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Abstract 

Rationale Cancer of unknown primary (CUP) is a group of rare malignancies with poor prognosis and unidentifi-
able tissue-of-origin. Distinct DNA methylation patterns in different tissues and cancer types enable the identification 
of the tissue of origin in CUP patients, which could help risk assessment and guide site-directed therapy.

Methods Using genome-wide DNA methylation profile datasets from The Cancer Genome Atlas (TCGA) 
and machine learning methods, we developed a 200-CpG methylation feature classifier for CUP tissue of origin 
prediction (MFCUP). MFCUP was further validated with public-available methylation array data of 2977 specimens 
and targeted methylation sequencing of 78 Formalin‐fixed paraffin‐embedded (FFPE) samples from a single center.

Results MFCUP achieved an accuracy of 97.2% in a validation cohort (n = 5923) representing 25 cancer types. When 
applied to an Infinium 450 K array dataset (n = 1052) and an Infinium EPIC (850 K) array dataset (n = 1925), MFCUP 
achieved an overall accuracy of 93.4% and 84.8%, respectively. Based on MFCUP, we established a targeted bisulfite 
sequencing panel and validated it with FFPE sections from 78 patients of 20 cancer types. This methylation sequenc-
ing panel correctly identified tissue of origin in 88.5% (69/78) of samples. We also found that the methylation levels 
of specific CpGs can distinguish one cancer type from others, indicating their potential as biomarkers for cancer 
diagnosis and screening.

Conclusion Our methylation-based cancer classifier and targeted methylation sequencing panel can predict tissue 
of origin in diverse cancer types with high accuracy.

Keywords Cancer of unknown primary, Methylation classifier, Tissue of origin, Machine learning, Random forest, 
Elastic net, Targeted methylation sequencing

Introduction
Cancer of unknown primary (CUP), accounting for about 
2% of all cancer diagnoses, is a heterogeneous group of 
metastatic malignancies without identifiable primary 
tumor sites. CUP can be categorized into favorable and 
unfavorable subsets [1, 2]. Through a standard diag-
nostic workup, 15–20% of patients with CUP can be 
assigned to a putative primary tumor site [3]. Patients 
in these subsets typically receive site-specific therapies 
and have favorable outcome. The favorable-CUP sub-
sets encompass head and neck squamous cell carcinoma, 
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breast, ovarian, prostate, kidney, and colorectal cancer 
[1]. The remaining patients with CUP (80–85%) fall into 
the unfavorable subset and will receive empiric chemo-
therapies [3]. The favorable-CUP and unfavorable-CUP 
have median overall survivals (OS) of 11.7  months and 
3.9 months, respectively [2]. The 1-year survival rates in 
these two subsets were 45% and 11%, respectively [2].

The initial evaluation for CUP includes a thorough 
physical examination, basic blood tests, CT/MRI scans, 
endoscopies, and microsatellite instability (MSI)/mis-
match repair deficiency (dMMR) testing [3]. The major 
CUP histologies include well to moderately differentiated 
adenocarcinomas (~ 50%), poorly or undifferentiated 
adenocarcinomas (~ 30%), squamous-cell carcinomas 
(~ 15%), and undifferentiated neoplasms (~ 5%) [3]. 
Although a routine histopathological workout can deter-
mine the most likely cell lineages of CUP, it cannot define 
the primary tumor site for most CUP cases [4]. The iden-
tification of tissue of origin in patients with unfavorable-
CUP can reassign them to the favorable-CUP subsets and 
enable the application of site-specific therapies [3].

Epigenetic modifications, including DNA methylation, 
play an important role in the regulation of tissue-specific 
gene expression and cellular identity [5]. Distinct DNA 
methylation pattern in different tissue and cancer types, 
making it a promising tool for cancer classification. The 
TCGA project has generated genome-wide DNA methyl-
ation profiles of 10,814 tumor samples in 33 cancer types 
[6]. This extensive methylation dataset enables the devel-
opment of cancer classifiers, which can be used for CUP 
diagnosis [7].

DNA methylation profiling has been used in the clas-
sification of sarcoma, central nervous system (CNS) and 
sinonasal tumors [8–10]. Methylation classifiers also 
showed promising results in tissue of origin prediction 
among patients with CUP or head and neck squamous 
cell cancers with unknown primary (HNSCC-CUPs) [11, 
12]. The primary goal of this study is to develop an afford-
able and accessible targeted methylation next-generation 
sequencing panel for CUP diagnosis. Furthermore, we 
discovered candidate CpGs whose methylation status can 
distinguish one cancer type from others.

