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Abstract 

Background Metabolic side effects of psychotropic medications are a major drawback to patients’ successful treat-
ment. Using an epigenome-wide approach, we aimed to investigate DNA methylation changes occurring second-
ary to psychotropic treatment and evaluate associations between 1-month metabolic changes and both baseline 
and 1-month changes in DNA methylation levels. Seventy-nine patients starting a weight gain inducing psychotropic 
treatment were selected from the PsyMetab study cohort. Epigenome-wide DNA methylation was measured at base-
line and after 1 month of treatment, using the Illumina Methylation EPIC BeadChip.

Results A global methylation increase was noted after the first month of treatment, which was more pronounced 
(p < 2.2 ×  10–16) in patients whose weight remained stable (< 2.5% weight increase). Epigenome-wide significant 
methylation changes (p < 9 ×  10−8) were observed at 52 loci in the whole cohort. When restricting the analysis 
to patients who underwent important early weight gain (≥ 5% weight increase), one locus (cg12209987) showed 
a significant increase in methylation levels (p = 3.8 ×  10–8), which was also associated with increased weight gain 
in the whole cohort (p = 0.004). Epigenome-wide association analyses failed to identify a significant link between met-
abolic changes and methylation data. Nevertheless, among the strongest associations, a potential causal effect 
of the baseline methylation level of cg11622362 on glycemia was revealed by a two-sample Mendelian randomiza-
tion analysis (n = 3841 for instrument-exposure association; n = 314,916 for instrument-outcome association).

Conclusion These findings provide new insights into the mechanisms of psychotropic drug-induced weight gain, 
revealing important epigenetic alterations upon treatment, some of which may play a mediatory role.
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Background
Psychiatric disorders including schizophrenia, bipolar 
and major depression disorders are associated with a 
high prevalence of cardiovascular diseases (CVDs) lead-
ing to premature death [1]. This excessive cardiovascu-
lar risk results from a combination of factors including 
psychiatric disease-related aspects, shared genetic sus-
ceptibilities, unhealthy lifestyle and adverse effects of 
treatment. Psychotropic medications, such as antipsy-
chotics (most atypical and some typical), mood stabiliz-
ers (i.e. lithium and valproate) and some antidepressants 
(i.e. mirtazapine) can indeed increase the risk of meta-
bolic disorders including obesity, dyslipidemia, type 2 
diabetes and hypertension [2, 3]. Although weight gain 
and obesity are major risk factors for the development of 
other metabolic abnormalities, dysregulations following 
psychotropic treatment have also been observed without 
or with only slight weight gain, suggesting the implication 
of other mechanisms. Psychotropic drug-induced distur-
bances in lipid and glucose levels may thus occur follow-
ing an increase in adiposity and body weight, but also 
through independent pathways [2, 4, 5]. The multifacto-
rial mechanisms underlying the development of these 
adverse effects are only partially understood, and epige-
netic changes, driven by both environmental and genetic 
factors, may contribute to explaining their occurrence. 
Administration of psychotropic drugs may induce altera-
tions in DNA methylation, profoundly influencing gene 
regulation and expression [6–9]. Although this molecu-
lar mechanism is currently extensively studied in relation 
to treatment response, the pharmacoepigenetic of psy-
chotropic drug-induced metabolic side effects remains 
underexplored [10–14]. In the general population, some 
differentially methylated sites within the genome have 
already been reported to be causally linked to CVDs [15]. 
It is thus likely that psychotropic drugs also act through 
epigenetic mechanisms to increase CVDs risks.

Global methylation in relation to atypical antipsy-
chotic treatment and metabolic parameters was assessed 
in three different studies [16–18]. While the first study 
yielded no conclusive results [16], the second study 
showed that atypical antipsychotic use and insulin resist-
ance were both significantly associated with lower global 
methylation [17], and the last study highlighted a positive 
correlation between methylation levels and insulin resist-
ance [18]. These mixed preliminary results point towards 
an effect of psychotropic drugs on global methylation 
levels leading to metabolic side effects.

In a candidate gene approach, epigenetic analyses 
focusing on genes or genetic pathways with a highly 
probable role in the development of metabolic syndrome 
(MetS) induced by psychotropic medications were per-
formed. DNA methylation of the catechol-O-methyl 

transferase (COMT) gene [19] and insulin growth fac-
tor 2 (IGF2) gene [20] was measured, but no significant 
relationships between epigenetic variability and meta-
bolic parameters were found. Nonetheless, an association 
between changes in the methylation level of the CREB-
regulated transcription coactivator 1 (CRTC1) gene and 
early weight gain following psychotropic treatment ini-
tiation was shown [21], and a positive trend for increased 
methylation of protein kinase B (AKT2) associated with 
insulin resistance was observed in patients treated with 
atypical antipsychotics, while the opposite correlation 
was revealed in mood stabilizer users [22].

Hypothesis-driven studies may help reveal how modu-
lation of genes leads to metabolic side effects, but given 
the mixed results obtained to date, they might fail to 
capture the complex effects of psychotropic drugs in tar-
geting only specific sites. To overcome this limitation, 
epigenome-wide association studies (EWAS) may help to 
further investigate the role of epigenetics in psychotropic 
drug-induced metabolic side effects. The only studies 
that used this approach so far allowed to discover a dif-
ferentially methylated site in the fatty acyl CoA reductase 
2 (FAR2) gene that was associated with insulin resistance 
[23] and another site in the cadherin-like 22 (CDH22) 
gene that was associated with MetS [24].

