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Clinical Epigenetics

Integrative analysis identifies gene 
signatures mediating the effect of DNA 
methylation on asthma severity and lung 
function
Eskezeia Y. Dessie1, Lili Ding2 and Tesfaye B. Mersha1*   

Abstract 

DNA methylation (DNAm) changes play a key role in regulating gene expression in asthma. To investigate the role 
of epigenetics and transcriptomics change in asthma, we used publicly available DNAm (asthmatics, n = 96 and con-
trols, n = 46) and gene expression (asthmatics, n = 79 and controls, n = 39) data derived from bronchial epithelial cells 
(BECs). We performed differential methylation/expression and weighted co-methylation/co-expression network analy-
ses to identify co-methylated and co-expressed modules associated with asthma severity and lung function. For sub-
jects with both DNAm and gene expression data (asthmatics, n = 79 and controls, n = 39), machine-learning technique 
was used to prioritize CpGs and differentially expressed genes (DEGs) for asthma risk prediction, and mediation 
analysis was used to uncover DEGs that mediate the effect of DNAm on asthma severity and lung function in BECs. 
Finally, we validated CpGs and their associated DEGs and the asthma risk prediction model in airway epithelial cells 
(AECs) dataset. The asthma risk prediction model based on 18 CpGs and 28 DEGs showed high accuracy in both the 
discovery BEC dataset with area under the receiver operating characteristic curve (AUC) = 0.99 and the validation 
AEC dataset (AUC = 0.82). Genes in the three co-methylated and six co-expressed modules were enriched in multiple 
pathways including WNT/beta-catenin signaling and notch signaling. Moreover, we identified 35 CpGs correlated 
with DEGs in BECs, of which 17 CpGs including cg01975495 (SERPINE1), cg10528482 (SLC9A3), cg25477769 (HNF1A) 
and cg26639146 (CD9), cg17945560 (TINAGL1) and cg10290200 (FLNC) were replicated in AECs. These DEGs medi-
ate the association between DNAm and asthma severity and lung function. Overall, our study investigated the role 
of DNAm and gene expression change in asthma and provided an insight into the mechanisms underlying the effects 
of DNA methylation on asthma, asthma severity and lung function.

Keywords Asthma, Asthma severity, Lung function, Multi-omics analysis, Weighted correlation network analysis, 
Mediation analysis, Biomarkers

Introduction
Recent advances in high-throughput multi-omics 
approaches have enabled the collection of molecular 
assessments at different layers, providing complemen-
tary perspectives of complex diseases including asthma. 
While having a family history is a known risk factor 
for developing asthma [1], the low concordance rate 
of asthma between monozygotic twins suggests that 
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epigenomics and transcriptomics profiling and/or envi-
ronmental factors may play substantial role in asthma 
pathogenesis [2].

DNA methylation (DNAm) may serve as surrogate 
endpoint for environmental exposures and could serve 
as a potential biomarker in the association between envi-
ronmental factors and asthma endotypes [3, 4]. Reduced 
lung function is a hallmark of asthma disease. Lung 
function measures such as forced expiratory volume in 
one second (FEV1) and forced vital capacity (FVC) are 
strongly associated with decline in airflow in asthma 
[5–7]. Many genomics studies of asthma have been per-
formed either on gene expression data or DNAm data 
alone. For example, there were studies that showed the 
association of DNAm with lung function and asthma 
[8, 9], as well as a study that showed global changes of 
DNAm affect gene expression derived from BECs in 
asthma [10]. Furthermore, Zhang et  al. revealed differ-
entially expressed genes as well as enrichment of neutro-
phil activation and cytokine receptor pathways for severe 
asthma [11]. Thürmann et al. showed that DNAm plays 
key roles in various biological processes such as regulat-
ing gene expression in childhood asthma [12]. Perry et al. 
identified differentially methylated DNAm CpG sites that 
might play a role in regulating several key asthma-related 
genes such as DBX2, ACP6 and KCNJ11 [13]. However, 
the results of their study were primarily using either 
DNAm or gene expression alone, and the role of DNAm 
on gene expression associated with asthma status, sever-
ity and lung function was not thoroughly investigated 
through integrated analysis of DNAm and gene expres-
sion. Epigenetic and transcriptomic profiling are well 
suited to identify novel genes and pathways involved in 
asthma pathogenesis [14, 15].

In this study, we address the limitations of the previ-
ous asthma studies with the aim of identifying novel 
epigenetic regulation of gene expression associated with 
asthma severity and lung function through integrated 
analysis of DNAm and gene expression. The aims of the 
integrated analysis were to: (1) identify differentially co-
methylated or co-expressed network modules associated 
with asthma status, severity and lung function; (2) iden-
tify dysregulated biological function within these iden-
tified modules and unveil shared pathways underlying 
asthma severity and lung function; (3) identify significant 
CpGs and DEGs using machine learning and construct 
multi-omics asthma risk predictive models; and (4) infer 
the mediational roles of gene expression on the relation-
ships between DNA methylation changes and asthma 
severity as well as lung function in BECs. A subset of 
CpGs–DEGs pairs showed significant association  in 
asthma and were used to validate the prediction model in 
AECs dataset. Overall, our results provide an insight into 

the role of DNAm in asthma risk, severity and identify 
important genes that may mediate the effect of DNAm 
changes on asthma severity and lung function.

