]. In addition, Hotair could bind to miRNA 
331-3p as a competitive endogenous RNA and participate 
in tumor metastasis [39]. The scope of miRNA regulation 
is broad, given that small molecules and more than 30% 
of genes in the human genome are targeted and regulated 
by miRNAs. Multiple studies have shown that miRNAs 
target genes that encode histone-modifying enzymes, 
such as HDAC, DNMT, and EZH, thus highlighting the 
relationship among ncRNAs, DNA methylation, and his-
tone modification [40, 41].

Epigenetic regulation in DCM
As a metabolic disease, DCM is susceptible to environ-
mental factors, such as glycolipid homeostasis which 
vastly influences epigenetic states. Therefore, it is likely 
that epigenetic regulation plays a critical role in DCM. 
Based on the current researches, we describe the role of 
epigenetic regulations in DCM and provide new insights 
into the pathogenesis and treatment of DCM.

DNA methylation in DCM
DNA methylation is highly related to diabetic status and 
is crucial in vital pathological processes in DCM [42]. 
Various signaling pathways are activated under differ-
ent levels of methylation, which occurs in the promoter 
regions of multiple metabolic genes.
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JunD is a member of the AP-1 transcription factor 
family that is involved in cardiac aging, angiogenesis, 
and metabolic processes [43, 44]. Hussain et  al. found 
that JunD expression was reduced in the heart tissues 
of patients with diabetes and DCM mice [45]. Cardiac-
specific JunD overexpression ameliorated cardiac dys-
function by mitigating oxidative stress, inflammatory 
responses, and cardiac impairment in DCM. Various epi-
genetic modifications regulate JunD expression. Quan-
titative polymerase chain reaction was used to confirm 
that methylation of the JunD promoter region was up-
regulated in diabetic hearts. Furthermore, DNA methyl-
ation-induced repressive epigenetic modifications, such 
as H3K9me3 and multiple endocrine neoplasia 1, were 
up-regulated. These results indicated that hyperglyce-
mia-induced hypermethylation of the JunD promoter 
compressed the chromatin structure and inhibited JunD 
transcription.

Calcium imbalance is a pathological mechanism of 
DCM. As a transmembrane transporter, sarcoplasmic/
endoplasmic reticulum  Ca2+ ATPase 2a (SERCA2a) is 
primarily distributed in cardiomyocytes and assists in 
transferring  Ca2+ ions from the cytoplasm to sarcoplas-
mic reticulum, thereby maintaining calcium homeostasis 
in cardiomyocytes. Studies have shown that it signifi-
cantly affects the development of various diabetic com-
plications, particularly DCM [46, 47]. An early study 
showed that the methylation level of the SERCA2a 
promoter region was enhanced under tumor necrosis 
factor-alpha stimulation, and reduction of SERCA2a 
exacerbated calcium imbalance and oxidative stress in 
cardiomyocytes.

Glutathione peroxidase 1 (GPX1) is an antioxidant 
enzyme involved in DCM development; it reduces the 
production of reactive oxygen species (ROS) in cardio-
myocytes and improves insulin resistance [48]. Given 
that DNMTs are associated with glycolipid and energy 
metabolism, several researchers have investigated their 
roles in DCM [49–51]. Many advanced glycation end 
products are produced in diabetic environments, which 
promote the methylation of the GPX1 promoter region, 
thereby aggravating oxidative stress and apoptosis in 
cardiomyocytes. Zhu et  al. identified the exact enzyme 
that mediates the methylation process and found that 
DNMT2 is crucial in GPX1 expression [50]. Dnmt1, 
Dnmt3a, and Dnmt3b expression levels are downregu-
lated in Akita diabetes. The suppressor of cytokine sign-
aling (SOCS)1/3 promoter methylation is increased, and 
SOCS1/3 activates the JAK-STAT signaling pathway in 
hepatocytes and stimulates the transcription of insulin-
like growth factor 1, which mediates oxidative stress in 
diabetic cardiomyocytes [52]. In addition, the renin–
angiotensin–aldosterone system is overactivated during 

the development of DCM, inducing ventricular hyper-
trophy and remodeling. Studies have shown that the gene 
expression of angiotensin receptor 1b highly depends 
on the methylation level of its promoter [53]. Hypoxia-
inducible factor methylation is associated with glucose 
metabolism and insulin sensitivity, which are the primary 
factors involved in DCM development. In a recent case–
control study, HIF-3A levels decreased in the periph-
eral blood of patients with DCM [54]. Moreover, HIF3a 
mRNA expression and the intron 1 methylation rate were 
negatively correlated.