Within the current study, we aimed to use the same 
hypothesis-free strategy to explore global methylation 
associated with metabolic alterations, in combination 
with a hypothesis-driven approach, addressing the rela-
tionship between site- or gene-specific DNA methyla-
tion patterns and metabolic side effects. Unlike previous 
cross-sectional studies that highlighted associations pre-
sent in samples of patients at a given time, we wished to 
capture the effects of psychotropic drugs occurring with 
treatment onset and followed a longitudinal design, ana-
lysing samples collected at the start of treatment and after 
one month. We then sought to investigate whether base-
line methylation or changes in methylation were associ-
ated with changes in weight and metabolic parameters.

Methods
Study design
Patients were recruited at the Department of Psychiatry 
of the Lausanne University Hospital as part of a large 
observational cohort study (PsyMetab) described else-
where [25]. Briefly, patients were recruited in PsyMetab 
when starting a treatment with a psychotropic drug 
known to induce weight gain and metabolic alterations 
(including most antipsychotics, mood stabilizers and 
some antidepressants). They were then followed-up in 
compliance with a local clinical guideline to control the 
occurrence of side effects. From this cohort, 79 patients 
with informed consent, included between February 2008 
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and February 2016, were selected, as illustrated in the 
flow chart available in the Additional file 1: Fig. S1. Most 
patients were not drug naïve and had already received 
psychotropic medications before entering the study. Early 
weight gain is a good predictor of metabolic complica-
tions following treatment introduction [26, 27]. Patients 
with a ≥ 5% weight increase in one month show impor-
tant long-term weight gain (≥ 15% after 3 months; ≥ 20% 
after 12 months), and the reasons for this rapid and con-
sistent weight gain are only poorly understood. We thus 
chose to include patients with important early weight 
gain (n = 39) and patients with no or minimal weight gain 
(n = 40). A comparative table (Additional file 1: Table S1) 
with the main characteristics of selected vs unselected 
patients is provided to ensure that the sample is repre-
sentative of the whole cohort.

When available, metabolic parameters including blood 
pressure, plasma levels of glucose, triglycerides, and cho-
lesterol (total cholesterol, LDL cholesterol and HDL cho-
lesterol), were retrieved from medical files. Metabolic 
syndrome status was assessed using the International 
Diabetes Federation (IDF) definition [28]. Information on 
diagnosis, age at medication onset, smoking status and 
sex was also extracted from medical records and/or spe-
cific questionnaires. Diagnostic groups were established 
according to ICD-10 classification, and psychotropic 
medications were categorized according to their pro-
pensity to induce weight gain in three groups, as already 
defined in previous analyses involving the PsyMetab 
cohort [21, 29–31], i.e., low-risk (e.g., amisulpride n = 3, 
aripiprazole n = 10); medium-risk (e.g., quetiapine n = 23, 
risperidone n = 8, lithium n = 8, and mirtazapine n = 3), 
and high-risk (e.g., valproate n = 1, olanzapine n = 19, and 
clozapine n = 4) [32–35].

DNA methylation
Blood samples were collected for each patient at the start 
of treatment (T0) and after one month (T1). Genomic 
DNA was obtained from whole blood as previously 
described [21]. DNA methylation was analysed at the 
iGE3 genomics platform of the University of Geneva 
(Home -  iGE3 Genom ics Platf orm -  UNIGE) using the 
Illumina Infinium Methylation EPIC BeadChip, enabling 
the measurement of over 850,000 methylation sites (Illu-
mina, San Diego, CA, USA).

Statistical analysis
Demographic and clinical characteristics of patients were 
described and compared between patients who gained 
5% or more of their initial weight (considered cases) and 
patients whose weight remained stable (considered con-
trols) using Wilcoxon Mann–Whitney rank-sum and 

Pearson χ2 tests for continuous and categorical variables, 
respectively.

All following statistical analyses were conducted using 
M-values to estimate methylation levels as this metric 
shows good statistical validity, and significant results 
were illustrated using β-values as it enables better inter-
pretability [36]. Principal component analysis was 
performed on M-values, and the top three principal com-
ponents were used as covariates in regression analyses 
to capture unmeasured confounding effects. Additional 
multivariable models adjusting for cell type composition 
were also conducted as sensitivity analyses, i.e., estimat-
ing the proportion of cell subtypes using the EpiDISH 
(Epigenetic  Dissection of  Intra-Sample  Heterogeneity) 
algorithm [37] and alternatively using percent neutro-
phils measured in blood samples in a subset of patients 
with available data. All analyses were 2-sided with 
alpha = 0.05. Data preparation was conducted using Stata 
16 (StataCorp; College Station, Texas), and analyses were 
performed using the R environment for statistical com-
puting version 4.0.2.

Global and epigenome‑wide methylation changes and their 
association with weight change
Global DNA methylation levels were estimated using the 
mean methylation level of all the analyzed sites, and dif-
ferences between T0 and T1 were evaluated using paired 
Student’s t-tests, once in all participants and separately in 
cases and controls.