Results
Data description
The overall workflow of the study is described in Fig. 1. 
The GSE201872 dataset contained DNAm data profiles 
of 142 subjects including 46 controls, 47 mild-moderate 
asthmatic and 49 severe asthmatic samples derived from 
BECs. The GSE201955 dataset contained RNA-seq pro-
files of 118 subjects, a subset of the 142 subjects in the 
GSE201872 DNAm dataset, including 39 controls, 39 
mild-moderate asthmatic and 40 severe asthmatic sam-
ples derived from BECs. Baseline characteristics of the 
142 subjects are summarized in Table 1. Age, IgE, BMI, 
blood eosinophilia, and BAL eosinophilia are higher in 
mild-moderate and severe asthmatic subjects compared 
with controls (P < 0.01). The mean (± standard deviation 
[SD]) of FEV1 was 3.2 (± 0.68) for controls, 2.75 (± 0.99) 
for mild-moderate asthmatics, 1.99 (± 0.59) for severe 
asthmatics (P < 0.001), and the mean (± SD) of FEV1/FVC 
was 0.95 (± 0.11) for controls, 0.82 (± 0.18) for mild-mod-
erate asthmatic subjects and 0.66 (± 0.18) for severe asth-
matic subjects (P < 0.001).

Construction of co‑methylation networks 
and identification of modules associated with asthma 
severity and lung function
Initially, we conducted differential methylation analysis 
between asthmatic subjects (n = 96) and controls (n = 46) 
based on DNAm data (M-values) adjusting for covariates 
including age, sex, smoking status and the first three ances-
try PCs in the discovery DNA methylation dataset. The 
differential analysis identified 1845 differentially methyl-
ated CpGs (DMCs, including 1500 hyper-methylated and 
345 hypo-methylated) in asthmatic subjects compared to 
controls (adjusted P value < 0.05 and Δmeth > 1%; Fig.  2A). 
We reported the methylation difference (effect size, Δmeth) 
between asthmatic subjects and controls as a percentage 
(e.g., effect size of 0.01 = 1%). The 1845 DMCs whose effect 
size ranged from − 14.1 to 21.0% were further analyzed to 
identify co-methylation networks/modules using WGCNA 
[16] package and the identified modules were tested 
for association with asthma severity, lung function and 
asthma-relevant clinical measures. In co-methylation net-
work analysis, the suitable soft threshold power (β) = 7 was 
used as the correlation coefficient threshold to ensure rela-
tively balanced mean connectivity and scale free network 
(Additional file 1: Fig. S1A). WGCNA analysis clustered the 
1845 DMCs into four modules with 95–1382 methylated 
CpGs per module (i.e., the largest is turquoise with 1382 
CpGs, 723 genes) (Fig. 2B and Additional file 2: Table S1). 
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The gray module contained uncorrelated CpG sites and 
hence was not considered in downstream analyses. Nota-
bly, module eigenCpGs from three co-methylation mod-
ules including blue, brown, and turquoise modules were 
significantly associated with asthma relevant clinical meas-
ures including asthma severity, and lung function measures 
(Fig.  2C; P value < 0.05). Turquoise and brown modules 
were found to be positively associated with asthma severity, 
while blue module was negatively associated with asthma 
severity. Age was associated with blue and turquoise mod-
ules. Clinical phenotypes such as IgE, FEV1, FEV1/FVC 

and BAL eosinophilia were significantly associated with all 
three modules. BMI was associated with blue, brown, and 
turquoise modules, whereas blood eosinophilia was signifi-
cantly associated with brown module.

Construction of co‑expression networks and identification 
of modules associated with asthma severity and lung 
function
For co-expression network analysis, we also first per-
formed differential analysis between asthmatic sub-
jects (n = 79) and controls (n = 39) using normalized 

Fig. 1 The overall workflow of the study. Initially, preprocessed, and normalized gene expression and DNA methylation data were downloaded 
and analyzed for differential methylation and expression analyses and weighted correlation network analysis (WGCNA) to generate DEG and DMC 
modules associated with asthma severity and lung function. Then, both DEGs and DMCs (adjusted P value < 0.05) in modules significantly 
associated with asthma severity and lung function (P value < 0.05) were selected. Finally, key DMCs and DEGs were selected to develop asthma-risk 
prediction models (methylation-based risk score (MRS) and transcriptomic-based risk score (TRS). Mediation analysis was conducted to select DMCs 
regulated DEGs in BECs
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RNA-seq data (adjusted for covariates including age, 
gender, smoking status and the first three ancestry 
PCs). The differential analysis identified a total of 1891 
DEGs including 1058 downregulated and 833 upregu-
lated genes in asthmatic subjects compared with con-
trols (absolute value log2 (Fold change) > 0.1 and 
adjusted P value < 0.05) (Fig.  3A). Next, we performed 
WGCNA analysis to cluster and characterize correla-
tion structure of the 1891 DEGs. WGCNA analysis 
using suitable β = 10 (Additional file  1: Fig. S1B) was 
conducted, and a total of seven co-expression modules 
with 32–785 genes per module (Fig. 3B) were identified 
excluding the gray module. The module eigengenes of 
the rest seven co-expression modules were significantly 
associated asthma severity and asthma relevant clinical 
features including lung function measures (Fig.  3C; P 
value < 0.05). The modules turquoise, brown, and green 
were negatively associated with asthma severity. The 
modules red, black, blue, and yellow were positively 
associated with asthma severity. Among clinical pheno-
types, IgE was significantly associated with yellow and 
black modules. BMI was associated with red, brown, 
and turquoise modules. FEV1/FVC and BAL eosino-
philia were significantly correlated with all modules. 
FEV1 and blood eosinophilia were correlated with all 
modules except red module.