Histone modifications in DCM
Histone acetylation is involved in the pathogenesis of 
coronary artery disease, hypertension, arrhythmia, and 
heart failure and is the most studied form of histone 
modification in DCM [55].

Nicotinamide adenine dinucleotide (NAD +) -depend-
ent sirtuin is a highly conserved class III deacetylase that 
targets the covalent modification of lysine at specific 
histone sites, exerts its epigenetic regulatory role, and 
acts as a transcription factor to modulate gene expres-
sion, thereby participating in various pathological pro-
cesses of DCM, such as oxidative stress, inflammation, 
cell differentiation, mitochondrial metabolism [56–58]. 
Palomer et  al. [59] reviewed the multiple functions of 
SIRT in DCM pathophysiology. A recent study indi-
cated SIRT3 could mediate mitochondrial translation 
and protest against diabetes-induced cardiac dysfunction 
by reducing Ago2 malonylation from a new perspective 
[60]. Chen et al. found that HDAC inhibition attenuated 
cardiac hypertrophy and interstitial fibrosis in a strep-
tozotocin (STZ)-induced diabetic model by increasing 
acetylated GLUT1 and phosphorylated p38 expression 
[61]. Additionally, HDAC inhibition reportedly had a car-
dioprotective effect within a short period of hyperglyce-
mia treatment. Furthermore, Xu et al. found that HDAC3 
appeared to be the most effective subtype [62]. In this 
study, the cardiac function of DCM mice treated with 
the specific HDAC3 inhibitor, RGFP966, was better than 
that of those treated with the pan-HDAC inhibitor, valp-
roic acid. Previous studies indicated that diabetes results 
in impaired proliferation and reprogramming of cardiac-
specific mesenchymal cells. Global histone code profiling 
of cardiac mesenchymal stem cells from patients with 
diabetes was performed to analyze epigenetic alterations, 
and the results indicated that H3K9Ac and H3K14Ac 
levels were decreased, while H3K9me3 and H3K27me3 
levels were increased. Similarly, levels of some cardiac 
epigenetic enzymes, such as histone demethylase jmjd3, 
acetylase GCN5, and HAT activator SPV106, were sig-
nificantly altered under diabetic conditions. These results 
indicated that epigenetic modifications of histones and 
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chromatin remodeling are involved in diabetes-associ-
ated cardiac mesenchymal cell reprogramming [63, 64]. 
Endothelial progenitor cell-derived extracellular vesi-
cles initiate cardiac repair mechanisms after myocardial 
infarction. However, Huang et  al. found that reparative 
function was impaired in patients with diabetes and 
mice, suggesting that hyperglycemia aggravates cardiac 
dysfunction induced by ischemia–reperfusion injury 
[65]. Further exploration showed that endothelial gene 
transcription was inhibited by HDAC under diabetic 
conditions.

In addition to epigenetic modifier enzymes, some tran-
scriptional regulators are reportedly involved in the pro-
gress of DCM (Fig. 2). Studies have shown that BRD4 is 
closely associated with metabolic diseases [66]. BRD4 
binds to the promoters of multiple metabolic genes and 
regulates cardiac fibrosis and oxidative phosphorylation 
[67]. The activated NF-κB signaling pathway is an essen-
tial inflammation reflection pathway in DCM. BRD4 acts 
as a transcriptional coactivator of p65 to mediate NF-κB-
induced gene transcription in β-cells [68].

