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Abstract 

Background Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later 
life but the biological mechanisms underlying this association remain unknown. This study examined this ques-
tion by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- 
and dementia-associated biomarkers Aβ40, Aβ42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypoth-
esis was that PTSD would be associated with elevated levels of these markers.

Methods Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing 
factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research 
framework, we termed the first factor, defined by Aβ40 and Aβ42, “Factor A” and the second factor, defined by GFAP, 
NfL and pTau-181, “Factor TN.” Next, we performed epigenome-wide association analyses (EWAS) of the two-factor 
scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 geno-
type and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant 
DNAm loci on these associations.

Results The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identi-
fied 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The 
SEM showed age to be related to both factors, more so with Factor TN (β = 0.581, p < 0.001) than Factor A (β = 0.330, 
p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (β = 0.196, p < 0.001). Contrary 
to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores 
(r = − 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = − 0.128, p < 0.001).

Conclusions This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust 
age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications 
of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further 
investigation.
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Background
Large-scale cohort and epidemiological studies suggest 
that stressful life events [1], psychological distress [2], and 
PTSD [3–6] confer increased risk for Alzheimer’s disease 
(AD) and related dementias (ADRD) in later life. How-
ever, the causal mechanisms underlying this association, 
including the influence of genetic and epigenetic factors 
on the relationship between PTSD and ADRD, remain an 
open question. This study was designed to address this by 
examining age- and AD-associated biomarkers in an age- 
and ancestrally-diverse cohort with a high prevalence of 
trauma exposure and PTSD.

In the past decade, considerable progress has been 
made in the identification of ADRD biomarkers. The 
neuropathological features of AD include the presence 
of amyloid β plaques and neurofibrillary tangles contain-
ing hyperphosphorylated tau. Amyloid positron emission 
tomography (PET) has been shown to offer a valid in vivo 
tool for assessing the presence of amyloid β deposits, and 
levels of the amyloid-beta peptide Aβ42 (or the Aβ42/
Aβ40 ratio) in cerebrospinal fluid (CSF) also provide a 
valid indicator of the pathologic state of cerebral Aβ [7]. 
However, the high cost and invasiveness of PET and CSF 
assessment have motivated the search for inexpensive, 
minimally invasive, and objective peripheral biomarkers 
of ADRD that can be used not only to aid in diagnosis, 
but also for prognostic evaluation, tracking treatment 
response, and monitoring of disease progression.

The development of ultra-sensitive immunoassay 
technologies, such as the single-molecule digital assay 
(Simoa) by the Quanterix Corporation, now permits the 
reliable assessment of central nervous system (CNS)-
derived proteins in blood samples at extremely low con-
centrations. The Simoa markers most relevant to ADRD, 
many not previously detectable in blood due to their low 
concentrations (or even known to exist in the periphery), 
include Aβ40 and Aβ42, glial fibrillary acidic protein 
(GFAP), neurofilament light chain (NfL), and phospho-
rylated tau at threonine 181  (pTau181). Aβ peptides are 
the main components of senile plaques and cleaved from 
the amyloid precursor protein into 40 and 42 amino acid 
residual peptides termed Aβ40 and Aβ42, respectively. 
Lower plasma Aβ42 and a lower Aβ42/Aβ40 ratio is asso-
ciated with greater brain amyloid pathology and thought 
to be attributable to the aggregation of Aβ42 into amy-
loid plaques [8]. GFAP is a protein expressed in astro-
cytes and released during astrocytic activation. Elevated 
GFAP levels have been observed in association with trau-
matic brain injury and several neuroinflammatory and 
neurodegenerative CNS diseases [9]. NfL is a cylindrical 
protein that provides structural stability to, and enables 
the growth of, myelinated axons. It has been shown to 
provide a reliable index of axonal injury across several 

neurological disorders [10]. Finally,  pTau181 is a form of 
phosphorylated tau that aggregates into deposits that 
form the neurofibrillary tangles characteristic of Alzhei-
mer’s Disease and other tauopathies [11]. Each of these 
biomarkers has also been shown to increase as a function 
of age [12–14].

On the basis of prior research suggesting that PTSD 
is associated with risk for dementia, accelerated DNAm 
age, and other indices of advanced cellular aging [15–
17], we hypothesized that aging patients with PTSD 
would show elevated levels of some or all of the brain 
age- and dementia-associated plasma biomarkers Aβ40, 
Aβ42, GFAP, NfL, and  pTau181. Further, in light of recent 
evidence that the risk that PTSD confers for ADRD 
increases additively as a function the apolipoprotein E 
gene ε4 risk allele (APOE ε4) [3], we also evaluated the 
main and interactive effects of this important genetic risk 
factor. Specifically, we hypothesized that the strength of 
the association between PTSD and the Simoa biomarkers 
would be greater among APOE ε4 carriers compared to 
non-carriers.