Functional enrichment analysis of co‑methylated 
and co‑expressed modules
Pathway analysis of co‑methylated modules
Methylation CpGs in each module were mapped to 
genes based on IlluminaHumanMethylation450kanno.
ilmn12.hg19 in the minfi package, and these co-meth-
ylated module genes were used for IPA analysis. Sig-
nificantly enriched IPA results of three asthma severity 
and lung function associated  co-methylation modules 
(turquoise, brown and blue) are shown in Fig.  4A–C 
and Additional file 2: Table S2. The 723 unique genes in 
turquoise co-methylation module were enriched in sev-
eral pathways including pulmonary healing signaling, 
WNT/beta-catenin signaling, HOTAIR regulatory, reg-
ulation of epithelial development, and axonal guidance 
signaling pathways (Fig.  4A). The 70 genes associated 
with the brown co-methylation module were signifi-
cantly enriched for pathways such as notch signaling, 
role of macrophages, fibroblasts and endothelial cells in 
rheumatoid arthritis, epithelial adherens junction sign-
aling and WNT/beta-catenin signaling (Fig.  4B). The 
205 mapped genes associated with blue co-methylated 
module were enriched in G-protein coupled recep-
tor signaling and chronic myeloid leukemia signaling 
(Fig. 4C).

Table 1 Clinical characteristics of 142 asthmatic and control subjects

Asthma severity is categorized based on STEP classification as mild, moderate, and severe asthma

AA African American, EA European American, BMI body mass index, FEV1 forced expiratory volume at 1 s, FVC forced vital capacity, FEV1/FVC the ratio of FEV1 to FVC, 
IgE immunoglobulin E, BAL Bronchoalveolar lavage

The significance levels of comparison (mean/median of mild-moderate asthmatics vs controls and severe asthmatics vs controls) were indicated by the stars 
(***P < 0.001, **P < 0.01, *P < 0.05). The P-values are for three-group (control, mild-moderate and severe) comparison

Characteristic Asthma‑risk group

Control (n = 46) Mild‑moderate (n = 47) Severe (n = 49) P value

Age (years), mean ± SD 36.78 ± 11.58 37.04 ± 14.28 43.55* ± 11.05 0.010 

Gender (% female) 65 64 82

Race (% AA/EA/Other) 63/28/9 70/30/0 45/55/0

Current smoking status at bronchoscopy (% yes) 15 4 4

Maternal asthma (% yes) 9 40 33

BMI (kg/m2), mean ± SD 28.64 ± 5.80 29.58 ± 6.46 38.09*** ± 9.65 < 0.001 

Mean abs  FEV1, mean ± SD 3.2 ± 0.68 2.75* ± 0.99 1.99*** ± 0.59 < 0.001

Mean FEV1/FVC, mean ± SD 0.95 ± 0.11 0.82*** ± 0.18 0.66*** ± 0.18 < 0.001

Total serum IgE (IU/mL), Median 50.50 115.50* 194.00 0.049

(Lower, upper quartile) 21.25–167.75 47.50–349.25 22.00–312.00

BAL eosinophilia (%), Median 0.00 2.90*** 3.05*** < 0.001

(Lower, upper quartile) 0.00–0.50 1.55–5.10 1.28–6.33

BAL neutrophilia (%), Median 4.90 5.40 4.60 0.520

(Lower, upper quartile) 3.20–6.40 3.55–7.00 2.65–6.50

Blood eosinophilia (cells/μL), Median 10.00 17.00* 17.50 0.040

(Lower, upper quartile) 7.00–17.00 9.50–28.50 7.00–30.25
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Overrepresentation of epigenetic regulated genes 
in the co‑expression modules
We conducted hypergeometric tests on overlapping 
genes between the co-expression modules and the co-
methylation modules that are associated with asthma 
severity and lung function to identify epigenetic regu-
lated genes that overrepresented in the co-expression 
modules. The analysis showed that genes in three co-
methylated modules of interest were overrepresented in 
the six co-expressed modules (turquoise, brown, green, 
red, blue, and yellow) (Additional file  2: Tables S1 and 
S3).

Pathway analysis of co‑expressed modules
The results of significantly enriched pathways for genes 
in the co-expression modules of interest are shown 
in Fig.  5A–D and Additional file  2: Table  S4. The 785 
unique genes associated with turquoise module were 
significantly enriched in several biological pathways 

such as RHO GTPase cycle, generic transcription path-
way and WNT/beta-catenin signaling (Fig.  5A). The 
61 unique genes associated with red module were sig-
nificantly enriched in several biological pathways such 
as pathogen induced cytokine storm signaling, activin 
inhibin signaling and STAT3 Pathway (Fig. 5B). The 103 
genes associated with the green module were mainly 
involved in protein kinase signaling and notch signal-
ing (Fig. 5C). The 140 genes associated with the brown 
module were involved in axonal guidance signaling 
(Additional file  2: Table  S4). Notably, uniquely anno-
tated genes shared between the co-methylation mod-
ules and genes co-expression modules were enriched 
in several pathways including axonal guidance signal-
ing, notch signaling, WNT/beta-catenin signaling, pul-
monary fibrosis idiopathic signaling and myelination 
signaling (Additional file  1: Fig. S2), suggesting DNA 
methylation changes in these pathways may potentially 
regulate genes in asthma pathogenesis.