Histone lactation is a novel epigenetic reprogram-
ming pattern discovered and proposed by Zhao et al. in 
2019 [69]. Lactic acid was found to act as a precursor 
to lactylate histones and not just as an energy substrate. 
Accumulating evidence indicates that histone lysine lac-
tylation mediates various pathological progressions in 
cardiac disease, such as early repair of post-myocardial 
infarction and mitochondrial pyruvate carrier [70–72]. 
A recent study showed that α-myosin heavy chain 
(α-MHC) K1897 lactylation was significantly reduced in 
AngII-induced heart failure mice owing to decreased lac-
tation [73]. The mutation on specific lactylate sites led to 
a weaker α-MHC–titin interaction and induced cardiac 
dysfunction. Furthermore, the formation and decomposi-
tion of histone lactylation are mediated by acyltransferase 
p300 and delactylase SIRT1, respectively. A recent study 
also demonstrated that deacetylase HDAC1-3 is involved 
in eliminating histone lactylation [74]. These results 
suggest a potential association between lactylation and 
cardiac metabolism and a crosstalk between different his-
tone modifications. Studies on the role of histone lacta-
tion in the progression of DCM remain limited; however, 

it is worth anticipating that a potential epimetabolic code 
based on glycolytic products is a promising prospect.

ncRNAs in DCM
lncRNAs in DCM
The inflammatory response is considered an exacerbat-
ing factor in DCM development, which contributes to 
oxidative stress and apoptosis (Table  1) [75]. Nucleo-
tide-binding and oligomerization domain (NOD)-like 
receptor thermal protein domain-associated protein 3 
(NLRP3) is a cytosolic immune factor that assembles 
signaling complexes under various pathological condi-
tions, such as metabolic abnormalities, mitochondrial 
dysfunction, aging, and environmental factors, mediating 
the activation of inflammatory reactions and cell death 
[76, 77]. NLRP3 can be activated upon hyperglycemia 
and hyperlipidemia stimulation and promotes the gen-
eration of pro-inflammatory factors, such as interleukin 
(IL)-1β, IL-6, and IL-18. Activated inflammatory fac-
tors induce apoptosis and pyroptosis, which aggravate 
the progression of DCM. Meng et al. found that lncRNA 
TINCR was significantly up-regulated in an STZ-induced 
DCM rat model, promoted cardiomyocyte pyroptosis, 
and aggravated cardiac dysfunction [78]. They further 
found that TINCR interacted with NLRP3 and stabilized 
NLRP3 mRNA, thereby accelerating the initiation and 
progression of DCM. lncRNA MALAT1-NLRP3 axis 
reportedly participated in various diabetic complica-
tions. In diabetic hearts, increased MALAT1 expression 
was found to aggravate cardiac pyroptosis and fibrosis. 
A previous study indicated that the protective effect of 
pomegranate peel extract on DCM relied on NLRP3/
caspase-1/IL1β signaling pathway inhibition via the 
repression of MALAT1 expression. This suggested that 
MALAT1 could be a novel therapeutic target for DCM 
[79]. Another important lncRNA, GAS5, has been identi-
fied to be associated with metabolic disease by regulat-
ing NLRP3 [80]. The expression of GAS5 was reduced 
in high-fat diet-fed mice and involved in nonalcoholic 
fatty liver disease via NLRP3-mediated pyroptosis. In a 
study by Xu et  al., lncRNA GAS5 expression decreased 
in STZ-induced DCM mouse hearts and high glucose-
treated HL-1 cells. Moreover, downregulation of GAS5 

(See figure on next page.)
Fig. 2 Dynamics of non-coding RNAs interacting with histone modification in diabetic cardiomyopathy. Complex epigenetic crosstalk contributes 
to the progress of diabetic cardiomyopathy under the condition of hyperglycemia and hyperlipidemia. lncRNA DACH1 binds to deacetylase 
SIRT3, accelerating its ubiquitination-dependent degradation. However, lncRNA Hotair interacts with FUS and stabilize SIRT3 indirectly. The 
transcription of another deacetylase, SIRT1 is regulated by various miRNAs. miR-22, miR34a, and miR195 could bind to the 3’UTR region of sirt1 
mRNA. In addition, MALAT recruits EZH which hold the methyltransferase activity, inhibiting miR-22 transcription by reducing H3K27me3. BRD4 
as a coactivator of p65 identifies and activates inflammatory genes, playing a crucial role in inflammation and oxidative stress. With the combination 
of genetic and epigenetic factors, characteristic pathological changes such as hypertrophy, fibrosis, and apoptosis occur in the heart, resulting 
in diabetic cardiomyopathy ultimately
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Fig. 2 (See legend on previous page.)
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Table 1 lncRNAs associated with diabetic cardiomyopathy