To identify loci with epigenome-wide significant T0–
T1 changes in the entire cohort, and again, separately 
according to early weight gain groups, paired Student’s 
t-tests were performed, not adjusting on additional vari-
ables. The family-wise error rate (FWER) was controlled 
by the Bonferroni correction, and hence, nominal P val-
ues passing the 9 ×  10–8 threshold (alternatively 4.5 ×  10–8 
for the stratified analyses) were considered statistically 
significant [38]. The association between the CpG sites 
with epigenome-wide significant T0-T1 changes and 
weight gain was evaluated using a linear model. Weight 
change was adjusted for baseline BMI, smoking status, 
sex, age, treatment propensity to induce weight gain (cat-
egorized as low, moderate, or high as described above) 
and the first three principal components of methylation 
data (or cellular composition, in sensitivity analyses) and 
normalized using an inverse normal quantile transforma-
tion (INQT).

Epigenome‑wide association analyses (EWAS) with metabolic 
phenotypes in PsyMetab and investigation of causality 
by Mendelian randomization
To identify CpG sites with baseline methylation lev-
els or changes in methylation levels (between T0 and 

https://ige3.genomics.unige.ch/
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T1) associated with increased body weight gain, lin-
ear regressions were performed, using the same linear 
model as described above. Similarly, to identify CpG sites 
associated with changes in glucose and lipid plasma lev-
els (fewer patients with available data: glucose (n = 25), 
triglycerides (n = 39) and total- (n = 38), HDL- (n = 38) 
and LDL-cholesterol (n = 37)), linear regression models 
were run, adjusting for covariates of baseline phenotype, 
smoking status, sex, age, treatment propensity to induce 
weight gain and the first three principal components of 
methylation data as well as for the presence of a treat-
ment for diabetes or dyslipidemia for glucose and lipid 
phenotypes, respectively. For all EWAS, phenotypic traits 
were normalized, using an INQT. FWER was again con-
trolled by the Bonferroni correction, with nominal P val-
ues below 9 ×  10–8 considered statistically significant [38].

We selected CpG sites among the top 10 most signifi-
cant associations with each metabolic phenotype and 
estimated their causal effect by Mendelian randomization 
(MR) in independent study samples. MR methodology 
has been presented in depth elsewhere [39]. Briefly, the 
random distribution of single nucleotide polymorphisms 
(SNPs) at birth reduces the possibility of reverse causa-
tion or confounding as explanations for the association 
between the exposure and outcome in the same way that 
the allocation of an intervention in a randomized con-
trolled trial minimizes this possibility. Methylation quan-
titative trait loci (cis-meQTLs), discovered by Bonder 
et  al. in a cohort of 3841 European individuals [40], 
were used as instrumental variables and CpGs linked to 
a minimum of two SNPs were retained. The association 
of these genetic variants with the metabolic phenotypes 
were then derived from genome wide association studies 
(GWAS) performed in the UKBiobank (UKB), selecting 
British unrelated individuals (http:// www. neale lab. is/ uk- 
bioba nk, n ≈ 300,000, depending on the phenotype). The 
details of the UKB have been described elsewhere [41]. 
Briefly, UKB is a prospective cohort study including more 
than 500,000 individuals (40–69  years) recruited from 
the United Kingdom during 2006–2010. Two-sample MR 
analyses, using the inverse-variance weighted method, 
were eventually performed to estimate the causal rela-
tionships between CpGs and related metabolic pheno-
types [42].

Validation of previous findings
The role of methylation patterns in the three genes that 
have already been associated with metabolic outcomes in 
psychotropic drug treated patients was further character-
ized with our data. Thus, the associations between the 
average methylation in the region of the candidate gene 
AKT2 (5 out of 22 CpG sites present in our data) [22] and 
1-month glucose change were evaluated; the association 

between 1-month glucose change and the EWAS hit 
with insulin resistance [23], namely, cg10171063 located 
in FAR2, was assessed; and the association between the 
EWAS hit with MetS [24], namely, cg04640913 located 
in CDH22, and MetS was eventually tested. Linear and 
logistic models, adjusting for baseline phenotype, smok-
ing status, sex, age, treatment propensity to induce 
weight gain and the first three principal components of 
methylation data, were used for these analyses.

Hypothesis‑driven analyses
Three hypothesis-driven analyses were performed to 
select specific subgroups of CpG sites with a putative 
key role in weight gain or in psychotropic drug-induced 
metabolic side effects. The associations between baseline 
or T0-T1 change in methylation level with the metabolic 
phenotypes in the psychiatric cohort were assessed using 
the same models as described above. Associations with 
Bonferroni-corrected P values below 0.05 were consid-
ered statistically significant. These three analyses are fur-
ther described in the Additional file 1.

Results
Population characteristics
The clinical and demographic parameters of the 79 
included participants are presented in Table  1. The 
median age of the cohort was 37  years (range = 16–84) 
and men represented 50.6% of the patients. The propor-
tion of smokers was 35.9% in patients with early weight 
gain, while it reached 65.0% in patients whose weight 
remained stable during the first month of treatment 
(p = 0.01). Patients suffered mainly from psychotic dis-
orders (45.6%), followed by bipolar disorder (22.8%), 
schizoaffective disorder (12.7%) and depressive disorders 
(10.1%), with no difference in relation to early weight 
gain status (p = 0.33). They were treated primarily with 
psychotropic drugs carrying an intermediate propensity 
to induce metabolic side effects (53.2%), while 30.4% and 
16.5% of participants received a treatment with a high 
and low risk, respectively. The median BMI at treatment 
initiation was 23.1  kg/m2 (range = 15.2–37.5) and it did 
not differ according to early weight gain status (p = 0.16). 
Consistent with the study design and participant selec-
tion, the weight gain difference across both patient 
groups during the study period was statistically signifi-
cant (p <  10–4), and interestingly, a significant increase in 
MetS prevalence was noted among cases (p = 0.05).