Methods
Feature selection and classifier development
Whole-genome Illumina Infinium HumanMethyla-
tion450 (450  K) BeadChip  array data across 22 can-
cer types and adjacent normal tissues were obtained 
from The  Cancer Genome Atlas (TCGA) NCI GDC 
Data Portal (https:// portal. gdc. cancer. gov) (Additional 
file  1: Table  S1). Since the TCGA ovarian cancer meth-
ylation dataset was based on the low-coverage Infin-
ium HumanMethylation27 (27  K) array, we replaced it 

with an ovarian cancer 450 K array methylation dataset 
(GSE102119) [13].

For feature selection, we employed the Random For-
est (RF) algorithm, which was used in the EPICUP CUP 
classifier and the DKFZ CNS tumor classifier [8, 12]. The 
combined methylation datasets of 23 cancer types were 
randomly split into a training set (30%) and a validation 
set (70%) (Fig. 1A, Additional file 1: Table S1). For every 
CpG site, an analysis of variance with one-way ANOVA 
was performed to compare methylation level (β values) 
among different cancer types. A Tukey’s honest sig-
nificant difference post hoc test was applied to features 
with significant difference. CpGs that were differentially 
methylated in at least one cancer type were selected 
(Δβ > 0.2, p < 0.01). A RF classifying algorithm was then 
trained in two consecutive steps: (1) the selected CpGs 
were employed to build a prediction model using the RF 
machine learning method (R package randomForest ver-
sion 4.7–1.1), and the variable importance of each CpG 
site was calculated by the mean decrease in accuracy; 
(2) CpGs with reduced out-of-bag (OOB) error were 
added in order of descending variable importance. We 
used default values of the RF parameters: ntree = 500, 
node size = 1, mtry = sqrt (p), where p is the number 
of features. After five runs of the two-step procedure, 
a total of 744 CpGs were obtained by the union of 200 
CpGs with highest variable importance from each run. 
Next, we evaluated the tissue of origin prediction perfor-
mance of the top 50, 100, 150, 200, 250, and 300 features 
on the validation set. We found that the top 50 features 
had the lowest accuracy (~ 96%), while others had simi-
lar results (~ 98%). In consideration of methylation sig-
nal loss during capture probes synthesis and targeted 
bisulfite sequencing, we chose 200 as the number of fea-
tures for classifier development and targeted methylation 
sequencing panel design. We retrained the RF model with 
the 744 CpGs and sorted them with variable importance. 
The top 200 CpGs with highest variable importance were 
selected as the final methylation feature.

For classifier development, we applied 450 K methyla-
tion array datasets from 32 cancer types (31 from TCGA) 
(Additional file  1: Table  S2). Based on the similarity of 
DNA methylomes and/or tissue of origins, we made the 
following adjustments: uterine carcinosarcoma (UCS) 
and uterine corpus endometrial carcinoma (UCEC) were 
grouped as the uterine cancer (UC) cohort (n = 368); 
colon and rectum adenocarcinoma (COAD/READ) were 
grouped as the colorectal cancer (CRC) cohort (n = 283); 
acute myeloid leukemia (LAML) and diffuse large B-cell 
lymphoma (DLBC) were grouped as the hematolymphoid 
malignancies (HLM) cohort (n = 134); esophageal and 
stomach adenocarcinoma (EAC/STAD) were grouped as 
the upper gastrointestinal tract adenocarcinoma cohort 

https://portal.gdc.cancer.gov
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Fig. 1 A Workflow for feature selection and classifier development. B t-distributed stochastic neighbor embedding (t-SNE) using methylation 
profiles of the 200 CpGs across the training cohort (n = 2215). ACC  Adrenocortical carcinoma, BLCA Bladder urothelial carcinoma, BRCA  Breast 
invasive carcinoma, CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD Colon adenocarcinoma, LAML Acute myeloid 
leukemia, LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, MESO Mesothelioma, PAAD 
Pancreatic adenocarcinoma, PCPG Pheochromocytoma and paraganglioma, PRAD Prostate adenocarcinoma, SARC  Sarcoma, SKCM Skin cutaneous 
melanoma, STAD Stomach adenocarcinoma, TGCT  Testicular germ cell tumors, THCA Thyroid carcinoma, UCEC Uterine corpus endometrial 
carcinoma, UVM Uveal melanoma
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(Upper GI, n = 436); two squamous cell carcinoma data-
sets (ESCC/HNSC) were combined as the HN/ESCC 
cohort (n = 436). The expanded 25-cancer type datasets 
was randomly split into a training set (30%) and a vali-
dation set (70%) (Additional file  1: Table  S2). Using the 
training set, we trained three different classifiers based 
on an RF, a Lasso, and an elastic net (EN) model. Because 
EN outperformed the other two on the validation set 
regarding prediction accuracy, sensitivity, and specificity, 
it was chosen as the final machine learning algorithm for 
classifier development.