Name Experimental 
animals

Expression Pathological process Mechanism References

DCRF Rat Up Autophagy and myocardial fibrosis Sponging mir-551b-5p to increase 
pcdh17 expression

[110]

DACH1 Mouse Up Mitochondria, oxidative stress, cell apop-
tosis, fibrosis and hypertrophy

Binding to sirtuin3 and promoting 
sirtuin3 degradation

[111]

TINCR Rat Up Pyroptosis Promoting the expression of nlrp3 by sus-
taining mrna stability

[78]

Kcnq1ot1 Mouse Up Fibrosis and pyroptosis Regulate the expression of caspase-1 
by sponging mir-214-3p

[82]

Mouse Up Apoptosis and inflammation Sponging mir-181a-5p and increasing 
pdcd4 expression

[112]

ZNF593-AS Mouse Down Apoptosis and inflammation Interacted with irf3 and suppressing fatty 
acid-induced phosphorylation

[113]

MALAT1 Rats Up pyroptosis and fibrosis – [79]

Rats Up inflammation – [114]

Rat Up Cell scorch death Inhibiting nlrp3 expression [115]

Mouse Up Apoptosis Recruiting ezh2 to the mir-22 promoter 
region

[116]

Rat Up apoptosis / [117]

Airn Mouse Down Cardiac fibrosis Binding to imp2 and preventing its 
degradation

[118]

ZFAS1 Mouse Up Ferroptosis and apoptosis Sponges miR-150-5p to inhibit CCND2 
expression

[119]

H19 Rat Up Oxidative stress, inflammation and apop-
tosis

Increasing miR-675 expression and fur-
ther reduce VDAC1

[87]

Rat Up Apoptosis Inducing miR-29c expression and pro-
moting MAPK13

[88]

GAS5 Mouse Down Inflammation and pyroptosis Sponging miR-34b-3p and suppressing 
NLRP3 inflammasome activation-medi-
ated pyroptosis

[81]

– Down Apoptosis Sponging miR-320-3p to modulate 
the apoptosis of NMC

[120]

Rat Down Autophagy Sponging miR-221-3p to upregulate p27 [121]

Rat Down Proliferation and apoptosis Targeting miR-138 to down-regulate 
CYP11B2 and attenuating cardiomyocyte 
injury

[122]

HOTAIR – Down Pyroptosis and inflammation Recruiting FUS to regulate SIRT3 expres-
sion

[85]

Mouse Down Oxidative stress and inflammation Sponging miR-34a to regulate SIRT1 [86]

TINCR – Down Apoptosis – [123]

Crnde Mouse Up Fibrosis Binding to Smad3 to attenuate cardiac 
fibrosis

[84]

NEAT1 Rat Down Apoptosis Regulating Nrf2 expression by spong-
ing miR-23a-3p

[124]

MIAT Rat Up Apoptosis Sponging miR-22-3p to upregulate 
DAPK2

[125]

NORAD Mouse Up Fibrosis and inflammation Sponging to adsorb miR-125a-3p, 
and regulating Fyn

[126]

AK081284 Mouse Up Fibrosis Promoted the production of collagen 
and TGFβ1

[83]

ANRIL Rat Up Oxidative stress, apoptosis, inflammation, 
fibrosis

– [127]

NONRATT007560.2 – Up Oxidative stress and apoptosis – [128]

MEG3 – Up Apoptosis Sponging microRNA-145 to up-regulating 
the expression of PDCD4

[129]
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promoted NLRP3 inflammasome activation and cardiac 
pyroptosis and exacerbated the development of DCM 
[81]. GAS5 acts as an miRNA-34b-3p sponge to enhance 
the expression of the aryl hydrocarbon receptor, nega-
tively regulating the NLRP3 inflammasome.

