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Abstract 

Background Cell-free DNA (cfDNA) contains a large amount of molecular information that can be used for multi-
cancer early detection (MCED), including changes in epigenetic status of cfDNA, such as cfDNA fragmentation profile. 
The fragmentation of cfDNA is non-random and may be related to cfDNA methylation. This study provides clinical evi-
dence for the feasibility of inferring cfDNA methylation levels based on cfDNA fragmentation patterns. We performed 
whole-genome bisulfite sequencing and whole-genome sequencing (WGS) on both healthy individuals and cancer 
patients. Using the information of whole-genome methylation levels, we investigated cytosine–phosphate–guanine 
(CpG) cleavage profile and validated the method of predicting the methylation level of individual CpG sites using 
WGS data.

Results We conducted CpG cleavage profile biomarker analysis on data from both healthy individuals and cancer 
patients. We obtained unique or shared potential biomarkers for each group and built models accordingly. The mod-
eling results proved the feasibility to predict the methylation status of single CpG sites in cfDNA using cleavage profile 
model from WGS data.

Conclusion By combining cfDNA cleavage profile of CpG sites with machine learning algorithms, we have identified 
specific CpG cleavage profile as biomarkers to predict the methylation status of individual CpG sites. Therefore, meth-
ylation profile, a widely used epigenetic biomarker, can be obtained from a single WGS assay for MCED.
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Introduction
Cell-free DNA fragmentomics is a rapidly develop-
ing emerging field with significant biological and clini-
cal implications. Recently, it has been mainly used as an 
epigenetic marker for early detection of cancers [1, 2]. 
The fragmentation of cfDNA is related to the nucleo-
some packaging pattern of chromosomal DNA [3, 4], 
hence is related to gene expression profile. For example, 
compared to that of healthy individuals, cfDNA frag-
mentation profile of cancer patients shows a relatively 
lower peak at 166  bp but a higher proportion of short 
fragments below 150 bp in cfDNA fragment size. Addi-
tionally, the fragmentation patterns of cfDNA molecules 
contain a wealth of molecular information related to 
their tissue of origin [5].

Conventionally, the detection of DNA methylation 
status requires bisulfite conversion in the initial step to 
chemically convert the unmethylated cytosines to uracils 
and to be further detected as an thymine in subsequent 
amplification and sequencing using a non-proofread-
ing polymerase, while the methylated cytosines remain 
intact [6] However, a major drawback of this method is 
the bisulfite conversion [7], a harsh chemical reaction 
which requires intensive laboratory work, causes severe 
damage to DNA molecules and thus affects the detec-
tion of low-abundance target molecules(such as tumor 
cfDNA in early-stage cancer patients). Although tech-
nology developments like enzymatic conversion [8] and 
direct methyl-sequencing on third- generation sequenc-
ing platforms [9, 10] have reduced or even avoided this 
impact, bisulfite conversion-based techniques are still 
the most widely used method for methylation detection 
and WGBS is generally regarded as the gold standard for 
methylation sequencing, especially in clinical applica-
tions [11, 12].

Previous studies have revealed that the cleavage pro-
file of cfDNA was non-random and was correlated with 
the methylation status [13–15]. If this hypothesis can be 
confirmed and be further validated in WGS data, this 
method can simultaneously avoid the use of bisulfite 
conversion and the high cost of bisulfite sequencing with 
subsequent complicated methylation data analysis [16], 
which can easily be integrated into WGS assay, a labor- 
and cost-efficient routine genomic test [17, 18].

In this study, we collected data of WGS and WGBS 
from healthy individuals and cancer patients to inves-
tigate the methylation status of CpG sites surrounding 
cfDNA cleavage profile (within an 11-nucleotide [nt] 
window). By analyzing the cleavage profile of hyper- and 
hypo-methylated CpG sites in WGBS data, we trained 
an optimized model using machine learning algorithms 
to predict the methylation status of an individual CpG 
site. And based on this model, we extracted CpG cleavage 

profile from WGS data and trained an optimal model to 
predict the methylation status of CpG sites.