Fig. 2 Identification of CpGs associated with asthma severity in the discovery BECs dataset. A Volcano plot showing CpGs associated with asthma. 
DMCs are identified as those with adjusted P value < 0.05 and absolute effect size (Δmeth) > 1%. B Cluster dendrogram of four modules (blue, brown, 
turquoise, and gray) containing 1891 DMCs. C Correlation between co-methylation modules and various clinical measures
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Construction and validation of asthma multi‑omics risk 
model
To construct a multi-omics asthma prediction model in 
the discovery BECs datasets, we used Boruta method 
to identify important CpGs and genes whose DNAm 
or expression that showed high asthma-risk prediction 
performance. The results showed that 18 DMCs and 28 
DEGs yielded the “confirm” status in Boruta iterations 
in methylation and expression data, respectively, in the 
discovery BECs datasets (Additional file  2: Tables S5 
and S6) with high asthma risk prediction performance. 
Next, based on 18 important CpGs and 28 genes, we 
constructed Methylation risk score (MRS) and transcrip-
tome risk score (TRS), respectively, and their asthma-risk 
prediction performances were assessed. The asthma-risk 
prediction MRS model had an AUC of 0.92, and the TRS 
model had an AUC of 0.98 in the discovery datasets. We 
also constructed multi-omics risk model by integrat-
ing MRS and TRS models based on 118 samples having 

both DNA methylation and gene expression data and this 
model revealed high asthma diagnostic performance with 
AUC = 0.99 (Fig.  6A). The MRS is significantly related 
to asthma severity (Additional file  1: Fig. S3A), FEV1 
(r = − 0.43, P value = < 0.001; Additional file  1: Fig. S3B) 
and FEV1/ FVC (r = − 0.5, P value = < 0.001; Additional 
file  1: Fig. S3C). The TRS also associated with asthma 
severity (Additional file  1: Fig. S3D), FEV1 (r = − 0.23, 
P value < 0.05; Additional file  1: Fig. S3E) and FEV1 
(r = − 0.33, P value < 0.001; Additional file  1: Fig. S3F). 
Notably, the risk scores significantly associated with sev-
eral asthma clinical features such as BAL eosinophilia, 
BAL neutrophils, IGE, and blood eosinophilia (Addi-
tional file 1: Figs. S4 and S5). To validate the robustness of 
our developed asthma multi-omics risk model, we con-
structed 18 CpG sites-based MRS model, and 28 genes-
based TRS model using 81 samples having both DNA 
methylation and gene expression data in validation AECs 
dataset. The diagnostic ability of multi-omics asthma risk 

Fig. 3 Identification of DEGs associated with asthma severity in the discovery BECs dataset. A Volcano plot showing DEGs related to asthma. 
Differentially expressed genes (DEGs) are those with adjusted P value < 0.05 and absolute value of fold change > 0.1. B Cluster dendrogram of 1891 
DEGs revealed eight modules including turquoise, brown, green, blue, yellow, black, red, and gray. C Correlation between co-expression modules 
and various clinical measures
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model in validation AECs dataset revealed high perfor-
mance in asthma-risk prediction (AUC = 0.82) (Fig. 6B).

Integrating DNA methylation and gene expression data
We performed correlation analysis between meth-
ylation levels of DMCs and the expression level of 
DEGs in the modules associated with asthma sever-
ity and lung function to explore the biological rel-
evance of the DMCs in gene expression. Initially, the 
1845 DMCs were mapped to 1035 genes. Then, cor-
relation analysis between the methylation levels of 
DMCs and gene expression levels identified a total of 
35 significantly correlated DMC-DEG pairs (Fig. 7A–F 
and Additional file  2: Table  S7) including cg14015211 
(TLR5), cg21385480 (LRIG1), cg01975495 (SERPINE1), 
cg10528482 (SLC9A3), cg25477769 (HNF1A) and 

cg26639146 (CD9). Using these results, we conducted 
a mediation analysis for each of the 35 DMC-DEG pairs 
to examine direct effect (CpG methylation → asthma 
severity or FEV1) and mediational effect (CpG meth-
ylation → gene expression → asthma severity or 
FEV1) pathways adjusting for age, gender, and ances-
try PCs. We identified several significant mediation 
genes (Table  2 and Additional file  2: Table  S8) includ-
ing INAGL1, SERPINE1, TLR5, SLC9A3 and CD9 for 
asthma severity and INAGL1, TLR5, CD9 for FEV1 
(Table  2 and Additional file  2: Table  S9), suggesting 
potential regulation effect of DNAm on gene expres-
sion in asthma. Moreover, we found a significant direct 
effect of DNAm CpG on asthma severity and FEV1 
after adjusting for age, gender, ancestry, and mediator 
gene (Table 2, Additional file 2: Tables S7 and S8).