Cardiac fibrosis is the characteristic feature in the 
advanced and late stages of DCM progression, in which 
the transforming growth factor beta (TGF-β)-SMAD 
signaling pathway is vital. Activated TGF-β triggers cel-
lular profibrotic responses and further causes collagen 
deposition, cardiac remodeling, and stiffing. The lncRNA 
Kcnq1ot1 was activated in the cardiac tissue of an STZ-
induced diabetic model compared with that in control 
C57BL/6 mice, suggesting that Kcnq1ot may be involved 
in the progression of DCM [82]. Functional in vivo and 
in  vitro experiments using short hairpin RNA or small 
interfering RNA indicated that the systolic and dias-
tolic functions of the diabetic heart were improved after 
silencing Kcnq1ot1, which manifested as reduced myo-
cardial mass, inflammation, and fibrosis-related gene 
expression. Further, the TGF-β1/SMAD signaling path-
way was markedly inhibited with Kcnq1ot1 knockdown 
and was rescued with repressed miR-214-3p, suggesting 
that lncRNA Kcnq1ot1 functioned as a miRNA sponge 
to regulate TGF-β1/SMAD pathway. Another lncRNA, 
AK081284, was proven to be associated with cardiac 
interstitial fibrosis via TGF-β1. Zhang et  al. discovered 
that AK081284 mediated the effect of IL-17 on interstitial 
fibrosis in the diabetic heart [83]. Following AK081284 
knockdown in cardiac fibroblasts, there was a reduc-
tion in mRNA expression of TGF-β and collagen syn-
thesis genes. In addition, the lncRNA Crnde, which was 
primarily increased in CFs with TGF-β stimulation, was 
found to exert a protective effect against cardiac fibrosis. 
In addition, Crnde inhibited the transcriptional regula-
tion of SMAD3 by binding to SMAD3 directly, forming a 
negative feedback loop between Crnde and SMAD3 [84].

Furthermore, some other lncRNAs are found to be 
associated with inflammation, apoptosis, and autophagy 
during the progression of DCM. The lncRNA HOTAIR 
ameliorates high glucose (HG)-induced pyropto-
sis and inflammation by recruiting the fused in sar-
coma (FUS) protein and promoting SIRT3 expression 
[85]. In contrast, HOTAIR functions as a miRNA-34a 
sponge involved in oxidative stress [86]. Increased H19 

expression under HG conditions inhibits apoptosis and 
inflammation by binding to different miRNAs [87, 88].

miRNAs in DCM
The widespread regulation of miRNAs during the devel-
opment of DCM has gradually been revealed with 
advances in sequencing technology (Table  2). Different 
miRNA expression profiles have been reported at differ-
ent stages of DCM [89].

MiRNAs regulate gene expression by binding to 
the 3’ UTR of different genes, implying that each may 
be involved in various pathologic processes of DCM. 
miRNA-30c expression levels were reduced in db/db 
mice, and its specific overexpression at the cardiac site 
ameliorated lipid accumulation, ROS generation, and 
apoptosis in cardiomyocytes. miRNA-30c can regulate 
myocardial metabolic disorder by binding to peroxisome 
proliferator-activated receptor-gamma coactivator-1 
beta. In addition, miRNA-30c targets apoptosis-related 
genes, such as beclin1, p53, and p21, inhibiting diabetes-
induced programmed cardiomyocyte death. The same 
downregulated miRNA133a in diabetic hearts is involved 
in cardiac remodeling. Combined with COL1A1, 
ERK1/2, and  SMAD-2, miRNA133a suppresses colla-
gen synthesis in the myocardial interstitium and cardiac 
fibrosis [90, 91]. Norepinephrine enhances the contractile 
capacity of the myocardium by activating beta receptors 
in cardiomyocytes. In DCM, β receptors are abnormally 
inactivated, and the contractile function of the heart is 
impaired. Nandi et  al. [92] constructed miRNA-133a 
transgenic mice and unveiled that miRNA133a improved 
the contractile function of the diabetic heart by binding 
to the 3’ UTR of tyrosine aminotransferase and promoted 
the synthesis of norepinephrine.