Methods
Participant recruitment and study design
Totally, 90 participants were recruited into this study, 
including 17 healthy individuals, 26 hepatocellular car-
cinoma (HCC) patients, 32 lung cancer patients, and 15 
colorectal cancer patients (Additional file  5: Table  S1). 
And among them, 32 participants, including 7 healthy 
individuals, 12 HCC patients, 2 lung cancer patients, and 
11 colorectal cancer patients, were proceeded with both 
WGBS and WGS. Therefore, there were 70 samples in 
WGBS dataset and 52 samples in WGS dataset (Fig. 1). 
Protocol for healthy individuals and cancer patient sam-
ple collection of this study was approved by the ethics 
committee of Shenzhen Traditional Chinese Medicine 
Hospital with Approval No. 201858 and protocols for all 
other types of cancer sample collection were approved 
by the ethics committee of University of Chinese Acad-
emy of Sciences Shenzhen Hospital with Approval No. 
LL-KT-2022053. All of them were performed following 

Fig. 1 The procedure for the methylation analysis of cfDNA fragment 
distribution
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international standards of good clinical practice. All 
HCC patients were enrolled at the time of diagnosis in 
the Shenzhen Traditional Chinese Medicine Hospital 
from March to December 2021, while patients with other 
cancer types were enrolled at the time of diagnosis in the 
University of Chinese Academy of Sciences Shenzhen 
Hospital from May to December 2022.

Cell‑free DNA extraction from plasma samples
Plasma was obtained by centrifugation of whole blood at 
1600g for 10  min. And then the supernatant was trans-
ferred to a new tube and further centrifuged at 10,000g 
for 15  min to remove cell debris from the plasma. For 
each participant, cfDNA was isolated and purified from 
3  mL plasma using the HiPure Circulating DNA Midi 
Spin Kit S (Magen Biotech Inc., Guangzhou, China) into 
a final elution volume of 50 μL. Quality control was per-
formed to these libraries using Qsep100 (Bio-optic. Inc., 
Taiwan, China) for fragment size distribution and Qubit 
4.0 (ThermoFisher Inc., MA, USA) for concentration, and 
cfDNA samples with abnormal fragment size distribution 
(showing distribution outside the normal cfDNA peak) 
and ultra-high concentration were identified as contami-
nated with genomic DNA (mainly from deceased white 
blood cells during logistics).

WGBS library construction and sequencing
For the cohort of participants including 12 healthy indi-
viduals, 12 HCC patients, 26 lung cancer patients, and 
20 colorectal cancer patients, WGBS was performed 
with 10–20  ng of cfDNA input per participant. WGBS 
Library for whole-genome bisulfite sequencing was con-
structed for each cfDNA sample using RainbowMerry 
cfDNA Methylseq Library Prep Kit (Rapha Biotech. Inc., 
Shenzhen, China). This kit combined bisulfite conver-
sion and single-stranded NGS library preparation tech-
nology [19] with modifications including that usage of 
SA-coated beads was omitted and Klenow fragment was 
replaced by a uracil tolerant enzyme with 5′–3′ synthe-
sis activity. This WGBS library construction method was 
more efficient than conventional WGBS library construc-
tion methods in terms of converting more original DNA 
molecules into sequencing library after bisulfite conver-
sion. It allowed library preparation and sequencing with 
ultra-low DNA input suitable for cfDNA. Quality control 
was performed to these libraries using  Qsep100 (Bio-
optic. Inc., Taiwan, China) and Qubit 4.0 (ThermoFisher. 
Inc., MA, USA), and every four libraries were sent for 
sequencing on a separate lane of MGI-2000 sequencer 
using DNBSEQ™ technology to guarantee that the 

average sequencing depth of each sample reaches at least 
8.74 × with 12.24 × on average.

Whole‑genome sequencing library construction 
and sequencing
For the cohort of participants including 12 healthy indi-
viduals, 12 HCC patients, 14 lung cancer patients, and 
14 colorectal cancer patients, WGS was performed 
using 10  ng of cfDNA input for each participant. WGS 
libraries were constructed using RainbowOne Universal 
DNA Library Prep Kit for MGI (Rapha Biotechnology 
Inc., China), following the fundamental principles for 
WGS library preparation including molecular end repair, 
sequencing adaptor ligation, and library clean up. The 
libraries were then amplified using VAHTS HiFi Ampli-
fication Mix (cat. N616-01) and purified using VAHTS 
DNA Clean Beads (cat. N411-02), both purchased from 
Vazyme Biotech Co., Ltd., Nanjing, China. Quality con-
trol was performed on these libraries using  Qsep100 
(Bio-optic. Inc., Taiwan, China) and Qubit 4.0 (Ther-
moFisher. Inc., MA, USA), and libraries were sent for 
sequencing on MGI-2000 sequencer (BGI Genomics 
Inc., Wuhan, China) using DNBSEQ™ technology  and 
sequencing mode. The sequencing quote was designed to 
ensure that the average sequencing depth of each sample 
reaches at least 14.72 × with 18.34 × on average.