EN‑based classifier validation with non‑TCGA methylation 
array datasets
To further evaluate the performance of the EN-based 
methylation classifier, we employed non-TCGA 450K 
array data of 1,052 samples representing nine human 
cancers types (Additional file 1: Table S3), and Infinium 
EPIC (850K) array data of 1,925 specimens from 15 can-
cer types (Additional file  1: Table  S4). For every tumor 
sample, the classifier generated a probability for each 
cancer types, and the tumor type with the highest prob-
ability was determined as the final prediction. Confusion 
matrixes were generated for all validation cohorts.

Targeted bisulfite sequencing library preparation 
and sequencing
FFPE tumor tissue samples of 78 patients consisting 20 
cancer types were retrospectively collected from The 
First Affiliated Hospital of Zhengzhou University. DNA 
was extracted from FFPE tumor tissues using TIANamp 
Genomic DNA Kit  DP340  (Tiangen, Beijing, China). 
DNA extracts were sheared into 200–300-bp fragments 
using the Picoruptor (Diagenode, Liege, Belgium). Dam-
aged bases of fragmented DNA were repaired with the 
NEBNext  FFPE  DNA  Repair Mix Kit (NEB, Ipswich, 
MA, USA). The extracted DNA from FFPE sections was 
bisulfite-converted and purified using the EZ DNA Meth-
ylation-Gold Kit (Zymo Research, Orange, CA, USA). 
The bisulfite-converted DNA libraries were subsequently 
generated with an in-house protocol. An amount of 80 ng 
input DNA was found to be sufficient for the preparation 
of targeted bisulfite sequencing libraries. And we used it 
for all DNA sequencing samples.

Capture probes targeting the 200 selected CpGs were 
individually synthesized and 5’-biotinylated by Integrated 
DNA Technologies (IDT, Coralville, IA, USA). Hybridi-
zation capture-based target enrichment was carried out 
using NadPrep  Hybrid Capture Reagents Kit (Nanod-
igmbio, Nanjing, China). Target capture libraries were 
sequenced on an Illumina NovaSeq 6000 sequencing 
platform.

Methylation calling
The adapters, low-quality ends, and any sequencing reads 
less than 50  bp were removed by trim_galore (version 
0.6.2). The reads were then mapped to the in-silico CT 
converted human RefSeq genome hg19 using Bismark 
(version 0.20.0). Duplicates were removed by the dedu-
plicate_bismark module in Bismark. The methylation 
ratio for each CpG was calculated by the bismark_meth-
ylation_extractor script in Bismark.

Results
Methylation feature selection
Genome-wide Infinium 450  K DNA methylation array 
data of 7,385 tumor samples of known origin were 
obtained from TCGA (22 cancer types, n = 7294) and 
GSE102119 (ovarian cancer, n = 91) [6, 13]. Tumor sam-
ples were randomly assigned to the training (30%) and 
validation (70%) set. As described in methods, we chose 
the RF algorithm for feature selection and 200 as the 
number of features. The top 200 CpGs with highest varia-
ble importance were selected as the final feature for clas-
sifier development and targeted methylation sequencing 
panel design (Fig. 1A). A t-distributed stochastic neigh-
bor embedding (t-SNE) dimensionality reduction plot 
showed the partition of different methylation classes rep-
resenting 23 cancer types (Fig. 1B).

Analysis of the 200 targeted CpG sites revealed that 
48% are located in CpG islands, 21% in CpG shore/shelf 
regions, and 31% are in other regions of the genome 
without any enrichment of CpG content (open sea) 
(Fig. 2A). Upon inspection, these 200 CpGs are enriched 
in gene body region, evenly distributed across promoter, 
5’UTR and intergenic region, and underrepresented for 
the 3’UTR (Fig. 2B). The 200 CpGs are distributed among 
all autosomes except for chr 18 (Fig.  2C). As shown in 
Fig. 2D, promoter probes are most enriched in CGIs, and 
less enriched in CpG shelves and open sea.