Several studies have confirmed the protective effects 
of miR-21 against cardiovascular diseases. miR-21 can 
improve fibrosis and apoptosis of cardiomyocytes; more-
over, the hypoglycemic drug vildagliptin exerts hypogly-
cemic and cardioprotective effects through the miR-21/
SPRY1/ERK/ mammalian target of rapamycin pathway 
[93]. The p38/ mitogen-activated protein kinase (MAPK) 
signaling pathway is significantly activated in diabe-
tes and is involved in various pathological processes of 
DCM, such as oxidative stress, apoptosis, and ventricu-
lar remodeling [94]. HG-induced miR-21 overexpression 

Table 1 (continued)

Name Experimental 
animals

Expression Pathological process Mechanism References

PVT1 – Up Apoptosis Sponge miR-23a-3p to increase CASP10 
expression

[130]
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activates the downstream p38/MAPK pathway and, thus, 
participates in ventricular remodeling in DCM [90].

Further, miR-320 is specifically expressed in the car-
diomyocytes of DCM mice and can be detected in the 
plasma even before cardiac diastolic function is affected 
[95]. Knocking out miR-320 in DCM mice significantly 
improved glycolipid metabolism and cardiac function. 
This suggests that miR-320 is crucial in DCM and may be 
a potential target for its diagnosis and treatment. Unlike 
cytoplasmic miRNAs, nuclear miR-320 could bind to the 
promoter of the fatty acid receptor CD36 gene, leading to 
its expression.

Potential clinical application of epigenetic 
regulators in DCM
Epigenetic biomarkers
There are no obvious symptoms at the subclinical period 
of DCM, which makes detection and diagnosis more 

difficult. Serial studies have demonstrated epigenetic 
biomarkers play a vital impact on the early diagnosis and 
treatment of DCM over the last decade.

DNA methylation could be detected in blood and has 
been reported to be associated with the occurrence of 
cardiovascular diseases and diabetic complications. Hu 
et  al. [96] identified that the hypomethylation of vascu-
lar endothelial growth factor (VEGFB), placental growth 
factor (PLGF), phospholipase C beta 1(PLCB1), and 
fatty acid transport protein 4 (FATP4) was associated 
with the incidence of diabetes with cardiovascular dis-
eases, prompting that DNA methylation level might be 
a potential biomarker. Interestingly, in a new cross-sec-
tional analysis, researchers found that increased DNA 
methylation age was related to cardiometabolic risk and 
worse cardiovascular prognosis, indicating the function 
of promising biomarkers [97]. In addition, Gadd et  al. 
[98] utilized a machine learning strategy to construct a 

Table 2 miRNAs related to diabetic cardiomyopathy

Name Experimental animals Expression Pathological process Target genes References

miR-320 Mouse Up Hyperlipidemia and hyperglycemia cd36 [95]

miR-207 Mouse Up Autophagy lamp2 [131]

miR-30d Rat Up Pyroptosis, inflammation and apoptosis foxo3a [132]

Autophagy klf9/vegfa [133]

miR-223 Rat Up Inflammasome activation, fibrosis, and apoptosis – [134]

Mouse Up Glucose metabolism glut4 [135]

miR-29 Mouse Up Fibrosis – [136]

miR-150 – Up Inflammation and fibrosis smad7 [137]

miR-451 Mouse Up Lipid accumulation cab39 [138]

miR-195 Mouse Up Apoptosis and oxidative stress sirt1 [139]

miR-503 Rat Up Oxidative stress and apoptosis nrf2 [140]

miR-326-3p Mouse Up Metabolism and mitochondrial dysfunction rictor [141]

miR-30c Mouse, rat Down Autophagy beclin1 [142]

Down Hypertrophy and apoptosis p53, p21 [143]

Down Hypertrophy cdc42, pak1 [144]

Down Oxidative stress and apoptosis pgc-1β [145]

miR-133a Mouse Down Fibrosis erk1/2, smad-2 [146]

miR-200b Mouse Down Cardiac fibrosis p300 [147]

miR-222 Mouse Down Cardiac fibrosis β-catenin [148]

miR-551b-5p Rat Down Autophagy Protocadherin 17 [110]

miR-1 Rat Down Oxidative stress Junctin [149]

miR-9 / Down Pyroptosis and inflammation elavl1 casp-1 [150]

miR-203 Mouse Down Oxidative stress, hypertrophy, fibrosis, and apoptosis pik3ca [151]

miR-21 Mouse Down Oxidative stress, hypertrophy, fibrosis, and apoptosis Gelsolin, ppara, 
dusp8, spry1, ar