Statistical analysis and machine learning
We used XGBoost [20] as the machine learning algorithm 
to build our models and performed the feature extraction 
to WGBS data as follows. Firstly, adapter sequences, low-
quality bases, and short-length sequences were trimmed 
off from the raw WGBS data using the software fastp. 
Then, the filtered reads were aligned to the reference 
genome (GRCh38) using the software bsbolt, followed by 
sorting and PCR duplicate removal of the aligned BAM 
file. Next, the CpG site information and methylation 
expression information were extracted using the soft-
ware MethyDackel, with a 5nt length range upstream and 
downstream of the methylated C position as the CpG 
cleavage windows. The relative positions of this sequence 
corresponded to − 5, − 4, − 3, − 2, − 1, 0, + 1, + 2, + 3, + 4, 
and + 5. The number of broken reads at each base posi-
tion within the CpG cleavage windows was calculated. 
The CpG cleavage windows, with a depth greater than 
50 × and a terminal sequence count greater than 10 at the 
methylated C position (position 0), were selected for sub-
sequent model training. The hyper- and hypo-methylated 
CpG sites were defined as CpG sites with a methylation 
index > 70% and < 30%, respectively. A 11-nt length CpG 
cleavage window was used as the unit, and the cleavage 
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proportion was calculated for each nt within the window 
to form the CpG cleavage profile, as shown in the follow-
ing formula:

The hypo-methylated CpG cleavage profiles were 
labeled as CLASS0, while the hypermethylated ones were 
labeled as CLASS1. The CpG cleavage profile model con-
sists of 11 features, which were the cleavage proportions 
of each of the 11-nt cleavage window. Each CpG cleavage 
profile was used as data input for building models. The 
dataset was randomly divided into a training set and a 
validation set at a ratio of 7:3, and the model was calcu-
lated multiple times until a steady result was achieved.

For WGS dataset, we firstly performed quality control 
of the raw data using the software fastp. Then, we aligned 
the filtered reads to the reference genome (GRCh38) 
using the software bwa, followed by sorting and PCR 
duplicate removal of the aligned BAM file. Based on the 
hyper- and hypo-methylated information of CpG cleav-
age windows from the WGBS data of the same group 
of samples, we extracted, calculated, and classified the 
cleavage proportion of CpG cleavage windows from the 
WGS data’s BAM files. And based on the cleavage profile 
from WGS data, we trained and validated the model to 
predict the methylation status of an individual CpG site 
in cfDNA.

The modeling for each group of WGBS and WGS data 
was iteratively trained to obtain the optimal result. The 
CpG cleavage windows from the training set of the opti-
mal model were selected as candidate biomarkers for 
functional enrichment analysis.

Based on true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN) of cancer predic-
tion, the sensitivity [TP/(TP + FN)], specificity [TN/
(TN + FP)], true-positive rates (TPR) [TP/(TP + FN)], 
and false-positive rate (FPR) [FP/(FP + TN)] predictive 
values, accuracy [(TP + TN)/(TP + FP + TN + FN)], were 
calculated using the Numpy (v 1.18.5).

Results
Verification of the direct impact of DNA methylation 
on the cleavage profile of cfDNA
To verify if the level of DNA methylation affects the 
cleavage profile of cfDNA, we performed WGBS to 
70 samples, including 12 healthy individuals, 12 HCC 
patients, 26 lung cancer patients, and 20 colorectal can-
cer patients. And we also performed WGS to 52 samples, 
including 12 healthy individuals, 12 HCC patients, 14 
lung cancer patients, and 14 colorectal cancer patients 
(Fig. 1). To obtain a sufficient depth of sequencing for the 
analysis of cleavage proportion, we merged the samples 