Global and epigenome‑wide methylation changes 
and their association with weight change
The global mean methylation level was higher one month 
after treatment initiation (Table  1), and this increase 

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
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was greater in patients whose weight remained stable 
(p < 2.2 ×  10–16).

A significant change between baseline and 1-month 
methylation levels (p < 9 ×  10−8) was observed in 52 
methylation sites in the entire cohort. The complete list 
of CpG sites and their methylation levels is available in 
Table 2, with information related to the genomic location 
of these sites. The change in methylation level at these 52 
CpG sites was not associated with weight gain following 
treatment onset (nominal p > 0.09, data not shown).

The stratified analyses, restricted to samples with early 
weight gain, revealed a significant change (between 
T0 and T1) in methylation at one specific locus, 
namely cg12209987. This methylation site is located on 

chromosome 5, in an intergenic region 60 kb upstream of 
the PSMC1P5 pseudogene. Its median methylation level 
increased from 69.7% (interquartile range [IQR] = 66.1–
73.6) at baseline to 72.5% (IQR = 70.7–74.4) after a 
1-month treatment (pcorr = 0.04). In the entire cohort, the 
change in its methylation level was found to be related 
to weight change, as shown in Fig. 1, although this asso-
ciation did not reach epigenome-wide statistical signifi-
cance. The linear model predicted that a 2.8% difference 
in methylation level was associated with 0.85 kg of excess 
weight gain (95% CI 0.28–1.43, p = 0.004). Of note, this 
association remained significant when adjusting for white 
blood cell composition (0.78  kg of excess weight gain 
(95% CI 0.19–0.59, p = 0.01) when adjusting for estimated 

Table 1 Clinical and demographic parameters of the study sample, with global methylation change in participants stratified 
according to early weight gain status

BMI body mass index, WG weight gain
a Patients who gained 5% or more of their initial weight were considered cases, and patients whose weight remained stable were considered controls
b Statistical significance for differences between groups was tested using the Wilcoxon Mann–Whitney rank-sum test for continuous variables (except for the 
differences in methylation levels which were assessed using Student’s t-test) and Pearson χ2 test of independence for categorical variables. Significant p-values (< 0.05) 
are indicated in bold
c Psychotropic drugs are considered to confer a low, medium and high risk of metabolic side effects for amisulpride and aripiprazole; risperidone, quetiapine, 
mirtazapine and lithium; and valproate, clozapine and olanzapine, respectively
d Statistical significance for differences between baseline and 1-month values was tested using the Wilcoxon signed rank test for matched pairs for continuous 
variables and McNemar test for categorical variables. Significant p values (< 0.05) are indicated in bold
e Metabolic syndrome was evaluated according to the definition of the International Diabetes Federation [28]

N Total sample Controlsa (n = 40) Casesa (n = 39) p‑valueb

Age, median (range), y 79 37 (16–84) 37 (17–84) 39 (16–83) 0.56

Men, n (%) 79 40 (50.6) 20 (50.0) 20 (51.3) 0.9

Smoking, n (%) 79 40 (50.6) 26 (65.0) 14 (35.9) 0.01
Main diagnosis, n (%) 79 0.33

 Psychotic disorders (F20-F24; F28-F29) 36 (45.6) 17 (42.5) 19 (48.7)

 Schizoaffective disorders (F25) 10 (12.7) 6 (15.0) 4 (10.3)

 Bipolar disorders (F30–F31) 18 (22.8) 12 (30.0) 6 (15.4)

 Depressive disorders (F32–F33) 8 (10.1) 2 (5.0) 6 (15.4)

 Other 7 (8.9) 3 (7.5) 4 (10.3)

Psychotropic treatment group, n (%)c 79 0.74

 Low risk of WG 13 (16.5) 6 (15.0) 7 (18.0)

 Medium risk of WG 42 (53.2) 23 (57.5) 19 (48.7)

 High risk of WG 24 (30.4) 11 (27.5) 13 (33.3)

BMI, median (range), kg/m2 79

 Baseline 23.1 (15.2–37.5) 23.5 (17.1–36.5) 21.9 (15.2–37.5) 0.16

 First month 23.9 (17.0–39.5) 23.8 (17.1–36.5) 24.1 (17.0–39.5) 0.81

 p-valued  < 10–4  < 10–4  < 10–4

WG, median (range), % 2.4 (0–23.0) 0.5 (0–2.4) 7 (5.2–23.0)  < 10–4

Metabolic syndrome prevalence, n (%)e 51

 Baseline 3 (5.9) 3 (11.1) 0 (0.0) 0.09

 First month 8 (15.7) 4 (14.8) 4 (16.7) 0.86

 p-valued 0.23 0.32 0.05
Global baseline (T0) methylation (β-value), mean (range), % 79 61.78 (58.52–64.01) 61.80 (58.52–64.01) 61.77 (59.20–63.86) 0.87

Global methylation (β-value) increase (T1–T0), mean (95%CI), % 79 0.187 (0.185–0.190) 0.201 (0.198–0.204) 0.174 (0.170–0.177)  < 2.2 × 10–16
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Table 2 Baseline and 1-month methylation levels of 52 methylation sites with significant changes following treatment initiation