Fig. 4 Pathways significantly enriched by genes in the A. turquoise, B. brown, and C. blue co-methylation modules that are significantly (P 
value < 0.01) associated with asthma severity and/or lung function
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Validation of differential methylation CpG sites associated 
with DEGs in an independent AEC dataset
To validate the 35 DMC-DEG pairs associated with 
asthma severity and lung function identified in BECs, 
we further used an independent AECs validation data-
set. First, we conducted differential methylation analysis 
between asthmatic subjects (n = 74) and Controls (n = 41) 
in AECs adjusting age and gender and showed that 
29 CpG sites out of 35 DMCs identified in BECs were 

found to be differentially methylated in AECs (Table  3) 
with the same directional effect (adjusted P value < 0.05 
and Δmeth > 1%). Next, we examined correlation between 
29 DMCs and their mapped DEGs based on 81 sam-
ples having both DNA methylation and gene expres-
sion data in validation AECs dataset. We validated 17 
DMCs significantly correlated with DEGs (Fig. 8A–F and 
Additional file  1: Fig. S6) including cg01975495 (SER-
PINE1), cg10528482 (SLC9A3), cg25477769 (HNF1A) 

Fig. 5 Pathways significantly enriched by genes in the A. turquoise, B. red, and C. green co-expression modules that are significantly (P value < 0.01) 
associated with asthma severity and/or lung function
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and cg26639146 (CD9), cg17945560 (TINAGL1) and 
cg10290200 (FLNC). More importantly, several of these 
identified DEGs that are correlated with DMCs have 
been implicated in asthma [17–19].

Discussion
In this study, DNAm and gene expression change in BECs 
of asthmatics and controls were analyzed at a genome-
wide scale. Based on differential methylation, expression, 
and weighted correlation network analysis, we identified 
co-methylation modules and co-expressed modules that 

Fig. 6 The risk prediction performance of different risk models including MRS, TRS and clinical biomarkers. A in the discovery BECs dataset B 
in the validation AECs dataset. MRS-methylation-based risk Score, TRS-transcriptomic-based risk score

Fig. 7 Scatter plot showing the correlation between DNA methylation levels and gene expression levels for 118 samples with both DNA 
methylation and gene expression data in the discovery-BECs dataset
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were correlated with asthma severity, and lung function. 
The functional enrichment analysis of co-methylation 
module genes and co-expression module genes showed 
enrichment in several shared pathways including axonal 
guidance signaling, notch signaling, WNT/beta-catenin 
signaling, pulmonary fibrosis idiopathic signaling and 
myelination signaling. Subsequently, machine learning 
methods identified the most informative subset of DMCs 
and DEGs that leads to better asthma diagnostic perfor-
mance. Moreover, correlation analysis followed by medi-
ation analysis identified potential DNAm regulated DEGs 
that were associated with asthma severity and lung func-
tion and the findings were validated using an independ-
ent AECs dataset.

In this study, we first identified DMCs and DEGs in 
asthmatic samples compared to controls and further con-
ducted weighted correlation network analysis to identify 
network modules associated with asthma severity and 
lung function and identified several shared pathways 
including WNT/beta-catenin and notch signaling. The 
Wnt/beta-catenin signaling pathway regulates airway 
remodeling, which is involved in chronic asthma [20]. 
Indeed, several genes identified in this study are enriched 
in WNT/beta-catenin signaling, including FZD7 and 
HNF1A, suggesting methylation signals associated with 

the activation WNT/beta-catenin signaling in the devel-
opment of asthma pathology. Moreover, differentially 
methylated CpGs annotated genes and differentially 
expressed genes (DTX1, MAML2, and NOTCH1) are 
involved in notch signaling and this result is consistent 
with previous finding, showing DNAm associated with 
notch signaling pathway activation in severe asthmatic 
subjects [13]. The notch signaling regulates the immune 
response and a therapeutic target for asthma [21].

To evaluate predictive performance of DMCs and 
DEGs, we used machine learning methods to identify 
important DMCs and DEGs and constructed asthma 
risk prediction models. Most previous studies that con-
structed asthma risk prediction model were limited to 
either using CpGs or DEGs [22], and there were limited 
studies developed risk model based on integrated tran-
scriptomic and DNAm data. A recent study by Liu et al. 
[23] used co-expression and co-methylation network 
analyses to identify genetic signatures and methylation 
pathways associated with Opioid use disorder. Zhang 
et  al. [11] also showed that the roles of co-expression 
network analysis to identify hub DEGs associated with 
asthma severity. In this study, we constructed multi-
omics-based risk models in predicting asthma, as multi-
omics data potentially predict outcome more accurately 

Table 2 Mediation analysis of gene expression in the association between DNA methylation and asthma severity and lung function 
measure (FEV1) in the discovery BECs dataset

ME denotes causal mediational effect (indirect effect of each CpG on asthma severity/FEV1 that goes through mediating gene). The values in bold show genes that are 
significantly mediating the DNA methylation effect on asthma severity/FEV1 association

CpG Gene Total effect Direct effect (DE) Mediational effect (ME)