The National Institute on Aging and Alzheimer’s Asso-
ciation have advanced a classification scheme for brain 
aging and Alzheimer’s disease biomarker research based 
on three continuous dimensions, termed beta-amyloid 
deposition (A), pathologic tau (T), and neurodegenera-
tion (N) [7]. Known as the “ATN framework,” this system 
lends itself to latent variable modeling, which estimates 
the shared variance between indicators of a common 
dimensional construct, or factor (e.g., A, T, or N), and 
separates it from error variance in the indicators. This 
can be expected to increase power for association analy-
ses relative to examining individual markers where true 
score variance and error variance are conflated. Theo-
retically, in the context of modelling associations among 
multiple correlated biomarkers, the resulting factors rep-
resent the broader biological construct underlying their 
covariation. Practically, this approach offers a method 
of data reduction that reproduces the observed relation-
ships among multiple indicators using a smaller number 
of latent variables representing their commonalities. For 
the epigenome-wide association analyses reported here, 
this approach allowed us to distill the 5 Simoa biomark-
ers down to a smaller of number underlying factors, 
thereby reducing the study-wide multiple-testing burden.

This study was based on data from 849 ancestrally 
diverse individuals with a high prevalence of trauma 
exposure and PTSD spanning a wide age range with 
genome-wide DNA and DNA methylation (DNAm) data 
available for analysis. We began by performing factor 
analyses of the plasma Aβ40, Aβ42, GFAP, NfL and pTau-
181 Simoa biomarkers the results of which yielded a two-
factor solution with the Aβs loading on one factor and 
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the three other markers loading on a second factor. We 
then performed epigenome-wide association analyses of 
each participant’s scores on the two factors with the aim 
of identifying novel epigenetic loci associated with levels 
of the ADRD biomarkers. Finally, using structural equa-
tion modeling, we evaluated (a) the influence of PTSD, 
age, APOE ε4 genotype and other relevant covariates on 
levels of the ATN factors, and (b) tested the mediating 
influence of the EWAS-significant DNAm loci on these 
associations.

Methods
Participants and procedures
Analyses were based on existing clinical, genetic, and 
biomarker data collected under research protocols led by 
investigators at the Behavioral Sciences Division of the 
VA National Center for PTSD [18]. Data for this report 
were from 849 individuals, including 580 US military 
veterans and a subset of 269 of their intimate partners, 
collectively ranging from 19 to 75  years of age. Clinical 
and demographic characteristics of the sample are listed 
in Table 1. Each of the original studies, and the research 
presented in this report, was reviewed and approved 
by the appropriate institutional review boards. In each 
study, participants had blood drawn for future genetic 
and biomarker assays. Blood was collected in EDTA 
tubes, centrifuged to separate plasma, serum, and buffy 
coat, then aliquoted and stored at − 80 °C until thawed for 
analysis. Participants also underwent psychiatric assess-
ments using the Clinician-Administered PTSD Scale 
for DSM-IV or DSM-5 (CAPS [19, 20]) and Structured 
Clinical Interview for DSM-IV or DSM-5 (SCID [21, 22]), 
depending on the version of DSM in use at the time of 
study enrollment. For the CAPS, in addition to determin-
ing current diagnosis, frequency and intensity ratings 
of each symptom were summed to create a dimensional 
score reflecting current PTSD severity. We harmonized 
CAPS symptom severity across the two DSM versions by 
calculating each participant’s symptom severity as a per-
centage of the maximum possible severity score for the 
relevant version of the measure (yielding scores ranging 
from 0–1). All diagnostic interviews were video recorded. 
Inter-rater reliability was assessed for approximately 25% 
of participants; kappa for each diagnosis reported here 
was greater than 0.78. History of psychological trauma 
was assessed using the Traumatic Life Events Question-
naire (TLEQ)  [23], an inventory of 23 different types of 
traumatic experiences that were coded as positive if the 
participant endorsed (a) exposure to the event, and (b) 
experiencing “intense fear, helplessness, or horror” when 
it happened. Additional details regarding the samples, 

Table 1 Sample descriptive statistics and bivariate correlations 
with the Simoa factor scores

The first two columns list the sample ns and percentages (unless specified as 
means/SDs). The second two columns list the bivariate correlations between 
each independent variable and factor scores derived from the CFA. These scores 
reflect each participant’s level on the latent Simoa variable. N = 849 except 
where otherwise noted

PTSD symptom severity was a standard score ranging from 0–1; AUD Alcohol Use 
Disorder; DNAm DNA methylation; MDD Major Depressive Disorder; SSRI/SNRI 
Selective serotonin reuptake inhibitor/serotonin and norepinephrine reuptake 
inhibitor; TLEQ Traumatic Life Events Questionnaire
a n = 789
b PTSD symptom severity was used in the analysis and clinician diagnosis is 
reported here for descriptive purposes

*p < 0.05; **p < 0.01; ***p < 0.001

N or M % or SD Factor A Factor TN

Age (mean/SD) 51.56 11.4 0.377*** 0.528***

APOEε4 carrier count − 0.053 − 0.030

 (One allele) 224 25.8

 (Two alleles) 20 2.2

Sex − 0.001 − 0.021

 Male 523 61.6

 Female 326 38.4

Self-identified Race

 White 574 67.6

 Black 95 11.2

 Asian/Pacific Islander 10 1.2

 Native American/Alas-
kan Native

64 7.5

Self-identified Ethnicity

 Hispanic/Latino 123 14.5

 White, non-Hispanic 531 62.5

Ancestral Principal Com-
ponents

 PC1 0.107** 0.055

 PC2 − 0.073* − 0.079*

 PC3 − 0.014 − 0.040

Veteran 580 68.3 0.005 − 0.017

Current  Medicationsa

 SSRI/SNRIs 251 29.6  < 0.000 0.010

 Other antidepressants 160 18.8 0.041 0.041

 Typical/atypical antip-
sychotic

97 11.4 − 0.101** − 0.106**

 Sedatives, hypnotics, 
anxiolytics

138 17.4 − 0.018 − 0.020

Current PTSD  Diagnosisb 311 36.6 − 0.025 − 0.098**

PTSD Symptom Severity 
(mean/SD)