CpG site Baseline methylation 
level (β‑value), 
median (IQR), %

1‑month methylation 
level (β‑value), 
median (IQR), %

p‑valuea CHR CpG  positionb Reference  genec Location of CpG 
related to  genec

Relation to 
CpG  Islandd

cg10992198 67.7 (64.3–71.5) 70.7 (66.2–73.1) 0.00005 19 36,552,038 WDR62* Body

cg12120973 68.3 (65.1–71.7) 70.0 (67.1–74.3) 0.00009 1 1,215,925 SCNN1D* 5’UTR 

cg05034501 84.6 (82.9–86.4) 87.1 (85.1–89.5) 0.0001 3 148,985,369

cg05235884 81.3 (80.2–84.1) 82.8 (80.9–84.8) 0.0001 6 30,131,806 TRIM15 1stExon

cg11678481 75.6 (73.9–77.8) 77.8 (75.6–78.9) 0.0001 1 151,682,882 CELF3* Body

cg13422535 61.9 (58.9–64.1) 62.2 (60.2–65.6) 0.0001 22 47,077,682 S_Shelf

cg22329201 76.1 (73.1–77.4) 77.1 (74.8–79.3) 0.0002 4 3,569,189 S_Shelf

cg20548564 89.4 (88.3–90.6) 90.5 (89.3–91.3) 0.0004 13 28,240,073 POLR1D Body

cg20626144 74.0 (72.0–76.1) 75.1 (73.9–77.3) 0.0005 17 157,107 RPH3AL Body Island

cg24357026 9.8 (7.7–11.4) 8.3 (6.7–9.9) 0.0005 19 36,705,589 ZNF146* 5’UTR Island

cg02644728 74.1 (71.8–76.7) 75.6 (73.7–77.9) 0.0005 11 83,324,374 DLG2* Body

cg02692850 65.5 (63.0–67.3) 66.4 (64.3–67.9) 0.0006 21 44,607,862

cg05129295 56.4 (54.2–58.7) 58.4 (55.7–60.4) 0.0007 8 1,316,294

cg05696006 79.0 (76.5–79.9) 79.9 (77.9–81.4) 0.0007 19 7,622,906 PNPLA6* Body S_Shore

cg15223933 74.5 (72.9–76.1) 75.5 (74.1–77.0) 0.0008 17 39,916,203 JUP* Body S_Shelf

cg13691093 87.4 (84.9–89.2) 89.0 (86.9–91.0) 0.002 8 2,031,672 MYOM2 Body

cg27452651 7.1 (6.1–8.1) 6.2 (5.4–6.9) 0.002 22 50,312,357 ALG12* TSS1500 Island

cg13982468 88.8 (87.3–89.6) 89.8 (88.9–90.6) 0.004 12 120,571,393 GCN1 Body

cg22800959 94.6 (93.6–95.3) 95.2 (94.4–95.9) 0.004 6 32,020,477 TNXB Body

cg11702503 82.2 (80.3–84.0) 83.3 (81.6–85.0) 0.004 19 6,215,254 MLLT1 Body Island

cg20710898 69.8 (68.5–71.4) 71.4 (69.7–73.2) 0.004 10 96,996,833

cg23628099 68.2 (64.7–72.0) 70.0 (67.3–73.6) 0.004 8 48,089,762

cg25226092 63.2 (61.4–64.6) 64.3 (62.4–66.3) 0.005 3 39,508,863 MOBP* TSS1500

cg07769732 65.3 (61.9–67.7) 67.0 (62.9–70.3) 0.005 2 8,815,465 N_Shore

cg10825881 77.7 (75.7–79.0) 78.5 (77.4–80.0) 0.005 15 52,202,509 TMOD3 3’UTR 

cg17866025 62.4 (59.7–64.5) 64.0 (61.6–65.5) 0.006 1 39,051,682

cg18930928 79.2 (77.7–81.2) 80.2 (78.6–82.1) 0.006 1 205,210,953 TMCC2 Body S_Shore

cg02624558 5.2 (4.3–6.7) 4.9 (3.6–5.8) 0.008 1 202,777,611 KDM5B TSS200 Island

cg05103574 80.3 (78.6–82.0) 81.4 (79.9–83.2) 0.008 1 29,527,219 MECR* Body

cg08243790 64.1 (62.1–65.9) 65.4 (63.8–67.3) 0.008 8 127,485,353

cg14885690 78.4 (76.2–80.3) 79.9 (77.8–82.4) 0.009 1 43,195,659

cg27275821 75.5 (72.8–78.0) 78.6 (76.0–80.5) 0.009 1 89,144,331 PKN2-AS1 Body

cg00661205 75.6 (74.4–77.6) 77.0 (75.6–78.3) 0.01 13 42,400,902 KIAA0564* Body

cg08581040 83.1 (80.4–85.0) 84.5 (82.5–86.6) 0.01 4 39,172,577 S_Shore

cg09518293 71.0 (68.6–73.1) 72.2 (70.8–74.9) 0.01 2 179,673,636 TTN* TSS1500

cg10231096 85.8 (82.7–89.2) 87.5 (84.3–90.5) 0.01 15 31,451,780 TRPM1 Body

cg13003350 81.2 (78.4–83.7) 83.2 (80.0–85.2) 0.01 6 27,830,500 N_Shelf

cg13091133 67.4 (65.9–70.1) 69.4 (66.7–71.7) 0.01 4 42,190,340

cg16106297 75.2 (73.2–77.0) 76.3 (74.5–77.8) 0.01 19 58,556,609 ZSCAN1 Body Island