β (95% CI) P value β (95% CI) P value β (95% CI) P value Mediation 
proportion

Asthma severity association

cg17945560 TINAGL1 0.34 (0.06, 0.59) 0.016 0.076 (− 0.15, 0.28) 0.52 0.26 (0.09, 0.44) 2E−16 77.5
cg01975495 SERPINE1 0.69 (0.36, 0.99) 2E−16 0.57 (0.24, 0.88) 2E−16 0.12 (0.03, 0.25) 0.004 17.3
cg14015211 TLR5 0.314 (0.21, 0.43) 2E−16 0.21 (0.07, 0.35) 0.008 0.106 (0.04, 0.191) 0.004 33.77
cg26639146 CD9 − 0.29 (− 0.5, − 0.06) 0.016 − 0.18 (− 0.38, 0.09) 0.17 − 0.10 (− 0.25, − 0.031) 0.002 36.24
cg10290200 FLNC − 0.20 (− 0.3, − 0.1) 2E−16 − 0.15 (− 0.26, − 0.03) 0.006 − 0.05 (− 0.11, 01) 0.06 26.69
cg25477769 HNF1A 0.57 (0.203, 0.93) 0.002 0.39 (− 0.02, 0.82) 0.068 0.18 (− 0.02, 0.391) 0.08 31.18

cg21385480 LRIG1 0.41 (0.281, 0.55) 2E−16 0.3 (0.13, 0.45) 2E−16 0.12 (0.03, 0.221) 0.002 27.99
cg10528482 SLC9A3 0.28 (0.183, 0.38) 2E−16 0.2 (0.08, 0.31) 2E−16 0.08 (0.02, 0.141) 0.002 27.97
Lung function association

g17945560 TINAGL1 − 0.27 (− 0.53, 0.01) 0.06 − 0.11 (− 0.36, 0.13) 0.07 − 0.17 (− 0.27, − 0.06) 2E−16 61.2
cg01975495 SERPINE1 − 0.61 (− 0.84, − 0.38) 2E−16 − 0.55 (− 0.76, − 0.32) 2E−16 − 0.06 (− 0.15, 0.01) 0.13 9.08

cg14015211 TLR5 − 0.41 (− 0.56, − 0.27) 2E−16 − 0.27 (− 0.43, − 0.12) 2E−16 − 0.14 (− 0.26, − 0.03) 0.022 34.78
cg26639146 CD9 0.34 (0.018–0.63) 0.046 0.25 (− 0.18, 0.55) 0.218 0.09 (0.003, 0.33) 0.034 25.44
cg10290200 FLNC 0.22 (0.08–0.36) 0.006 0.13 (− 0.04, 0.29) 0.154 0.09 (0.004, 0.17) 0.036 42.72

cg25477769 HNF1A − 0.65 (− 1.18, − 0.11) 0.028 − 0.47 (− 1.07, 0.16) 0.162 − 0.18 (− 0.43, 0.05) 0.124 27.8

cg21385480 LRIG1 − 0.37 (− 0.58, − 0.13) 0.002 − 0.41 (− 0.66, − 0.09) 0.006 0.04 (− 0.12, 0.16) 0.614 10.11

cg10528482 SLC9A3 − 0.25 (− 0.41, − 0.09) 0.002 − 0.18 (− 0.35, − 0.01) 0.044 − 0.07 (− 0.16, 0.01) 0.076 28.5
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than single omics data [24]. Our multi-omics-based risk 
model prediction accuracy (AUC) was 0.99 in BECs and 
0.82 in AECs. Moreover, mediational analysis was per-
formed to examine whether the association between 
methylated CpG site and asthma severity and lung 
function is explained at least partially by differentially 
expressed gene with adjustment for covariates. We found 
35 correlated DMC-DEG pairs and revealed several sig-
nificant mediation relationships among them including 
TLR5, SLC9A3, SERPINE1 and GRK5. Other genes such 
as RMD4A, HNF1A and GAL3ST2 showed insignificant 
mediation, implying that the association between DNAm 
and asthma severity and lung function occur via other 
mechanisms in BECs. Notably, our validation analysis in 
independent AECs datasets replicated 29 out of the 35 

differentially methylated CpGs associated with asthma 
in BECs and 17 of the differentially methylated CpGs 
were significantly correlated with expression of anno-
tated DEGs including SERPINE1, SLC9A3, CD9, HNF1A, 
TINAGL1, and FLNC. Two CpG sites that were methyl-
ated across two studies are annotated to hypo-meth-
ylated SERPINE1 and SLC9A3. Pampuch et  al. showed 
that SERPINE1 was associated with IgE response and 
bronchial activity [25]. In addition, Zhou et al. suggested 
that DNA methylation changes of SERPINE1 might be 
responsible for mediating the effect of genetic variate on 
the development of food allergy [17]. Importantly, our 
study revealed that SERPINE1 was hypo-methylated in 
BECs and AECs and its expression mediates the meth-
ylation effect on asthma severity, and lung function. 

Table 3 Validation of the methylation differences of CpGs between asthmatic subjects and controls in independent validation 
ACEs dataset

CpG Gene Effect size in discovery set (n = 96 
asthmatics, n = 46 controls)

Effect size in validation set (n = 74 
asthmatics, n = 41 controls)