[152]

miR-22 Mouse Down Oxidative stress and apoptosis sirt1 [153]

miR-373 Mouse Down Hypertrophy mef2c [154]

miR-15 Mouse Down Fibrosis tgfbr1 [155]

miR141 Mouse Down Inflammation and fibrosis nlrp3 and tgf-β1 [156]

miR146a Mouse Down Inflammation and fibrosis irak and traf6 [157]
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diabetes-associated epigenetic scores tool. The tool based 
on the genetic information carried by DNA methylation 
could depict methylation-proteomic features for diabetes 
prediction and risk stratification, including diabetic heart 
disease.

NcRNAs, especially miRNAs, have also emerged as 
potential lipid biopsy biomarkers in diabetic heart dis-
eases owing to their availability and stability in biofluids. 
In a previous review by Jin, miRNAs targeting diabetes-
associated cardiac fibrosis, which may act as potential 
biomarkers, had been summarized [99]. Here we mainly 
focused on the recently validated ncRNAs in human 
studies. Bielska A et  al. indicated that five up-regulated 
miRNAs (miR-615-3p, miR-3147, miR-1224-5p, miR-
5196-3p, and miR-6732-3p) in serum showed high 
diagnostic value (AUC > 0.8) for diabetic patients with 
ischemic heart disease [100]. Furthermore, in a 5-year 
prospective study, increasing cardiac hypertrophy of 
diabetic patients was paralleled by the up-regulation of 
miR122-5p, which was independent of glycemic control 
[101]. To further investigate the underlying mechanism, 
they constructed the diabetic mice model and found that 
miR122-5p was involved in diabetic cardiomyopathy by 
modulating extracellular matrix gene expression. These 
indicated the potential of miR-122 expression in evaluat-
ing the early stage of DCM, which was characteristic of 
subclinical diastolic dysfunction.

Potential epigenetic therapies in DCM
In recent years, drug development based on several epi-
genetic regulatory molecules has improved the treat-
ment of various diseases. Small-molecule inhibitors, such 
as azacitidine and decitabine, which target DNMTs and 
alleviate the inhibition of gene transcription due to meth-
ylation, have been applied in the treatment of myelod-
ysplastic syndrome. Although drugs targeting enzymes 
involved in DCM remain unexplored, some recent dis-
coveries may inspire research in this area. A real-world 
study showed that DNA methylation is associated with 
hypoglycemic drug response. Sonia et  al. evaluated 
genome-wide DNA methylation in patients with type 2 
diabetes mellitus and found that patients whose genomes 
showed greater methylation were more likely to tolerate 
metformin. They used combined weighted methylation 
risk scores based on 11 methylation sites to analyze the 
potential of DNA methylation to identify the risk of met-
formin tolerance, with the area (AUC) under the ROC 
more than 0.8 in different cohorts [102]. These results 
suggest that DNA methylation could serve as a predic-
tive factor for medication evaluation. HDAC inhibitors 
have been developed in the clinical treatment of can-
cer. However, studies in the cardiovascular field remain 
in the preclinical stage. Travers et  al. [31] found that 

HDAC inhibitors improved cardiac diastolic dysfunction. 
In their study, they constructed a diastolic insufficiency 
model via unilateral nephrectomy and injection of deoxy-
corticosterone acetate and found that the HDAC inhibi-
tor ITF2357 could significantly inhibit cardiomyocyte 
fibrosis and ameliorate ventricular remodeling. Nota-
bly, diastolic dysfunction is a typical feature in the early 
stages of DCM. Therefore, conducting an in-depth study 
of HDAC inhibitors for the treatment of DCM holds 
great promise.

Studies on the application of BRD4 inhibitors in DCM 
treatment showed initial results. However, these stud-
ies were primarily conducted with animal models. In 
DCM mice, JQ1 significantly improved mitochondrial 
function, inhibited cardiomyocyte apoptosis and fibro-
sis, and improved diabetes-induced cardiac impairment 
[103]. Another BRD4 inhibitor, apaberon (APA), signifi-
cantly ameliorated diabetic peripheral vascular damage. 
A recent large randomized double-blind clinical trial 
showed that the addition of APA to standard medical 
therapy did not significantly improve the incidence of 
major cardiovascular events in patients with acute coro-
nary syndrome, type 2 diabetes, and low levels of high-
density lipoprotein [104]. A subgroup analysis on the 
association between APA and type 2 diabetes remains 
lacking.