cg24870895 76.0 (74.1–77.6) 77.6 (75.3–78.9) 0.01 15 40,768,542

cg26032412 52.5 (51.0–54.1) 53.8 (51.6–55.5) 0.01 10 130,300,419 S_Shore

cg01823005 79.0 (75.8–82.6) 82.0 (78.3–84.1) 0.02 10 90,691,868 ACTA2-AS1 TSS1500

cg03797660 89.6 (88.1–91.1) 90.6 (89.7–91.9) 0.02 16 89,035,228 CBFA2T3 Body S_Shore

cg04043710 67.6 (64.0–70.4) 69.4 (65.9–71.0) 0.02 16 9,448,891

cg05864168 89.7 (88.8–91.0) 90.8 (89.6–91.8) 0.02 1 185,110,088 TRMT1L* Body

cg11867718 70.7 (68.5–72.9) 72.1 (69.8–73.7) 0.02 11 61,647,697 FADS3 Body

cg19267144 76.5 (75.2–78.5) 77.8 (76.2–79.6) 0.02 17 40,956,947 CNTD1 Body

cg20073412 95.5 (94.9–96.3) 96.3 (95.6–97.0) 0.02 11 131,560,558 NTM Body Island
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Table 2 (continued)

CpG site Baseline methylation 
level (β‑value), 
median (IQR), %

1‑month methylation 
level (β‑value), 
median (IQR), %

p‑valuea CHR CpG  positionb Reference  genec Location of CpG 
related to  genec

Relation to 
CpG  Islandd

cg23313005 82.7 (81.6–84.2) 84.0 (82.7–85.4) 0.02 5 176,965,046 FAM193B* Body

cg25470611 74.8 (71.4–78.0) 76.3 (72.9–79.7) 0.02 11 71,121,630 FLJ42102 Body

cg26856604 74.4 (71.0–76.7) 75.8 (73.6–77.8) 0.02 1 10,370,540 KIF1B Body

cg05058976 86.1 (84.5–87.3) 87.1 (85.6–88.3) 0.03 16 3,637,956 BTBD12 Body N_Shore

CHR chromosome, IQR interquartile range
a Statistical significance for differences between baseline and 1-month methylation was tested using paired Student’s t-test, without adjustment on additional factors. 
Bonferroni correction for epigenome-wide analyses was applied
b CpG positions refer to Genome Research Consortium human genome build 37 (GRCh37)/UCSC human genome 19 (hg19)
c Reference genes for the methylation sites, and gene regions where the CpGs are located according to the UCSC database. Empty fields indicate an intergenic 
location
* Specifies there exists > 1 gene or gene transcript at this location. TSS200 = 0–200 bases upstream of the transcriptional start site (TSS); TSS1500 = 200–1500 bases 
upstream of the TSS; 5′UTR = within the 5′ untranslated region, between the TSS and the ATG start site; Body = Between the ATG and stop codon, irrespective of the 
presence of introns, exons, TSS, or promoters; 3′UTR = between the stop codon and poly A signal
d The relation to a putative nearby CpG island, according to the UCSC database, is given. Shore = 0–2 kb from island; Shelf = 2–4 kb from island; N = upstream (5′) of 
CpG island; S = downstream (3′) of CpG island

Fig. 1 Association between 1-month methylation level change at cg12209987 and weight change. Weight change was adjusted for baseline BMI, 
smoking status, sex, age, treatment propensity to induce weight gain and the first three principal components of methylation data, and normalized 
using an inverse normal quantile transformation (INQT). The methylation level change was assessed using the M-value metric. Patients who gained 
5% or more of their initial weight were considered cases, and patients whose weight remained stable were considered controls
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cell subtype variation and 0.86  kg of excess weight gain 
(95% CI 0.08–1.65, p = 0.03) when adjusting for measured 
neutrophil variation in the restricted sample).

Epigenome‑wide association analyses (EWAS) 
with metabolic phenotypes in PsyMetab and investigation 
of causality by Mendelian randomization
Associations between CpG methylation sites and changes 
in metabolic outcomes did not reach epigenome-wide 
significance. The Q–Q plots were checked and showed 
the absence of inflation, as shown in the Additional 
file  1: Fig. S2, for the EWAS investigating the associa-
tion between the change in methylation levels (T1–T0) 
and the increase in body weight. Among the top 10 
most significant associations of each EWAS (6 meta-
bolic traits evaluated with baseline methylation and 
1-month methylation change: 120 sites selected), only 
seven methylation loci were associated with a minimum 
of two meQTLs, enabling the estimation of a causal effect 
through MR (Table  3). One of the tested associations, 
cg11622362 (on chromosome 11), located close to the 
transcription start site of the APIP gene and opposite the 
PDHX gene body, revealed a significant effect. Namely, a 
higher methylation level was shown to causally relate to 
higher glucose levels (p =  10–4).