Direction of 
association

Δmeth (100%) Adjusted P value Δmeth (100%) Adjusted P value

cg00406211 GRK5 − 11.335 2.63E−06 − 12.978 1.39E−09 Hypo

cg21385480 LRIG1 7.7035 0.0002 9.3715 4.45E−09 Hyper

cg10528482 SLC9A3 8.1986 0.0007 8.968 2.76E−05 Hyper

cg16393012 ARHGDIB − 5.627 0.010 − 8.863 1.46E−05 Hypo

cg25267808 MAML2 6.403 0.006 6.661 6.16E−05 Hyper

cg18181229 PBX1 5.285 0.009 5.417 0.001 Hyper

cg14185918 KLF4 − 4.071 0.006 − 5.009 0.0001 Hypo

cg10290200 FLNC − 2.633 0.001 − 4.843 3.08E−06 Hypo

cg02766259 AACS − 4.119 0.011 − 4.623 0.0004 Hypo

cg06128142 GPT2 3.595 0.001 4.277 5.91E−06 Hyper

cg23817893 CCDC81 4.435 0.003 4.1574 0.003 Hyper

cg01975495 SERPINE1 4.669 0.003 3.989 0.002 Hyper

cg26639146 CD9 − 3.696 0.039 − 3.709 0.009 Hypo

cg03441945 ABAT 3.402 0.014 3.573 0.001 Hyper

cg17602126 HEYL 3.188 0.002 3.307 0.001 Hyper

cg25477769 HNF1A 2.497 0.017 3.304 7.98E−05 Hyper

cg19212949 PEG3 − 1.943 0.027 − 3.243 0.0001 Hypo

cg08801887 TCIRG1 2.366 0.017 3.127 4.58E−05 Hyper

cg11419403 CLPTM1L − 2.66 0.009 − 2.749 0.016 Hypo

cg15012607 ETHE1 2.046 0.043 2.554 0.0005 Hyper

cg10672136 TPO 1.551 0.001 2.512 6.98E−08 Hyper

cg17945560 TINAGL1 2.037 0.011 2.383 0.0032 Hyper

cg15562220 SCGN 1.964 0.018 2.329 0.006 Hyper

cg23556108 BCL11A 1.652 0.001 2.1769 0.0001 Hyper

cg19651003 BSG − 1.589 0.004 − 2.164 1.44E−05 Hypo

cg10336131 CNIH2 1.941 0.007 1.963 0.008 Hyper

cg20491914 KCNK3 1.281 0.045 1.632 0.017 Hyper

cg09048665 WDR90 − 1.233 0.033 − 1.412 0.012 Hypo

cg17012160 FMN2 1.200 0.019 1.290 0.002 Hyper
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The validated hyper-methylated co-methylated CpG site 
annotated to SLC9A3 is part of our asthma-risk predic-
tive model. This gene is related to airway epithelium 
and immune regulation. Notably, our findings showed 
that expression level of SLC9A3 was associated with 
DNA methylation changes and mediated methylation 
effect on asthma severity and lung function association. 
Our finding aligned with previous genome-wide study 
in atopy [18], indicating expression changes of SLC9A3 
mediate the methylation and atopy association. Other 
hyper-methylated validated genes were mapped to genes 
such as CD9, SCGN, KLF4, KCNK3 and HNF1A. Previ-
ous study reported deficiency of KLF4 compromises the 
lung function in an acute mouse model of allergic asthma 
[26]. Besides, KLF4 regulates immune response-related 
genes including IL1RL1, CD274, and CD44 in human 
nasal epithelial cells of allergic rhinitis [27]. In line with 
previous study, our study also found that KLF4 is signifi-
cantly associated with asthma severity and lung function. 
In addition, we found hypo-methylated KLF4 signifi-
cantly associated with asthma severity and lung func-
tion, which suggests that methylation effect may regulate 
KLF4 in asthma and lung function disease development. 
We also found that hyper-methylated CpG annotated to 
HNF1A was associated with asthma severity and reduced 

lung function. Our finding was supported by the previ-
ous study showing hyper-methylated HNF1A linked with 
asthma pathogenesis [28].

Our study has some limitations. Sample size of the 
DNA methylation and transcription expression data is 
relatively small. Hence, this study may not detect all asso-
ciation between DNA methylation CpG and gene expres-
sion changes and with clinical traits such as asthma 
status, severity and lung function measures. Since CpG 
can be influenced by lifestyle factors and environmental 
risk factors, in future, considering lifestyle and environ-
mental risk factors and their association with methylation 
changes in asthma disease is recommended. The study 
was limited by datasets deposited in public domains. Our 
analysis is also limited to DNAm and DEGs, and future 
studies including genomics, proteomics and metabo-
lomics need to be conducted.

Our study also has several strengths. First, we con-
structed co-methylation and co-expression modules 
associated with asthma severity and lung function meas-
ures and found that differentially co-methylation mod-
ule CpGs and co-expression module DEGs enriched 
common biological pathways. Second, we developed 
MRS and TRS in asthma-specific tissue and further vali-
dated using asthma-relevant tissues [29]. Third, to our 

Fig. 8 Scatter plot showing the correlation between DNA methylation levels and gene expression levels for 81 samples with both DNA methylation 
and gene expression data in validation AECs dataset



Page 13 of 16Dessie et al. Clinical Epigenetics           (2024) 16:15  

knowledge, this is the first study that constructed multi-
omics asthma risk prediction model by integrating TRS 
and MRS in BECs and conducted mediational analysis 
to assess whether the methylation-asthma severity or 
lung function association is explained by transcriptomics 
changes.

In conclusion, DNAm is an epigenetic mechanism 
that plays a key role in regulating gene expression. An 
integrated analysis of DNAm and gene expression data 
identified several DNA methylation-regulated genes 
associated with asthma severity and lung function in 
BECs dataset and subset of which including cg01975495 
(SERPINE1), cg10528482 (SLC9A3), cg25477769 
(HNF1A) and cg26639146 (CD9), cg17945560 (TIN-
AGL1) and cg10290200 (FLNC) were further confirmed 
in validation AECs dataset. The validation results showed 
that these methylation CpG sites/genes may serve for 
asthma diagnosis and the development of new epige-
netic therapies for asthma. In addition, the integration 
of multi-omics data has expanded our understanding of 
how various omics data correlated with one another and 
inform better prediction of disease risk.