Clustering analysis of the training DNA methylation 
dataset revealed that hypomethylated CpGs are enriched 
in CpG islands, and hypermethylated CpGs are enriched 
in CpG shelfs/shores and open sea, respectively. Tumors 
originating from the same tissue or organ tended to clus-
ter (Fig.  3). These included melanoma of the skin and 
eye  (SKCM/UVM), and two lung cancers (LUAD and 
LUSC). The gastrointestinal carcinomas (COAD, LIHC, 
PAAD, and STAD) grouped together. Two adrenal gland 
tumors (PCPG and ACC) also grouped closely with the 
combined kidney tumors (KIDNEY). Two squamous cell 
carcinomas (LUSC and CESC) associated closely (Fig. 3).

The clustering heatmap of the 200 selected CpGs 
revealed that the methylation level of some CpGs can 
distinguish one cancer type from others, indicating 
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their potential as biomarkers. For instance, cg25927164 
(RAI1) and cg16561543 (BRF1) were hypermethyl-
ated in muscle-invasive bladder cancer and pancreatic 
ductal adenocarcinoma, respectively (Fig.  4A, B). CpGs 
located in the same CGI of TMEM101 (n = 4) and RNLS 
(n = 2) were hypermethylated in uterine corpus endome-
trial carcinoma and stomach adenocarcinoma, respec-
tively ( Fig.  4 C, D). The 200 CpGs also included three 
known colon cancer-specific biomarkers (LIFR, OSMR, 
QKI) (Fig. 4E) [14–16]. Interestingly, CpGs in two genes 
encoding guannine nucleotide exchanging factors for 
Rho GTPase (ARHGEF28 and ARHGEF7) were hypo-
methylated in kidney cancer (Fig.  4F) [17]. cg00794055 
in TBC1D24, which encodes a putative Rab35-GTPase 
activating protein (Rab35-GAP), was hypomethylated in 
lung adenocarcinoma (LUAD) (Fig. 4G) [18]. cg17242362 
(ATXN7L1) and cg17403702 (ARFIP2) were hypometh-
ylated in breast cancer alone (Fig.  4H). Consistent with 
previous reports, HOXA9 (cg16104915) was hypermeth-
ylated in cutaneous melanoma, lung, bladder, breast, and 
ovarian cancer [19–23] (Additional file 1: Figure S1).

Classifier development with the elastic net algorithm
For methylation classifier development, we employed 
31 out of 33 available  TCGA methylation datasets. The 

original TCGA esophageal carcinoma (ESCA) study rec-
ommended treating esophageal adenocarcinoma (EAC) 
and squamous cell carcinoma (ESCC) as two entities [24]. 
Consistently, the TCGA pan-cancer cell-of-origin study 
revealed that EAC clustered tightly with stomach adeno-
carcinoma (STAD), while head and neck squamous cell 
carcinoma (HNSC) and ESCC formed a Pan-Squamous 
cluster [6]. Based on the latter work, we combined two 
colorectal cancers (COAD and READ), two uterine can-
cers (UCS and UCEC), two upper gastrointestinal tract 
cancers (EAC and STAD), two squamous cell carcinoma 
datasets (ESCC and HNSC), and two hematolymphoid 
maligancies (LAML and DLBC) in downstream analysis.

The expanded TCGA/GSE dataset was randomly split 
into the training set (30%) and validation set (70%) (Addi-
tional file 1: Table S2). Based on the 200-CpG probe set, 
we developed three different classifiers with an RF, a 
Lasso, and an elastic net (EN) model on the training set. 
As EN outperformed the other two models on the valida-
tion set, it was selected as the final algorithm for classifier 
development. The EN-based classifier MFCUP predicted 
the tissue of origin with an overall accuracy of 97.2% in 
the validation set (Fig.  5A). The sensitivity, specificity, 
positive and negative predictive values (PPVs and NPVs) 
for each of the 25 cancer types were shown in Fig.  5B. 
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MFCUP achieved a prediction accuracy of 100% for 
CRC, GLIOMA, PRAD, TGCT and THCA (Fig.  5A, B, 
C). Methylation classes represent different cancer types 
in the validation set also separated well in the t-distrib-
uted stochastic neighbor embedding (t-SNE) dimension-
ality reduction diagram (Additional file 1: Figure S2).