0.31 0.2 − 0.062 − 0.133***

TLEQ (mean/SD) 1.73 1.94 0.115** 0.069

Current MDD Diagnosis 162 19.1 0.041 − 0.045

Current AUD Diagnosis 64 7.5 − 0.015 − 0.050

DNAm Smoking Score 
(mean/SD)

− 2.65 34.4 0.065 0.085*
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clinical assessments, and inter-rater reliability are avail-
able in previous reports [24,  25]. Neurocognitive func-
tion was not formally assessed; however, participants 
were terminated from the procedure if, in the clinician’s 
judgment, cognitive impairment interfered with the 
participant’s ability to complete the procedures. Finally, 
current psychiatric medication use was assessed using 
a self-report checklist and then classified into four cat-
egories: (a) SSRI/SNRIs, (b) other antidepressants, (c) 
typical/atypical antipsychotic, (d) sedatives, hypnotics, 
anxiolytics.

Genotype and DNA methylation data
Genetic data were generated using methods described 
in prior publications [18]. Briefly, DNA was isolated on 
a Qiagen AutoPure instrument with Qiagen reagents and 
samples normalized using PicoGreen assays (Invitrogen, 
Grand Island, NY, USA). Each DNA sample was run on 
an Illumina OMNI 2.5 microarray and scanned using an 
Illumina HiScan System (San Diego, CA, USA) accord-
ing to the manufacturer’s protocol. Imputation was based 
on the Thousand Genomes Phase 3 reference panel [26]. 
Ancestry was determined using a pipeline [27, 28] that 
identified ancestral principal components using 100,000 
randomly selected common single nucleotide polymor-
phisms (SNPs). APOE ε4 carrier status was called using 
the isoform-defining SNPs (rs7412 and rs429358) which 
were well-imputed (r2 = 0.96 and 0.99, respectively). We 
used “best guess” imputed genotypes with a 90% confi-
dence threshold for these SNPs to derive the APOE ε4 
genotypes.

DNA methylation (DNAm) studies involve measure-
ment of a methyl group on the DNA strand at a cyto-
sine-phosphate-guanine (CpG) site. DNAm data were 
generated using methods described in prior publications 
[29]. In brief, DNAm was measured using the Illumina 
Infinium Methylation EPIC BeadChips. Zymo EZ-96 
DNA Methylation Kits (D5004) were used to bisulfite-
convert batched samples. DNA conversion was accom-
plished via PCR using DAPK1 primers (Zymo) followed 
by gel electrophoresis of PCR products. Bisulfite-mod-
ified DNA was then whole-genome amplified, hybrid-
ized to the BeadChips, single-base extended, and stained 
using the Automated Protocol for the Illumina Infinium 
HD Methylation Assay. Assignment of individuals to 
chip and chip positions were balanced based on PTSD 
diagnosis and sex. We applied a quality control (QC) 
pipeline developed by the Psychiatric Genomic Con-
sortium-PTSD Workgroup [30] prior to analysis (and 
recently updated as described at https:// github. com/ 
PGC- PTSD- EWAS/ EPIC_ QC). Proportional white blood 
cell (WBC) estimates (CD8-T and CD4-T cells, natural 

killer cells, b-cells, monocytes) were calculated from the 
methylation data for use as covariates.

Simoa markers
Simoa assays were performed at the Quanterix Accel-
erator Lab (Quanterix Corporation, Billerica, MA) using 
plasma samples. Samples were thawed and diluted per 
manufacturer’s specifications, centrifuged to remove 
particulates and debris, then pipetted into 96 well plates, 
diluted 4x, and run in duplicate. All markers were tested 
using the HD-1 Analyzer. Aβ40, Aβ42, GFAP, and NfL 
were assayed using the N4PE advantage kit (Quanterix 
Item #103,670). pTau181 was assessed using the pTau181 
advantage v2 kit (Quanterix Item #103,714). We initially 
intended to include plasma total Tau, but preliminary 
analyses showed weak bivariate associations between 
this analyte and the other Simoa markers (rs < 0.2). Fur-
thermore, unlike the other five markers which are pri-
marily brain-derived, the Tau protein is also expressed in 
peripheral tissues [31], and a recent study estimated that 
only 20% of plasma total Tau originates in the brain [32]. 
Calibration was conducted with reference samples and 
QC procedures included evaluation of average enzyme 
per bead and coefficient of variation (CV). Samples that 
did not pass QC procedures were re-run, when possible, 
with the goal of minimizing freeze/thaw cycles. Samples 
were excluded (0–4.5%, varying by marker) if (a) the CV 
was > 25%, or (b) a duplicate was not available. Remain-
ing concentrations were then multiplied by the dilution 
factor (× 4) prior to analysis. Results below the functional 
lower limit of quantification (fLLOQ) were set to the 
fLLOQ, and results above the functional upper limit of 
quantification (fULOQ) were set to the fULOQ. In total, 
data from 713 participants passed the DNAm and Simoa 
QC procedures, and of those, 704 also had genotype data.