Cleavage proportion at site i = No. of fragment ends at a ste i/sequening depth at site i

of the same group in WGBS dataset, and named them 
A12, H12, L26, and C20, respectively (Additional file  6: 
Table  S2). The number of cleavage windows for hyper- 

and hypo-methylated CpG sites in A12 was 22,271,691 
and 579,870, respectively. The number of cleavage win-
dows for hyper- and hypo-methylated CpG sites in H12 
was 20,299,374 and 704,054, respectively. The number of 
cleavage windows for hyper- and hypo-methylated CpG 
sites in L26 was 22,613,911 and 614,383, respectively. 
The number of cleavage windows for hyper- and hypo-
methylated CpG sites in C20 was 22,319,554 and 574,260, 
respectively. The mean cleavage proportion for hyper- 
and hypo-methylated CpG sites in A12 were 0.0329 and 
0.0276, respectively, with a difference of approximately 
1.2 times. The mean cleavage proportion for hyper- and 
hypo-methylated CpG sites in H12 were 0.1354 and 
0.0841, respectively, with a difference of approximately 
1.6 times. The mean cleavage proportion for hyper- and 
hypo-methylated CpG sites in L26 were 0.2368 and 
0.1152, respectively, with a difference of approximately 
2.0 times. The mean cleavage proportion for hyper- and 
hypo-methylated CpG sites in C20 were 0.1924 and 
0.0914, respectively, with a difference of approximately 
2.1 times. Comparing to that of healthy individuals, the 
difference of cleavage proportions between hyper- and 
hypo-methylated CpG sites in three groups of cancer 
datasets was more pronounced. The analysis process is 
illustrated in Fig. 1.

In healthy individuals and cancer patients, the mean 
cleavage proportion of cytosine in hyper- methylated 
CpG sites is 0.2–1.1 times higher than that of hypo-
methylated CpG sites. And the mean cleavage propor-
tion drops dramatically at the 1-nt position immediately 
preceding a methylated CpG as shown in Fig. 2. This dif-
ference in cleavage resulted in characteristic changes in 
the relative presentation of CGN and NCG motifs at the 
sequence terminus, where N represents any nucleotide. 
The ratio of CGN/NCG motifs was related to the meth-
ylation level of CpG sites. Therefore, cfDNA cleavage 
profile can be used to analyze cfDNA methylation status.

Prediction models for methylation status at CpG sites using 
cleavage profile from WGBS data
We selected CpG site cleavage windows with sequencing 
depth greater than 50 × and a terminal sequence count 
greater than 10 for model training and validation, to 
ensure there are effective cleavage proportion to be used 
by the model’s machine learning algorithm. Based on the 
CpG cleavage proportion, prediction model was trained 
and validated using the machine learning algorithm, 
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XGBoost, to identify a CpG site as being hyper- or 
hypo-methylated.

The AUC of the prediction model for healthy individu-
als was 0.898, with a sensitivity of 0.857 and a specificity 
of 0.857. The AUC of the prediction model for patients 
with HCC was 0.959, with a sensitivity of 0.857 and 
a specificity of 1. The AUC of the prediction model for 
patients with lung cancer was 0.896, with a sensitivity of 
0.882 and a specificity of 0.823. The AUC of the predic-
tion model for patients with colorectal cancer was 0.827, 
with a sensitivity of 1 and a specificity of 0.777. The mod-
eling results proved the feasibility to predict the methyla-
tion status of individual CpG sites using cfDNA cleavage 
profile. And the performance of four models shows they 
are not affected by the pathological conditions of the par-
ticipants (Fig. 3).

Prediction models for methylation status at CpG sites using 
cleavage profile from WGS data
Similar to the process of setting up prediction models 
using the WGBS data, we extracted the optimal cleav-
age windows from WGBS data and calculated cleavage 
proportion for each of these windows using WGS data. 

Fig. 2 Cleavage profile of cfDNA at CpG sites. a The cleavage profile of cfDNA for healthy individuals; b the cleavage profile of cfDNA for HCC 
patients, C: the cleavage profile of cfDNA for lung cancer patients, d the cleavage profile of cfDNA for colorectal cancer patients

Fig. 3 The AUC curves of the prediction models for methylation 
status using WGBS data. Curves in different colors represent 
different groups of participants, with green for healthy individuals, 
blue for HCC patients, yellow for lung cancer patients, and purple 
for colorectal cancer patients
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These values of cleavage proportion were then used as 
input to build models via XGBoost algorithm to predict 
the methylation status of CpG sites in these windows. To 
obtain a sufficient depth of sequencing for the analysis of 
cleavage proportion, we merged the samples of the same 
group in WGS dataset, and named them A12, H12, L14, 
and C14, respectively (Additional file 6: Table S2).