Classifier evaluation with non‑TCGA methylation array 
datasets
To explore the performance of MFCUP on non-TCGA 
methylation datasets, we validated it with Infinium 450 K 
array data of 1,052 tumor samples of nine cancer types 
obtained from the International Cancer Genome Con-
sortium (ICGC) and GEO (Additional file  1: Table  S3) 
(ICGC Data Portal https:// dcc. icgc. org/) [25–30]. For 
this dataset, MFCUP achieved an overall accuracy of 
93.4% (Fig.  6). Next, we evaluated its performance with 
Infinium EPIC/850  K array data of 1,925 tumor sam-
ples of 15 cancer types obtained from the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) and GEO 
(Additional file 1: Table S4) [31–40]. For the 850 K data-
set, MFCUP achieved a classification accuracy of 84.8% 
(1632/1925) (Fig. 7).

MFCUP‑based methylation sequencing panel
The major obstacles for methylation-based CUP diagno-
sis included high cost and the lack of DNA methylation 
array facilities in most hospitals. To overcome these chal-
lenges, we developed a targeted methylation sequencing 
panel based on the 200 CpGs set of MFCUP. We evalu-
ated the performance of this panel with 78 FFPE samples 
from 20 cancer types, in which it achieved a classification 
accuracy of 88.5% (69/78) (Fig. 8).

Discussion
Recent studies have shown that DNA methylation profil-
ing can be a valuable aid for accurate diagnosis of cancers 
of nervous tissue and muscular tissue [7]. For example, 
central nervous system (CNS) cancers are a heteroge-
neous group of tumors consisting around 100 entities, 
which makes accurate diagnosis of CNS tumor difficult. 

The German Cancer Research Center (DKFZ) developed 
a clinical-grade CNS tumor classifier, which assigned 
a distinctive methylation signature to nearly all CNS 
tumor types [8, 9]. This classifier was trained with 2,801 
tumor samples comprising 91 methylation classes, and 
resulted in a diagnosis change in 12% of prospective CNS 
tumor cases [8]. Based on this work, DNA methylation‐
based tumor classification is now included in the World 
Health Organization (WHO) classification of adult and 
pediatric CNS tumors [41, 42]. Sarcomas are a hetero-
geneous group of solid tumors of mesenchymal origin, 
which are difficult to diagnosis due to the lack of defining 
histopathological features in some subtypes. The DKFZ 
group also developed a methylation-based sarcoma clas-
sifier, which achieved a prediction accuracy of 75% in 
the validation sarcoma cohort (n = 428) [17]. In another 
validation study, the DKFZ sarcoma classifier was in 
accordance with the pathologic diagnosis in 88% of cases 
[43]. These results suggest that DNA methylation profile 
may provide greater diagnosis precision than standard 
protocols.

To extend methylation-based cancer classification 
beyond single tissue-of-origin, several groups developed 
multi-cancer classifiers with large methylation data-
sets and machine learning, but challenges remained [6, 
44–46]. In a  landmark  study, Moran et  al. established a 
DNA methylation-based CUP classifier, which can guide 
site-specific therapies for patients with CUP [12]. Using 
unsupervised clustering of methylation profile of 3,139 
cancer-hypermethylated CpGs, Hoadley et  al. divided 
10,814 tumor samples from the TCGA dataset into 25 
methylation groups [6]. Tang et al. [44] and Liu et al. [45] 
developed multi-cancer classifiers for tumor tissue/circu-
lating-free DNA, respectively. However, these two classi-
fiers target 5457/9223 CpGs, which were impractical in 
many clinical settings. Danilova et  al. [46] developed a 
305-CpG cancer classifier with a discovery set consisting 
five core cancer types. However, its prediction accuracy 
significantly decreased when applying to other cancer 
types. A cost-effective methylation sequencing panel, 
including dozens to hundreds excellent informative and 