Data analyses
Exploratory and confirmatory factor analyses
Exploratory (EFA) and confirmatory factor analy-
ses (CFA) of raw values for the five Simoa markers 
(Aβ40, Aβ42, GFAP, NfL, pTau181) were performed 
using Mplus v8.5 [33]. EFA is a method for identify-
ing the structure and dimensionality underlying the 
covariation of set of variables when that structure 
is not known a priori. In EFA, models with different 
numbers of latent variables (factors) are compared to 
determine which model best accounts for the covarion 
among the variables. It is similar to principal compo-
nents analysis except that EFA can distinguish between 
true score variability and error and separates these two 
sources of variance. CFA, in contrast, enables examina-
tion of the degree to which data fit a predefined, or a 

https://github.com/PGC-PTSD-EWAS/EPIC_QC
https://github.com/PGC-PTSD-EWAS/EPIC_QC
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priori hypothesized, structure for the number of factors 
underlying the covariation of variables and loading of 
individual variables on each factor. In both approaches, 
the fit of the model to the data is evaluated using sev-
eral commonly used fit indices including the root mean 
square error of approximation (RMSEA), standard-
ized root mean square residual (SRMR), and the com-
parative fit and Tucker-Lewis fit indices (CFI and TLI, 
respectively). The Bayesian information criterion (BIC) 
can be used for evaluating the fit of competing models.

We began by conducting an EFA of the five markers 
in a random half of the sample and evaluated 1 and 2 
factor solutions using geomin rotation. (With 5 mark-
ers, we could only evaluate 1- and 2-factor solutions 
due to the fact that a model with more factors would 
have been statistically under-identified.) The robust 
maximum likelihood estimator (MLR) was used in all 
analyses. The results of the best fitting (two-factor) EFA 
were then used to inform the structure of a CFA that 
we tested in the other random half of the sample. After 
identifying a good fitting two-factor CFA, we executed 
the same model in the full sample (N = 849), again eval-
uated fit, then saved those factor scores for use in the 
EWAS. The factor scores reflect each individual’s score 
on the latent variables (e.g., a higher score on the latent 
variable would account for higher values on the indi-
vidual Simoa markers that load on that factor).

Epigenome‑wide association analyses (EWAS)
We performed EWASs of scores from the two factors 
using linear models in the Bioconductor limma (Lin-
ear Models for Microarray Data) package [34], with 
the base 2 logit-transformed methylated proportion 
(known as an M values) as the response and the fac-
tor score as the predictor. Each EWAS included the 
following covariates: the top three ancestry princi-
pal components, age, sex, estimates of WBC propor-
tions, a categorically coded batch variable representing 
the methylation project that each sample was assayed 
under, and a DNAm-based smoking score. The lat-
ter was based on effect-size estimates for the top-39 
probes from a smoking EWAS [35] that we have pre-
viously shown to be an important covariate to include 
in DNAm association analyses [29]. We computed 
false discovery rate (FDR) corrected p values [36], 
also known as Q values, to control for multiple test-
ing (denoted “padj”). Finally, we examined the genes 
corresponding to the top 500 sites from each EWAS 
for enrichment of specific gene ontology (GO) term 
categories using the gometh function from the R miss-
Methyl package [37]. This function is an extension of 
the GOseq method [38] which explicitly models the 

relationship between the number of CpG sites assessed 
within a gene and the probability of that gene appearing 
within the target list.

Structural equation model
Structural equation modeling (SEM) is a multivari-
ate analytic method for simultaneously estimating the 
strength of associations between latent variables (e.g., 
in this case, the Simoa factors) and other observed vari-
ables in a causal structure containing direct (regressive 
paths) and/or indirect (mediated) paths in a single anal-
ysis. It is like path analysis, but involves paths between 
latent variables, as opposed to between observed vari-
ables. As with the factor analyses, this was performed in 
Mplus. This model examined (a) the strength of associa-
tions between the independent variables (i.e., the demo-
graphic, psychiatric and APOE ε4 genotypes) and the 
dependent variables (i.e., the Simoa factors), (b) the influ-
ence of the independent variables on the M values from 
the CpG sites identified by the EWAS, and (c) the effects 
of covariates relevant to each variable in the model. In 
addition, given the role of DNAm in mediating effects of 
environmental factors on many forms of gene and pro-
tein expression, we also modeled the EWAS-significant 
CpG sites as mediators of the associations between the 
independent variables and the Simoa factors. Additional 
file  1: Fig. S1 illustrates full structural equation model 
including the latent variables, regressive paths, factor 
loadings, factor correlations, and covariates. Given the 
large number of parameters to be estimated and evidence 
that Type 1 error can become inflated in SEM analyses 
[39], we utilized a conservative p value threshold of 0.001 
for all direct regressive paths in the model. Finally, for 
significant CpG associations, we also evaluated the sig-
nificance of the indirect (mediated) effect of the IV on the 
DV via the CpG loci using the “model indirect” command 
in Mplus which computed the products of (a) the effect 
of each IV on each CpG, and (b) the effect of each CpG 
on the Simoa factor, along with the p values for each indi-
rect path.