The AUC of the prediction model for healthy individu-
als was 0.837, with a sensitivity of 1 and a specificity of 
0.714. The AUC of the prediction model for patients with 
HCC was 0.898, with a sensitivity of 0.857 and a specific-
ity of 0.857. The AUC of the prediction model for patients 
with lung cancer was 0.772, with a sensitivity of 0.764 and 
a specificity of 0.750. The AUC of the prediction model 
for patients with colorectal cancer was 0.844, with a sen-
sitivity of 0.750 and a specificity of 0.857. The modeling 
results proved the feasibility to predict the methylation 
status of individual CpG sites using cfDNA cleavage pro-
file solely using WGS data. And the performance of four 
models shows they are not affected by the pathological 
conditions of the participants as shown in Fig. 4.

Functional annotation of optimal cleavage windows 
for biomarker development
From the prediction models above, we obtained the 
optimal cleavage windows of each groups of partici-
pants and located their positions in genome to identify 
related genes. Then, we performed function enrichment 

annotation [21] to these genes and compared their occur-
rence between different groups of participants. Con-
sequently, part of these genes were selected into three 
categories of potential biomarkers (Fig. 5).

Firstly, there are 12 genes shared among all four groups 
of participants and functional annotation of these genes 
indicated that they were significantly involved in the 

Fig. 4 The AUC curves of the prediction models for methylation 
status using WGS data. Curves in different colors represent different 
groups of participants, with green for healthy individuals, blue 
for HCC patients, yellow for lung cancer patients, and purple 
for colorectal cancer patients

Fig. 5 Numbers of shared and unique candidate biomarkers (genes) 
among four groups of participants. The oval in green represents 
the genes identified in the group of healthy individuals; the oval 
in light blue represents the genes identified in the group of HCC 
patients; the oval in pink represents the genes identified in the group 
of lung cancer patients; and the oval in yellow represents the genes 
identified in the group of colorectal cancer patients

Fig. 6 Functional annotation of 12 genes shared among all four 
groups
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pathways with fundamental biological functions like 
composition of ribosome, lipidation of proteins, and 
transmembrane transport (Fig. 6). And these genes could 
serve as potential biomarkers in a general model to pre-
dict methylation status based on cleavage profile from 
WGS data.

The horizontal axis represents the proportion of genes 
enriched to the target pathway in the total number of 
genes, and the vertical axis represents the pathway of GO 
enrichment analysis. The bluer the color of the dot is, 
the more significant the probability is for the genes to be 
annotated to this GO Term.

Secondly, there are three genes shared among the 
three groups of cancer patients but not with the group 
of healthy individuals, namely BAGE2, HAVCR1P1, and 
LINC01667. Numerous studies have reported the corre-
lation of the abnormal expression of BAGE2 [22, 23] and 
LINC01667 [24] with carcinogenesis of multiple types of 
cancers. Therefore, these genes could be potential bio-
markers to discriminate healthy individuals from cancer 
patients in general.

Thirdly, there are 11 genes unique to the group of HCC 
patients, 40 genes unique to the group of lung cancer 
patients, and 22 genes unique to the group of colorec-
tal patients. And functional annotation of these genes 
showed their involvement in multiple pathways related 
with tumorigenesis (Fig.  7). Furthermore, some of the 
genes were identified to be associated with organ-specific 
functions, e.g., the GO terms urea metabolic process and 
urea cycle identified in the annotation result of genes 
unique to HCC patients’ group (Fig. 7a), which suggested 
they could be potential biomarkers specifically for detec-
tion of each of the related types of cancer.

The GO directed acyclic graphs related to GO terms in 
Figs. 6, 7a, b, c were illustrated in Additional file 1, 2, 3, 4: 

Figs. S1, S2, S3, and S4, respectively. And the GO Term 
information was listed in Additional file 7: Table S3.

Discussion
In this study, we validated the correlation between the 
cleavage profile of CpG sites and the methylation sta-
tus of C sites in cfDNA WGBS datasets of patients with 
three common types of solid tumors, including HCC, 
lung cancer, and colorectal cancer. And based on this 
assay, we established the method to predict methylation 
status of individual CpG sites in cfDNA using cleavage 
profile solely inferred from WGS data. Furthermore, we 
performed function annotation to the cleavage windows 
from the optimal prediction model above to identify 
related genes and their biological functions. And we com-
pared the genes from the three types of cancer patients’ 
groups and healthy individuals’ group to identify shared 
and unique ones between these groups for biomarker 
development. This novel method of methylation analy-
sis does not require labor and cost intensive experiment 
with bisulfite or enzyme-catalyzed cytosine conversion, 
which is a necessary step in most routine methods for 
methylation detection. Therefore, our approach not only 
preserves the integrity of the DNA molecules, but also 
allows simultaneous analysis of genetic and epigenetic 
information in a single WGS assay, opening new possibil-
ities for large-scale methylation research and translation.