Fig. 5 Cancer type classification accuracy of the expanded TCGA/GSE validation cohort (n = 5923). A Sample number and prediction accuracy (%) 
of each cancer type. B Sensitivity, specificity, PPV, and NPV for each of the 25 cancer types. C Confusion matrix (in percent) of the expanded TCGA/
GSE validation cohort of cancer type prediction using 200 selected probes. The percentages of correctly predicted samples are highlighted in green; 
misclassification events are highlighted in pink. True histology/predicted histology is respectively listed in rows/columns. ACC  Adrenocortical 
carcinoma, BLCA Bladder urothelial carcinoma, BRCA  Breast invasive carcinoma, CESC Cervical squamous cell carcinoma and endocervical 
adenocarcinoma; CRC  Colorectal cancer, HLM Hematolymphoid malignancies, HN/ESCC Head and neck squamous carcinoma and esophageal 
squamous cell carcinoma, LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, MESO 
Mesothelioma, PAAD Pancreatic adenocarcinoma, PCPG Pheochromocytoma and paraganglioma, PRAD Prostate adenocarcinoma, SARC  Sarcoma, 
SKCM Skin cutaneous melanoma, TGCT  Testicular germ cell tumors, THCA Thyroid carcinoma, THYM Thymoma, UC Uterine cancer, Upper GI Upper 
gastrointestinal adenocarcinoma, UVM Uveal melanoma

(See figure on next page.)

https://dcc.icgc.org/
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THCA 1.000 1.000 1.000 1.000 

BRCA 0.993 0.999 0.986 0.999 

PCPG 0.990 1.000 0.990 1.000 

LIHC 0.989 0.999 0.989 0.999 

THYM 0.989 0.999 0.945 1.000 
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KIDNEY 0.985 1.000 0.998 0.999 

UVM 0.982 1.000 0.966 1.000 
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LUAD 0.973 0.998 0.964 0.998 
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UC 0.962 0.998 0.967 0.997 

SKCM 0.958 1.000 0.986 0.999 
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4 TCGA-UCS (n = 64) and TCGA-UCEC (n = 304) are grouped as UC cohort (n = 368).

1 TCGA-READ (n = 67) and TCGA-COAD (n = 216) are grouped as CRC cohort (n = 283).

3 TCGA-STAD (n = 275) and TCGA-ESCA-Adenocarcinoma (n = 63) are grouped as Upper gastrointestinal tract adenocarcinoma (Upper GI, n = 338).

5 TCGA-ESCA-Squamous (n = 66), TCGA-HNSC (n = 370) are grouped as HN/ESCC cohort (n = 436).

2 TCGA-LMAL (n = 99) and TCGA-DLBC (n = 35) are grouped as HLM cohort (n = 134).

Prediction

CRC1 GLIO
MA PRAD TGCT THCA BRCA PCPG LIHC THYM HLM2 KIDNEY UVM Upper

GI3
LUAD PAAD ACC BLCA    UC4 SKCM

HN/E
SCC5 MESO CESC SARC LUSC OVARY Error

rate 

CRC1 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

GLIOMA 0 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

PRAD 0 0 352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

TGCT 0 0 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

THCA 0 0 0 0 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

BRCA 0 0 0 0 0 550 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0.01 

PCPG 0 0 0 0 0 0 102 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.01 

LIHC 0 0 0 0 0 0 0 261 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0.01 

THYM 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.01 

HLM2 0 0 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.01 

KIDNEY 0 0 0 0 0 0 0 0 0 0 459 0 0 0 0 0 2 0 0 0 0 0 4 1 0 0.02 

UVM 0 1 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 

Upper GI3 1 0 0 0 0 0 0 0 0 1 0 0 332 3 0 0 0 0 0 1 0 0 0 0 0 0.02 

LUAD 0 0 0 0 0 0 0 0 0 0 0 0 0 321 0 0 0 0 0 1 0 1 0 7 0 0.03 

PAAD 0 0 0 0 0 0 1 0 1 0 0 0 1 0 125 0 0 0 0 0 0 0 1 0 0 0.03 

ACC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 1 1 0 0.04 

BLCA 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 281 0 0 3 1 3 0 2 0 0.04 

   UC4 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 355 0 0 0 7 0 1 2 0.04 

SKCM 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 68 0 0 0 0 1 0 0.04 
HN/E
SCC5 0 0 0 0 0 2 0 0 1 0 0 0 2 0 0 0 0 0 0 414 0 3 0 14 0 0.04 

MESO 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 57 0 0 2 0 0.07 

CESC 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 0 1 0 201 0 0 0 0.07 

SARC 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 76 0 0 0.07 

LUSC 0 0 0 0 0 3 0 0 1 1 0 0 0 9 0 0 0 1 0 22 0 0 0 222 0 0.14 

OVARY 0 0 0 0 0 3 0 2 0 2 0 0 0 0 0 0 0 1 0 1 0 0 2 0 53 0.17 

Fig. 5 (See legend on previous page.)
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OVARY BLCABRCA CESCCRC GLIOMA KIDNEYLIHC LUADLUSCPAAD PRAD SARC Upper GI TGCT UC Error 
rate