Results
Exploratory and confirmatory factor analyses
Descriptive statistics for, and bivariate correlations 
between, the five Simoa markers (Aβ40, Aβ42, GFAP, 
NfL pTau181) are listed in Table  2. The EFA in a ran-
dom half of the sample yielded excellent model fit for 
a 2-factor solution that was superior to the 1-factor 
model (see Table  3). In the two-factor EFA solution, 
Aβ42 (λ = 0.76) and Aβ40 (λ = 0.72) loaded significantly 
on one factor, while pTau181 (λ = 0.50), GFAP (λ = 0.56), 
and NfL (λ = 0.72) loaded significantly on the second 
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factor. The cross-loadings were all small and nonsignifi-
cant (λs = − 0.009 to.19, ps > 0.05).

Based on this, we then tested a CFA in the second ran-
dom half of the sample (n = 421) in which Aβ40 and Aβ42 
were set to load on one factor (that we term “Factor A,” 
i.e., “A” from the “ATN” framework) and pTau181, GFAP, 
and NFL on a second factor (that we term “Factor TN”). 
This model fit the data well (Table 3) with all indicators 
loading on their respective factors at the p < 0.001 level. 
This model also yielded the lowest (i.e., best) BIC value 
compared to the EFA models. We then ran the 2-fac-
tor CFA in the full sample (n = 849) and found that this 
model also fit well in the full cohort with each indicator 
again loading significantly on its respective factor at the 
p < 0.001 level. The two factors were correlated at r = 0.62 
(p < 0.001). Finally, we saved the factor scores from this 
analysis for use in the EWASs. Scatterplots of the associ-
ations between each factor, their indicators, and between 
the indicators themselves, are shown in Additional file 1: 
Figs. S2, S3.

Epigenome‑wide association analyses
Lambdas for the EWASs indicated modest inflation 
(Factor TN = 1.201; Factor A = 1.249). After apply-
ing an FDR correction across the two analyses (total # 

of comparisons = 1,605,282), 3 loci were identified as 
significantly associated with Factor TN (cg26033520, 
cg23156469, cg15356923) and one was significantly 
associated with Factor A (cg13053408). See Table 4 for 
the EWAS-significant loci, Figs. 1 and 2 for the EWAS 
Manhattan plots, and Additional file 1: Figs. S4, S5 for 
the EWAS QQ plots. GO term enrichment analysis of 
the top 500 most significant probes from each EWAS 
yielded no FDR significant GO terms. The top-50 
probes from each EWAS are listed in Additional file 1: 
Tables S1, S2. A comparison of the list of p < 0.001 

Table 2 Descriptive statistics and correlations between the Simoa markers

n = 816 due to some pairwise comparisons having missing data. All p values < 0.001

Bottom row lists the means and (SDs) for each marker in pg/ml units

Aβ40 Aβ42 GFAP NfL

Aβ42 0.632 – – –

GFAP 0.374 0.295 – –

NFL 0.384 0.270 0.414 –

pTau181 0.204 0.135 0.227 0.294

pTau181 Aβ40 Aβ42 GFAP NfL

1.70 (0.84) 91.69 (18.52) 6.78 (1.53) 70.92 (34.38) 12.28 (7.44)

pTau181 Aβ40 Aβ42 GFAP NfL

1.70 (0.84) 91.69 (18.52) 6.78 (1.53) 70.92 (34.38) 12.28 (7.44)

Table 3 Model fit of the exploratory and confirmatory factor analyses

n = 849

EFA exploratory factor analysis; CFA confirmatory factor analysis; RMSEA root mean square error of approximation; SRMR standardized root mean square residual; BIC 
Bayesian information criterion; CFI comparative fit index; TLI Tucker-Lewis Index

Model χ2 df p RMSEA SRMR CFI TLI BIC

EFAs 1 Factor (1st half sample) 51.87 5  < 0.001 0.15 0.07 0.85 0.70 13,120

2 Factor (1st half sample) 0.004 1 0.948  < 0.001  < 0.001 1.00 1.00 13,085

CFAs 2 Factor (2nd half sample) 4.36 4 0.359 0.015 0.018 0.999 0.997 12,884

2 Factor (full sample) 5.41 4 0.248 0.020 0.014 0.998 0.994 25,897

Table 4 Epigenome-wide significant CpG sites by factor

n = 704 (lower due to samples failing the GWAS, EWAS or SIMOA QC pipeline). 
Covariates were age, sex, ancestry PCs 1–3, estimated cell proportions (CD4T, 
CD8T, B cell, NK and Mono), DNAm-based smoking score, and laboratory analysis 
batch. FDR correction was based on the total number of probes examined across 
the two EWASs (1,605,282 probes total)

Factor CpG logFC p value FDR Gene

T/N cg26033520 − 0.4147 1.75e−10 0.0003 ASCC1 (nearby)

cg23156469 − 0.1939 5.84e−08 0.0312 FAM20B

cg15356923 0.2150 8.59e−08 0.0345 FAM19A4 (aka TAFA4)

A cg13053408 − 0.0027 5.30e−08 0.0312 C3orf24 (aka 
FANCD20S)
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significant probes from the two EWASs showed that 
12.9 percent of these loci overlapped. Full summary 
statistics from each EWAS are available in the Addi-
tional files 2 and 3.