We used a machine learning algorithm to train a model 
on 11-nt cleavage windows centered on CpG. Different 
cleavage windows and the cleavage values at each posi-
tion in the window form a numerical matrix. Through 
model training with the XGBoost algorithm, the optimal 
model can effectively distinguish between hyper- and 
hypo-methylated levels of CpG sites in clinical samples, 
achieving AUCs of 0.959, 0.896, and 0.827 for the groups 

Fig. 7 Functional annotation of genes unique to each of the three types of cancers. a For the group of patients with HCC; b For the group 
of patients with Lung cancer; c For the group of patients with Colorectal cancer
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of patients with HCC, lung cancer, and colorectal cancer, 
respectively. And such high level of accuracy is enough 
for this method to be used in clinical application.

What is more, our study identified three genes 
(BAGE2, HAVCR1P1, and LINC01667) as potential bio-
markers to discriminate healthy individuals from mul-
tiple types of cancers in general. Additionally, we also 
identified a number of genes unique to a specific type of 
each of the three cancers (Fig. 5). Therefore, these genes 
can serve as potential biomarkers for cancer type iden-
tification, a necessary component of multiple cancer 
early detection (MCED) using plasma cfDNA, in which 
the cfDNA molecules with cancerous aberrations could 
possibly originate from anywhere in the body where 
blood circulation reaches and thus it is a necessity to 
source these cancer-featured cfDNA molecules for 
their tissue or organ origin to identify cancer types, and 
ultimately for efficient diagnosis and treatment.

As the CpG cleavage windows in each set of WGS 
data for methylation status prediction were obtained 
through analysis of WGBS data in this study, there is 
a concern that the cleavage profile might be altered in 
bisulfite-treated DNA, so the relevance of using opti-
mal cleavage windows from WGBS data to predict 
methylation status in naturally fragmented DNA (in 
WGS data) is uncertain. Several studies have suggested 
that bisulfite conversion can shorten large-size genomic 
DNA(generally over 20  kb in size) but does not affect 
small-sized cfDNA(mainly distributing in 140–170  bp 
size range) [25–28], neither does it affect the features 
in cfDNA end motifs [29]. Therefore, the influence of 
bisulfite conversion to the cleavage profile of cfDNA 
as presented in WGBS data is limited and should not 
affect the methodology of this study. However, the 
detailed chemical mechanism of bisulfite conversion’s 
influence to cleavage profile remains unclear and fur-
ther study on this issue is needed, which is a limitation 
of this study.

Another limitation of this study is the sequencing 
cost. The CpG cleavage windows for model training cur-
rently need a C-site with a sequencing depth greater 
than 50× and a terminal sequence count greater than 10, 
which requires the average sequencing depth of WGS to 
be at least 50×. This results in high cost in sequencing 
and reduces the generalizability of the method in routine 
clinical application. However, this problem can be solved 
when sequencing cost continues to drop and the predic-
tion models are further optimized to tolerate WGS data 
as input with depth lower than 50×.

In summary, we have established a cfDNA cleavage 
profile based model through machine learning algo-
rithms, to predict methylation status of individual CpG 
sites in a minimum-invasive, labor and cost-efficient 

manner. And the potential biomarkers found in this 
study provides an idea for targeted sequencing of specific 
genomic regions relevant to selected cleavage windows, 
rather than sequencing on whole-genome scale, e.g., 
setting up a multi-cancer detection panel, which could 
reduce the cost and promote the applicability of our 
method. This study opens up avenues for technology and 
biomarker development for multi-cancer early detection, 
an emerging field with great impact on public health, and 
for other medical applications such as noninvasive prena-
tal screening and organ transplantation.

Abbreviations
WGS  Whole-genome sequencing
WGBS  Whole-genome bisulfite sequencing
AUC   Area under the curve
cfDNA  Cell-free DNA
MCED  Multi-cancer early detection
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