Given the prominent gene-silencing function of small 
RNAs in disease progression, RNA-based therapeutics 
have become a vital research direction for drug develop-
ment. miR-10b-5p miRNA-targeted drugs act on pan-
creatic and fat cells to improve insulin resistance [105]. 
However, their safety, efficacy, and effects on DCM 
should be confirmed through further clinical studies.

Epigenetic editing
The rapid advancement of epigenome editing technology 
from Zinc-finger, transcription activator-like effectors 
(TALEs) to the clustered regularly interspaced short pal-
indromic repeats (CRISPR)-associated protein 9 (cas9) 
dCAS9 technique shows us a novel and breakthrough 
direction for the treatment of diseases [106, 107]. Though 
there was still no research focusing on DCM, the applica-
tion of epigenetic editing in metabolic diseases did give 
us some inspiration. Ou et  al. [108] investigated epig-
enome editing technology as a promising tool for induc-
ing β cell proliferation previously. In their research, the 
methylation levels of the imprinting control region 2 
(ICR2), which affected the expression of cell cycle inhibi-
tor p57, were significantly reduced by TALE in pancre-
atic islets B cells. Recently, the dCAS9 system based 
on epigenetic regulatory factors precisely regulated 
disease-related genes while preserving the integrity of 
the genome. Matboli et  al. [109] used CRISPR/CAS9 to 
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knockout LncRNA-RP11-773H22.4 in peripheral blood 
mononuclear cells (PBMCs) of T2DM patients, and insu-
lin resistance-related genes were altered significantly. Of 
note, the latest research published in Nature proposed a 
novel epigenome editing tool, EvoETR, with more power-
ful efficiency and specificity compared with CRISPR cas9 
epi-silencing [60]. EvoETR-mediated PCSK9 inhibition in 
mice lasted for one year in mice, laying the foundation for 
effective in vivo therapeutics based on epigenetic editing.

Indeed, there are plenty of challenges to the applica-
tion of epigenome editing in clinical practice, such as 
off-target and nonspecific effects. However, site-specific 
epigenetic modifications remain a very active area of 
translational research, warranting the need for more 
studies.

Conclusions and future perspectives
DCM is a unique manifestation of systemic metabolic 
disorders caused by hyperglycemia or hyperlipidemia 
in the heart and is the most severe diabetic complica-
tion. In this review, we focused on the epigenetic regu-
lation in DCM. First, we reviewed the basic epigenetic 
regulation patterns, including DNA methylation, histone 
modification, and ncRNAs. Then, we went to current 
investigations into the mechanisms of epigenetic regula-
tion, which form a complex network that regulates gene 
expression at the transcriptional and post-transcriptional 
levels in DCM. Due to the feature of availability and sta-
bility in biofluids, a great number of epigenetic modi-
fiers could serve as potential biomarkers for the early 
diagnosis and treatment of DCM. Although limited and 
remaining in the animal experimental stage, all available 
evidence about drugs targeting epigenetic regulators in 
DCM show that epigenetic modifiers hold great promise 
for the treatment of DCM.

It is noteworthy that issues and challenges exist in the 
mechanism investigation and clinical translation. Epige-
netic modifications and ncRNAs play vital roles in met-
abolic memory. However, researches on the function of 
epigenetic modifications and ncRNAs underlying hyper-
glycemic memory are limited. Although current studies 
indicate strong therapeutic potential of epigenetic modi-
fiers, few focus on patient data. In addition, in an era of 
high-throughput technology, it is likely to provide sys-
tematical insight and opportunities for effective therapy 
to combine multi-omics and single-cell sequencing tech-
niques. Ongoing researches on the evolution and appli-
cation of epigenetic editing therapy in DCM are also 
needed, which is expected to yield new insights into the 
pathogenesis and treatment of DCM.
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