In the psychiatric cohort, its baseline methylation level 
(median = 3.8%, IQR = 3.0–4.4) was negatively associated 
with a 1-month glucose change. Indeed, the model esti-
mated a difference of 1.4% (IQR) in baseline methylation 
level to be associated with a 0.39  mM smaller glucose 
increase (95% CI 0.24–0.55), although this association did 
not reach epigenome-wide significance (p = 2.96 ×  10–5). 
Of note, this association remained similar when adjust-
ing for white blood cell composition (0.40  mM smaller 
glucose increase (95% CI 0.24–0.57, p = 1.91 ×  10–5) 
when adjusting for estimated cell subtype variation and 
0.21 mM smaller glucose increase (95% CI − 0.21 to 0.63, 
p = 0.3) when adjusting for measured neutrophil varia-
tion in the restricted sample).

Validation of previous findings
Previous findings concerning AKT2 and FAR2 genes 
could be confirmed whereas results on CDH22 gene 
could not be validated (Additional file 1: Table S2).

An association between AKT2 methylation and glucose 
was indeed observed in our cohort. The median meth-
ylation level of the averaged 5 loci considered decreased 
from 3.4% (IQR = 2.9–3.8) at baseline to 3.3% (IQR = 2.3–
4.2) after a 1-month treatment. The linear model pre-
dicted that a decrease of 0.1% in methylation level was 
associated with a 0.04 mM (SE = 0.02) reduction in glu-
cose change (p = 0.02). However, no association between 

the baseline methylation level and glucose change was 
found.

The EWAS hit located in FAR2 was also associated 
with glucose in our sample. Its baseline methylation level 
(median = 3.0%, IQR = 2.0–4.3), but not the change in 
methylation, was negatively associated with a 1-month 
glucose change. Indeed, the linear model estimated a dif-
ference of 2.3% (IQR) in baseline methylation level to be 
associated with a 0.43  mM (SE = 0.16) smaller glucose 
increase (p = 0.01).

The EWAS hit located in CDH22 was not associated 
with MetS in our sample. Indeed, the logistic models did 
not reveal any significant association between the devel-
opment of MetS and baseline methylation or change in 
methylation (p > 0.14 for all).

Hypothesis‑driven analyses
The three hypothesis-driven analyses did not uncover 
significant associations and only some trends were 
revealed. The results are detailed in the Additional file 1: 
Tables S3, S4 and S5.

Discussion
Global methylation changes
This study provided insights into a putative effect of psy-
chotropic treatment on methylation as a mechanism 
leading to metabolic dysregulations. It assessed rapid 
changes in methylation following treatment initiation, 
and a global increase in methylation level was observed. 
This univariate analysis further showed that patients who 
gained ≥ 5% of their initial weight experienced a smaller 
1-month methylation change than patients whose weight 
remained stable. This last observation shows that the 
increase in methylation levels likely occurs secondary to 
treatment and is not (at least not exclusively) a conse-
quence of weight increase.

Nevertheless, it is challenging to distinguish medica-
tion-specific effects on DNA methylation from effects 
mediated by weight gain. For this purpose, future studies 
should include control groups of psychiatric patients with 
and without weight gain, but free from antipsychotics 
and compare the difference in the change in methylation 
occurring within one month. Unfortunately, such control 
groups were not available in the present study, and it is 
thus not possible to delineate the effect of the treatment, 
of weight increase and that of the natural course of dis-
ease. Most studies integrating control groups to date per-
formed cross-sectional analyses, and the few researchers 
who have already evaluated longitudinal methylation 
changes pre- and post- psychotropic drug therapy only 
included baseline comparisons  with control groups [8, 
14, 43].
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Epigenome‑wide methylation changes and association 
with weight change
Independent of weight increase, 52 methylation loci were 
shown to be significantly modified following the start of 
treatment. Most of these sites were located within a pro-
tein coding gene sequence and displayed an increase in 
methylation levels. The function of intragenic methyla-
tion is still largely unknown, but recent evidence supports 
a role of these methylation patterns in the regulation of 
alternative splicing [44–46]. In addition, a decrease in 
methylation was measured in three sites (cg24357026, 
cg27452651, cg02624558), found within CpG islands 
associated with promoters. As hypomethylation of 
CpG islands often correlates with active transcription 
of nearby genes [47, 48], the observed change in meth-
ylation may induce an increase in the expression of Zinc 
Finger Protein 146 (ZNF146), ALG12 Alpha-1,6-Man-
nosyltransferase (ALG12) and Lysine Demethylase 5B 
(KDM5B) genes. Interestingly, ZNF146 and KDM5B gene 
ontology annotations according to GeneCards [49], both 
include DNA-binding transcription factor activity, imply-
ing that their activation likely affects the regulation of 
many other genes.

Regarding changes in methylation related to metabolic 
side effects, we observed that individuals who underwent 
marked weight gain experienced a significant increase 
in methylation level at one specific site (cg12209987). 
Moreover, this methylation change remained associated 
with weight evolution in multivariate analysis performed 
in all patients. This methylation locus is located within an 
enhancer, according to the Ensembl database [50], 60 kb 
upstream of the pseudogene PSMC1P5. The increased 
methylation at this site has no currently known function 
but may contribute to the regulation of enhancer activity 
[51].

These last three cited methylation modifications, rather 
than having a direct phenotypic impact, likely influence 
downstream pathways. As this analysis was conducted 
shortly after treatment onset, only early changes were 
detected. The modifications observed might lead to the 
regulation of a broader set of genes. In future studies, it 
would be interesting to follow the evolution of the meth-
ylation profile over time, using additional blood samples 
and detect whether the observed changes remain stable 
over the course of treatment, continue to evolve in the 
same direction or return to baseline; and whether meth-
ylation of other genes would occur in a second step.