BRCA 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

CRC 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

GLIOMA 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 

LIHC 0 0 0 221 0 0 0 1 0 1 0 0 0 1 0 0 0 0.01 

PAAD 0 0 0 0 252 0 0 0 1 0 0 7 0 1 0 0 0 0.03 

PRAD 0 0 0 0 0 261 0 0 0 0 0 3 0 0 22 0 0 0.09 

KIDNEY 0 0 0 1 0 0 41 0 0 1 0 2 1 0 0 0 0 0.11 

LUSC 0 0 0 0 0 0 0 45 0 0 0 5 0 0 0 0 4 0.17 

OVARY 0 0 0 0 0 0 0 0 64 0 5 0 0 0 0 14 0 0.23 
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Fig. 6 Cancer type classification accuracy of the Infinium 450 K array testing datasets. A Sample number and prediction accuracy (%) of nine 
cancer types. B Confusion matrix (in percent) of the cancer type prediction using 200 selected probes for testing datasets generated by infinium 
450 K methylation array. The percentages of correctly predicted samples are highlighted in green; misclassification events are highlighted in pink. 
True histology/predicted histology is respectively listed in rows/columns. BLCA Bladder urothelial carcinoma, BRCA  Breast invasive carcinoma, 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma; CRC  Colorectal cancer, HN/ESCC Head and neck squamous carcinoma 
and esophageal squamous cell carcinoma, LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, 
PAAD Pancreatic adenocarcinoma, PRAD Prostate adenocarcinoma, SARC  Sarcoma, TGCT  Testicular germ cell tumors, THYM Thymoma, UC Uterine 
cancer, Upper GI Upper gastrointestinal adenocarcinoma
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discriminative CpG markers, is still lacking in the clini-
cal practice of CUP diagnosis. Our aim was to develop 
an accessible and affordable DNA methylation-based 
CUP diagnosis assay independent of the high-throughput 
methylation array platform. Further studies are needed 
to evaluate the performance of our targeted methylation 
sequencing panel on metastases.

Human organs are highly complex and composed of 
multiple tissue and cell types. Genome-wide methyla-
tion profiling studies have revealed distinct methylation 
patterns in different human tissue and cell types [47, 
48]. Tissue-specific DNA methylation patterns provide 
a useful tool for the characterization of tissue-of-origin 
[47, 49]. Similarly, cell type-specific DNA methylation 
profiles enable cell type deconvolution in tissue samples 
[47, 49]. Both tissue-specific and cancer-specific  DNA 
methylation  patterns  appear to be maintained dur-
ing cancer evolution [7]. A DNA methylation atlas 
based on deep whole-genome bisulfite sequencing of 
39 normal human cell types demonstrated that almost 
all (97%) cell-type-specific differentially methylated 
regions (DMRs) are demethylated in one cell type but 
methylated in other cell types [47]. The authors sug-
gested that this atlas can be used to identify the tissue 
of origin of cfDNA in plasma of cancer patients. 14% of 
these cell type specific DMRs are covered by the Infin-
ium 450  K array [9]. Interestingly, three CpGs in our 
methylation classifier are located in cell-type-specific 
unmethylation regions described in the normal human 
cell methylome study [47], including breast luminal epi-
thelium cell marker cg17403702 (ARFIP2), kidney epi-
thelial cell marker cg10572670 (ARHGEF28), and lung 
alveolar epithelial cell marker cg00794055 (TBC1D24). 
Consistently, these CpGs are hypomethylated in one 
cancer type and the corresponding normal tissue, but 
hypermethylated in other cancer types. Moreover, our 
data showed that the lung alveolar epithelial cell DNA 
methylation biomarker cg00794055 (TBC1D24) are 
hypomethylated in LUAD and the corresponding nor-
mal control (LUAD), but hypermethylated in LUSC. 
Deconvolution of the TCGA LUAD/LUSC 450 K DNA 
methylation array datasets revealed that the relative 

proportion of lung alveolar epithelial cell in LUAD and 
normal adjacent tissue (LUAD and LUSC) are approxi-
mately 25% but less than 5% in LUSC [47]. This result 
explained why the methylation level of cg00794055 
(TBC1D24) in LUSC was higher than LUAD.