Structural equation model
The bivariate correlations between the two Simoa fac-
tors and each of the clinical, genetic, and demographic 

variables are listed in Table 1. Table 5 lists the bivariate 
correlations between the primary independent variables 
and each individual Simoa marker. Figure 3 shows the sig-
nificant paths and parameter estimates (ps < 0.001) from 
the SEM. (Full results are available in Additional file  1: 
Table  S3; scatterplots of the associations between the 
PCs are depicted in Additional file 1: Fig. S6). Fit statistics 
showed adequate model fit (χ2 = 160.09, df = 68, p < 0.001; 

Fig. 1 Manhattan plot of the Factor A EWAS. The x-axis depicts chromosomes and the location of each CpG site across the genome. The y-axis 
is the -log10 of the p value for the association with levels of Factor A Simoa markers defined by Aβ40 and Aβ42. Each dot represents a CpG site. The 
red line indicates the level for epigenome‐wide statistical significance (p = 1 ×  10–7) and the blue line the level for suggestive significance (p = 1 ×  10–

5). The EWAS-significant locus is highlighted in green

Fig. 2 Manhattan plot of the Factor TN EWAS with the three EWAS-significant loci highlighted in green
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RMSEA = 0.045, CFI = 0.93, TLI = 0.83, SRMR = 0.03). In 
total, the model explained 54% of the variance in the Fac-
tor TN and 23% of the variance in Factor A. As shown 
in Fig. 3, age showed the strongest associations with both 
factors and was more strongly associated with Factor TN 
than Factor A. To test this difference empirically, we ran 

a follow-up model in which these age paths were held to 
equivalent and found that doing so significantly degraded 
model fit (Δ χ2 = 87.32, Δ df = 1, p = 9.23e−21). Age was 
also significantly associated with cg15356923 and the 
indirect effect of age on Factor TN via this DNAm locus 
was significant (β = 0.041, p = 0.005). Sex was positively 
associated with cg26033520 (greater for females) and the 
indirect effect of sex on Factor TN via this locus was sig-
nificant (β = −  0.058, p < 0.001). Lifetime trauma count 
was positively associated with cg130534081 and the indi-
rect effect of trauma on Factor A via this locus was also 
significant (β = 0.022, p = 0.008). We also observed a sig-
nificant positive residual correlation between DNAm lev-
els at cg130534081 and cg23156469, implying additional 
covariation among these loci beyond that which could be 
attributed to the shared predictors of these loci. APOE ε4, 
PTSD, and their interaction were not significantly associ-
ated with any of the CpGs or either factor (ps > 0.001).

Table 5 Bivariate correlations between the primary 
independent variables and each Simoa marker

*p < 0.05; **p < 0.01; ***p < 0.001

Age APOE ε4 PTSD Sex Trauma

Aβ40 0.362*** − 0.034 − 0.034 − 0.002 0.120**

Aβ42 0.172*** − 0.103** − 0.066 0.026 0.063

GFAP 0.412*** − 0.011 − 0.128*** 0.051 0.137***

NfL 0.438*** − 0.028 − 0.105** − 0.040 − 0.040

pTau181 0.239*** 0.042 − 0.013 − 0.141*** − 0.049

Fig. 3 Diagram depicting the significant direct paths (ps < 0.001) and associated variables from the SEM results. The Simoa latent variables are 
represented as circles with the loadings of each indicator shown as well as the correlation between the two factors. Age was the only variable 
in the model that showed significant (p < 0.001) direct effects on both variables. PC1 was positively associated with Factor A. The EWAS-significant 
CpG sites were evaluated as mediators of the association between the psychiatric and demographic variables and the latent variables. Significant 
indirect effects were found for a the effect of age on Factor TN via cg15356923, b the effect of sex on Factor TN via cg26033520, and c the effect 
of lifetime trauma count on Factor A via cg130534081 
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The SEM analysis also revealed a significant posi-
tive association between Factor A and PC1 (β = 0.196, 
p < 0.001) controlling for age and the other variables in 
the SEM, indicating that individuals with a greater pro-
portion of African ancestry had lower levels of Aβs rela-
tive to those of European ancestry. This difference was 
also significant in the categorical ancestry classification 
based on the genotype data (African vs. European ances-
try clusters; p = 0.004) and for self-identified Black par-
ticipants compared to self-identified White individuals 
(p = 0.012). All of these differences were significant when 
controlling for age. Finally, as a sensitivity analysis, we 
ran the full SEM with the addition of the four classes of 
psychiatric medications and found no significant associa-
tions between current medication use and either factor 
(all ps > 0.001).