Epigenome‑wide association analyses (EWAS) 
with metabolic phenotypes in PsyMetab and investigation 
of causality by Mendelian randomization
The statistically nonsignificant results we obtained in 
EWAS analyses possibly result from a lack of statistical 

power, considering the expected small effect sizes of sin-
gle variations in DNA methylation. Besides, we used a 
conservative cutoff for FWER controlling, possibly lead-
ing to a certain rate of false negatives. Given the hetero-
geneity of the psychiatric population included—broad 
age range, diverse diagnoses, different current and past 
psychotropic drugs with various medication history—and 
the known impact these variables may have on metabolic 
side effects [52], a larger sample size would be required 
to identify hits. This would allow to further characterize 
the common involved mechanisms, and enable powerful 
stratified analyses, with more homogeneous groups with 
respect to specific factors.

Nevertheless, among the strongest associations 
observed, the causal role of the cg11622362 methylation 
level on glycemia could be established through an MR 
analysis. Importantly, the direction of the association 
was not concordant with the MR results, as high meth-
ylation at this locus was causally associated with ele-
vated plasma glucose levels, while the longitudinal data 
showed an association of high methylation with a lower 
1-month increase in plasma glucose. One thus needs to 
be cautious with causal assumptions because adiposity 
was shown to determine the alterations in methylation at 
the majority of the previously identified BMI-associated 
CpG sites [15, 53, 54]. Nevertheless, this finding deserves 
further research as the cg11622362 methylation site is 
located opposite the PDHX gene body. This gene encodes 
a subunit of the pyruvate dehydrogenase complex, which 
enables the conversion of pyruvate to acetyl coenzyme 
A, thereby linking glycolysis to the Krebs cycle. In addi-
tion, 3 SNPs located on this gene have been associated 
with type II diabetes mellitus, fasting blood glucose and 
insulin measurements, as well as with insulin resistance 
(HOMA-B) in recent GWAS [55, 56]. The functional 
and clinical relevance of this finding is thus notable, and 
methylation at cg11622362 may indeed have downstream 
effects influencing the change in plasma glucose levels 
following psychotropic treatment.

Validation of previous findings
Interestingly, we validated previous findings in this spe-
cific field. We indeed found a signal for the implication 
of AKT2 methylation in glucose homeostasis and con-
firmed an association between the previously identified 
EWAS hit in FAR2 and glucose. The direction of both 
analyses was concordant with the literature [22, 23]. 
The reason why these two associations did not reach 
genome-wide statistical significance can be explained 
by several factors. First, AKT2 was initially analysed in 
skeletal muscle and not blood samples. It is conceivable 
that the signal is attenuated in this marker tissue, but it 
is still very interesting to observe a convergent result. 
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Additionally, the association was evaluated between 
an average of 22 methylation loci and insulin resist-
ance, while we only had the data for 5 methylation sites 
in this genomic region, giving a less precise estimation 
of the methylation pattern. Last, the associations for 
both genes were estimated with glucose change, which 
is less stringent to indicate an abnormality in glucose 
homeostasis than insulin resistance. The relevance of 
the methylation patterns of AKT2 and FAR2 could be 
confirmed in a slightly different context, which gives a 
promising character to further research on these two 
genes.

Limitations
It is important to mention that methylation patterns 
are highly tissue—or even cell-type—specific [57, 58]. 
Although we controlled for cellular heterogeneity using 
principal components (with additional sensitivity anal-
yses using estimated cell subtype proportions and cel-
lular composition for a subset of patients), the putative 
effects of psychotropic medication on blood might not 
be identical to those occurring in target tissues involved 
in metabolic dysfunctions (i.e.: brain, adipose tissue, 
liver, etc.), as previously reported in in  vitro models 
[59]. Whether methylation patterns observed in blood 
might be relevant in the biological process leading 
to metabolic side effects or whether they can only be 
used as biomarkers attesting to related changes in the 
less accessible tissues of interest still needs validation 
[60]. Besides, and as previously mentioned, our cohort 
was treated with a variety of psychotropic drugs. The 
results observed in this study reflect putative shared 
mechanisms leading to metabolic adverse effects, but 
there may also be individual drug-specific changes 
that cannot be revealed. In addition, there is no perfect 
way to categorize treatments in terms of propensity to 
induce weight gain. There indeed exists various meta-
analysis ordering antipsychotics according to their risk 
of weight gain. While it is clear that olanzapine induces 
greater weight gain than aripiprazole, there is consid-
erable overlap in the confidence intervals for the drugs 
in between, and depending on the methodologies and 
the articles considered, the drug order sometimes dif-
fers [2, 33, 35, 52, 61, 62]. Moreover, a lack of head-to-
head comparisons with the other psychotropic drugs 
prevents to make indisputable drug categories. Last, we 
were not able to control for diet, somatic comorbidi-
ties, substance use, trauma and other factors known for 
influencing specific epigenetic sites as well as metabolic 
health. It is thus important to keep in mind that the 
changes observed after the introduction of a psycho-
tropic drug may be modulated by the patient’s history.

Conclusion
In summary, appreciable changes in methylation levels 
were observed following the prescription of psychotropic 
treatments, but their role in the onset of metabolic side 
effects remains to be fully elucidated. With an improved 
understanding of the mechanisms behind such side 
effects, epigenetic biomarkers may contribute to preci-
sion medicine in the future.
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