Our work identified some validated cancer biomark-
ers. cg16104915, a CpG site located in the promoter 
CpG island of HOXA9, is a well-characterized biomarker 
in our 200-CpG set. It is methylated in 97% of NSCLC 
TCGA samples but not normal tissue [50]. HOXA9 meth-
ylation is also a validated biomarker for cutaneous mela-
noma progression, with high methylation in metastases 
but low methylation in primary melanoma and nevi [20]. 
Our CpG set also included three known biomarker genes 
for colorectal cancer (LIFR, OSMR, QKI). The methyla-
tion levels of 10 CpGs in the QKI promoter were signif-
icantly higher in CRC than in normal tissues and other 
cancer types [16]. cg24583770 was adjacent to these 10 
CpGs, and its hypermethylation status also distinguished 
colon cancer from normal tissues and other cancer types. 
Methylation of a segment of the OSMR promoter CGI 
(from -282 to -224) was found in 90% of colon cancer, 
55% of normal-appearing mucosa adjacent to colon can-
cer, 33% of gastric cancer, and 20% of pancreatic cancer 
[51]. cg17528648 was in the 5’-UTR region of this OSMR 
CGI, and its hypermethylation distinguished colon can-
cer from adjacent normal mucosa and other cancer 
types. Hypermethylation of a CpG island located in the 
promoter of HOXD8 (chr2:176,993,479–176,995,557) is 
a validated biomarker of biliary tract cancer [52]. (Addi-
tional file 2).

Through inspection of our 200-CpG set, we found 
some potential biomarkers for cancer type diagnosis. 
For instance, four CpGs within the same CpG island of 
TMEM101, a potential biomarker for reduced overall 
survival in breast cancer patients [53], were hypermeth-
ylated in UCEC but not in other cancer types. Similarly, 
cg25927164 (RAI1) was hypermethylated in BLCA only. 
Further studies are required to determine whether hyper-
methylation of TMEM101 and RAI1 could be used as 
biomarkers for the screen and diagnosis of endometrial 
and bladder cancer, respectively (Additional file 3).

Fig. 7 Cancer type classification accuracy of the Infinium 850 K array testing datasets. A Sample number and prediction accuracy (%) of 15 cancer 
types. B Confusion matrix (in percent) of the cancer type prediction using 200 selected probes for testing datasets generated by infinium 850 K 
methylation array. The percentages of correctly predicted samples are highlighted in green; misclassification events are highlighted in pink. True 
histology/predicted histology is respectively listed in rows/columns. ACC  Adrenocortical carcinoma, BLCA Bladder urothelial carcinoma, CESC 
Cervical squamous cell carcinoma and endocervical adenocarcinoma, CRC  Colorectal cancer, HLM Hematolymphoid malignancies, HN/ESCC Head 
and neck squamous carcinoma and esophageal squamous cell carcinoma, LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC 
Lung squamous cell carcinoma, MESO Mesothelioma, PAAD Pancreatic adenocarcinoma, PCPG Pheochromocytoma and paraganglioma, PRAD 
Prostate adenocarcinoma, SARC  Sarcoma, SKCM Skin cutaneous melanoma, TGCT  Testicular germ cell tumors, THCA Thyroid carcinoma, UC Uterine 
cancer, Upper GI Upper gastrointestinal adenocarcinoma, UVM Uveal melanoma

(See figure on next page.)
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Conclusions
In summary, we developed a DNA methylation-based 
CUP classifier (MFCUP) with machine learning algo-
rithms. To make DNA methylation-based diagnosis 
accessible and affordable, we established and validated 
a targeted methylation sequencing panel, which dem-
onstrated high accuracy in identifying the primary sites 
for CUP. Lastly, our work revealed some CpGs with bio-
marker potential for cancer type classification.
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MFCUP  Methylation feature-based CUP classifier
MSI  Microsatellite instability
OS  Overall survival
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Fig. 8 Confusion matrix (in percent) of the validation set of FFPE tumor tissues from 20 cancer types. Confusion matrix of the validation set (n = 78) 
of cancer type prediction using 200 selected probes. The percentages of correctly predicted samples are highlighted in green; misclassification 
events are highlighted in pink. True histology/predicted histology is respectively listed in rows/columns. ACC  Adrenocortical carcinoma, BLCA 
Bladder urothelial carcinoma, BRCA  Breast invasive carcinoma, CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma; CRC  
Colorectal cancer, HLM Hematolymphoid malignancies, HN/ESCC Head and neck squamous carcinoma and esophageal squamous cell carcinoma, 
LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, MESO Mesothelioma, PAAD Pancreatic 
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