Discussion
Research on blood-based biomarkers of ADRD is rapidly 
advancing, yet relatively little is known about how these 
markers covary, or what influence various genetic, epige-
netic, demographic, and psychiatric factors have on their 
levels. In this study, we used factor analyses to identify 
two dimensions that explained the covariation among 
Aβ40, Aβ42, GFAP, NfL and pTau-181. Drawing from the 
National Institute on Aging and Alzheimer’s Association 
“ATN” research framework, we termed the first factor, 
defined by Aβ40 and Aβ42, “Factor A”. GFAP, NfL and 
pTau-181 loaded on a second factor that we accordingly 
termed “Factor TN.” Next, we performed an EWAS of 
each factor, the results of which identified 4 DNAm loci 
that survived multiple-testing correction across the two 
analyses. The most strongly associated CpG from the 
Factor TN EWAS, cg26033520, was located in the vicinity 
of the Activating Signal Cointegrator Complex Subunit 1 
gene (ASCC1). ASCC1 transcribes a protein that plays a 
role in gene transactivation via its effects on several tran-
scription factors. This locus was one of two EWAS-sig-
nificant CpGs identified in a recent study of blood DNA 
methylation in Parkinson’s disease patients, with the 
same direction of association [40]. In a subsequent meta-
analysis of epigenome-wide associations across Par-
kinson’s disease, Alzheimer’s disease, and amyotrophic 
lateral sclerosis (ALS), this CpG also showed significant 
shared effects across all three disorders [41]. ASCC1 
exerts an inhibitory effect on nuclear factor kappa-B 
(NF-kB) [42], a well-established inflammatory transcrip-
tion factor implicated in tau pathology, glutamate excito-
toxicity, and reactive microglia and astrocytes [43]. The 
top-hit from the Nabais et al. [41] EWAS, cg03546163 in 
FKBP5, was also among the top-50 most highly associ-
ated probes in our Factor TN results.

The other two EWAS-significant loci from the Factor 
TN analysis were cg23156469 and cg15356923, located 
in FAM20B and FAM19A4 (aka TAFA4), respectively. 
FAM20B transcribes a kinase that phosphorylates xylose 
residues and triggers the synthesis of peptidoglycan, 
the main component of the cell wall in most bacteria. 
Though the literature on this is gene is very limited, a 
SNP in FAM20B (rs4652345) was the 16th most strongly 
associated locus in a GWAS of individuals with polygenic 
risk extremes for Alzheimer’s disease in the UK Biobank 
[44]. FAM19A4 (aka TAFA4), on the other hand, tran-
scribes a well-known neurokine that has been implicated 
in the regulation of immune responses and pain signaling 
within the nervous system [45].

The Factor A analysis identified one EWAS-significant 
locus, cg13053408, located in FANCD2OS (i.e., “FANCD2 
opposite strand” aka C3orf24). As an opposite strand 
gene (i.e., located on the antisense or noncoding strand 
of DNA), this region of DNA serves as the template for 
making FANCD2 messenger RNA. FANC2D has been 
identified as a mediator of the effect of the amyloid pre-
cursor protein fragment APP intracellular C-terminal 
domain on FOXO3 [46] which has a well-established role 
in aging and many age-related disease processes [47, 48] 
including Amyloid-β induced astrocytosis and astrocyte 
death [49]. FANCD2OS overexpression has also been 
shown to modulate expression of the steroidogenic acute 
regulatory protein (STAR1 or STARD1) [50]. STAR1 is an 
intracellular cholesterol carrier that has been observed 
to be elevated in the cortex of Alzheimer’s disease and 
Down syndrome patients and correlated with Aβ42 dep-
osition in regions of the hippocampus [51]. Also relevant 
to our findings, a pair of SNPs in FANCD2 and FANC-
2DOS (rs1552244 & rs9849434) were among the top-25 
hits from an early Alzheimer’s disease GWAS meta-anal-
ysis [52] (albeit not replicated in more recent studies with 
larger Ns).

We then  submitted the EWAS-significant DNAm val-
ues to an SEM analysis that evaluated these CpG sites 
as possible mediators of associations between age, sex, 
trauma history, PTSD, APOE ε4 genotypes and the two 
Simoa factors. Age was positively associated with both 
factors and significantly more so with Factor TN than 
Factor A. These findings align with a rapidly growing 
body of research showing that these markers are present 
in plasma of adults across the lifespan, trending gradu-
ally higher through early and middle adulthood, and then 
increasing exponentially in old age [12–14]. Mediation 
analyses identified three small but statistically significant 
indirect effects of age and sex on Factor TN, and num-
ber of lifetime traumas on Factor A, that were mediated 
by the CpGs. Though interesting and worthy of future 
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examination, given the small size of the effects and nov-
elty of the findings we are hesitant to over-interpret those 
results.

Genotype-determined ancestry PCs were included as 
covariates of the two Simoa factors and each CpG locus 
in the EWAS and SEM. The SEM revealed a significant 
positive association between Factor A and PC1 indicat-
ing that individuals with a greater proportion of geno-
type-determined African ancestry tended to have lower 
levels of Aβ40 and Aβ42. Similarly, self-identified Black 
participants showed significantly lower levels of Factor 
A than self-identified White individuals. Though not an 
a priori focus of the study, these findings are consistent 
with results of recent studies that examined racial dif-
ferences in levels of plasma Aβs and brain amyloid lev-
els. For example, Hajjar et al. [53] examined associations 
between self-identified race and genetic ancestry in 300 
Black and 429 White individuals, the majority of whom 
had mild cognitive impairment and were over 60  years 
of age. Results showed that Black participants had sig-
nificantly lower unadjusted levels of Aβ40 compared to 
White individuals and, as in our study, the percentage of 
African ancestry in the sample was negatively correlated 
with Aβ40 levels. Similarly, Deters et  al. [54] examined 
racial differences in positron emission tomography (PET) 
measured amyloid in cognitively normal older adults and 
found that Black individuals had lower amyloid levels 
compared to White participants and this difference was 
enhanced as a function of the participant’s proportion of 
African ancestry. Finally, in an earlier study of nearly one-
thousand adults in their seventies approximately 50% of 
whom were Black, Metti et  al. [55] found significantly 
lower levels of plasma Aβ40 and Aβ42 among self-identi-
fied Black compared to White individuals. In sum, results 
of this study add to a growing body of findings suggesting 
that there are important racial and ancestral differences 
in age- and AD-related biomarkers that may be relevant 
for advancing understanding of racial differences in the 
rates of ADRD reported in large-scale epidemiological 
and cohort studies [3, 56].

We had hoped that this study would shed new light 
on possible mechanisms by which PTSD confers risk 
for dementia but hypotheses for our primary variables 
of interest, APOE ε4, PTSD (and their interaction) were 
not supported. Specifically, none of the direct effects 
of APOE ε4, PTSD, or the APOE ε4 x PTSD interac-
tion term on the Simoa factors met our SEM criterion 
for statistical significance (p < 0.001). Rather, and con-
trary to our hypothesis that PTSD would be associ-
ated with elevated levels of ATN biomarkers, the SEM 
revealed a negative correlation between PTSD and Factor 
TN that fell just short of our multiple testing threshold 
(β = −  0.140, p = 0.003) controlling for age, sex, number 

of lifetime traumas, APOE ε4, the APOE ε4 x PTSD inter-
action term, the ancestry PCs, a DNAm-based smoking 
score, and effects of the four EWAS-significant probes. 
The simple bivariate correlation between PTSD severity 
and the TN factor scores showed a similar association 
(r = − 0.133, p < 0.001) driven primarily by reduced levels 
of GFAP in individuals with more severe PTSD symp-
toms (r = −  0.128, p < 0.001). We also noted that antip-
sychotic medication use was associated with reduced 
levels of both Simoa factors, but our sensitivity analyses 
showed that the negative PTSD effect remained signifi-
cant and unchanged with medication use in the model.

Though unexpected and opposite in direction of what 
we hypothesized, the finding of reduced GFAP in asso-
ciation with PTSD is not without precedent. Pierce et al. 
[57] examined a panel of ATN plasma biomarkers in a 
younger cohort of 550 post-9/11 veterans (from the same 
VA medical center, but independent of the participants 
evaluated in this study) and also reported a modest nega-
tive correlation between PTSD severity and GFAP con-
trolling for age and sex (r = − 0.10, p < 0.05). Kulbe et al. 
[58] conducted a prospective observational study of 1,143 
emergency department patients with mild TBI evaluated 
within 24 h of injury then re-assessed 6 months later and 
found that day-of-injury plasma GFAP levels were sig-
nificantly lower among those with a PTSD diagnosis at 
follow-up. Finally, Natale et  al. [59] examined a sample 
of 1,520 World Trade Center responders and also found 
that PTSD was associated with reduced levels of plasma 
GFAP. These authors offered several hypothetical expla-
nations for this finding and while the association appears 
worthy of future investigation, its biological significance 
remains unclear.

More generally, previous studies on the associa-
tion between PTSD and ATN biomarkers have shown 
mixed and largely null results. For example, in arguably 
the most methodologically rigorous prior study on this 
topic, Weiner et  al. [60] examined 289 non-demented 
Vietnam-era veterans with traumatic brain injury (TBI) 
and/or PTSD who underwent cognitive testing, cerebro-
spinal fluid collection, and Aβ and tau PET scans. Results 
showed that compared to controls, veterans with histo-
ries of TBI and PTSD were more likely to have mild cog-
nitive impairment and lower mental status scores but 
there were no differences between groups in any of the 
ATN biomarkers examined. The apparent discrepancy 
between findings from large cohort and epidemiological 
studies on PTSD and risk for ADRD, and studies of the 
association between PTSD and ATN biomarkers, may be 
attributable to a variety of issues including (a) the possi-
bility that the PTSD-dementia association is mediated by 
medical comorbidities such as cardiovascular disease and 
diabetes, (b) that this association is driven by non-AD 
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specific neuropathology such as vascular or other forms 
of dementia, and/or (c) inherent differences between 
the clinical diagnosis of dementia in medical records 
versus the biological processes indexed by specific ATN 
biomarkers.

The findings of this study should be evaluated in the 
context of several limitations. Most notably, the study 
was based on cross-sectional archival data from pro-
jects that did not include neurocognitive measures or 
neuroimaging data and most of our participants were 
well below the age at which dementia is normally 
manifested. It is conceivable that significant effects of 
PTSD on brain age- and AD-associated biomarkers 
would be observed in older cohorts and/or individuals 
with PTSD and mild cognitive impairment or demen-
tia. On the other hand, the study featured a large and 
ancestrally diverse sample with genome-wide SNP and 
DNAm data, and 5 Simoa markers indexing essential 
components of the ATN biomarker framework. Find-
ings identified (a) novel and biologically plausible epi-
genetic associations with the factors that underlie the 
covariation of these markers which should inform 
future efforts to identify epigenetic loci reliably associ-
ated with ADRD and its biomarkers, and (b) robust age 
and race/ancestral associations that will be essential 
to consider in future efforts to develop the clinical and 
diagnostic applications of these tests.
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