Materials and methods
Datasets and filtering criteria
The overall pipeline of our study is shown in Fig. 1. Eli-
gible and publicly available DNAm and gene expression 
datasets were selected based on the following criteria. 
(1) Homo sapiens, (2) sample size ≥ 80, and (3) consists 
of DNAm and gene expression profiles of asthmatic and 
control subjects. DNAm data (accession: GSE201872) 
and RNA-seq data (accession: GSE201955) obtained 
from BECs that satisfied the inclusion criteria were 
selected and used as discovery datasets. Other datasets 
with DNAm (accession: GSE85568) and RNA-seq data 
(accession: GSE85567) obtained from AECs that satis-
fied the inclusion criteria were selected and used for 
validation datasets. Initially, DNAm and gene expres-
sion profiles and corresponding clinical information were 
downloaded from the identified Gene Expression Omni-
bus (GEO) database.

The quality controls and data normalization proce-
dures for DNAm data (GSE201872) and RNA-seq data 
(GSE201955) were already conducted and described in 
the original study [30].

For GSE201872, a matrix of DNAm data with 
M-values of a total of 61,162 methylation CpGs in 
142 samples (including 46 controls, 47 mild-moderate 
asthmatic and 49 severe asthmatic) based on both Illu-
mina Infinium MethylationEPIC and Infinium Human-
Methylation450K assays were obtained. We further 
normalized the between platform differences using 
surrogate variable analysis (SVA) [31] package. The 

GSE201955-RNA-seq data contain a total of 118 sam-
ples, which are subset of the 142 samples in the DNAm 
GSE201872 dataset, including 39 control, 39 mild-
moderate asthmatic and 40 severe asthmatics and a 
total of 13,757 genes with normalized RNA-seq expres-
sion profiles. Therefore, there are a total of 118 samples 
with both DNAm and gene expression data available 
between the GSE201872 and GSE201955 datasets. 
Three outcome variables: asthma status only (cases vs. 
controls) for identification of DMCs and DEGs and the 
development of risk prediction models, asthma severity 
(no, step = 0, mild-moderate, step = 1, 2, 3, 4 and severe, 
step = 5, 6) and lung function measures (including FEV1 
and FEV1/FVC) for associations with co-methylation 
and co-expression modules, were considered in this 
study. Other demographic and clinical variables such 
as age, gender, race, current smoking status, maternal 
asthma, BMI, IgE, BAL eosinophilia, BAL neutrophilia, 
and blood eosinophilia were included in our study. In 
addition to clinical and demographic variables, we 
included the three ancestry principal components 
(PCs) information, which were estimated in the origi-
nal study [10]. To replicate and validate our findings, 
DNAm data from GSE85568 (contained 71 asthmatic 
samples and 42 control samples) and gene expression 
data from GSE85567 (contained 57 asthmatic samples 
and 28 control samples) derived from AECs were used. 
Between DNAm data from GSE85568 and gene expres-
sion data from GSE85567 datasets, a total of 81 same 
samples have both methylation and gene expression 
data available. The summary of the datasets used in this 
study is shown in Additional file 2: Table S10.

Identification of differentially methylated and expressed 
genes
We conducted differential methylated and expressed 
analysis between asthmatic and control samples to iden-
tify DMCs and DEGs using Empirical Bayes linear model 
in the limma package [32] adjusting for age, gender, cur-
rent smoking status and ancestry information. Differ-
ential methylation analysis on M-values, the Benjamini 
and Hochberg (B-H)  [33]-based adjusted P value < 0.05 
and an absolute effect size (|Δmeth|) > 1% were used to 
define DMCs. The effect size was defined based on beta-
values as follows: (Δmeth) = mean  methyasthmatics − mean 
 methyControl. Similarly, differential expression analysis 
was conducted to identify DEGs adjusting age, gen-
der, and smoking status in the discovery dataset. We 
used an absolute value of log2 (fold change = gene 
 expressionasthamtics/gene  expressioncontrols) > 0.1 and a sig-
nificance threshold of adjusted P value < 0.05 based on 
B-H procedure to identify DEGs [33].



Page 14 of 16Dessie et al. Clinical Epigenetics           (2024) 16:15 

Weighted correlation network analysis
We conducted weighted correlation network analyses 
to identify co-methylation and co-expression networks 
based on the connectivity of methylation of CpGs and 
gene expression profiles using WGCNA package [34]. 
Initially, similarity matrix of DMCs or DEGs were con-
structed using pairwise correlation Sij = cor

(

xi, xj
)

 , 
where xi and xj represent the ith row and the jth row of 
DNAm/gene expression data matrix X, respectively. The 
similarity matrix was transformed into an adjacency 
matrix, represented by Aij = cor xi, xj

β , where the 
suitable soft-thresholding power β was set ranging from 1 
to 20 utilizing the pick Soft Threshold function. Dynamic 
tree cutting algorithm was used to divide DMCs or DEGs 
into different groups of connected CpGs (co-methylation 
modules) or connected DEGs (co-expressed modules) 
based WGCNA signed network, respectively. Methyl-
ated CpGs/DEGs with similar methylation/expression 
patterns are clustered into the same module and may 
potentially share common biological roles [35]. The 
eigenvectors of the co-methylation and co-expression 
modules were derived and examined for associations 
with clinical features of asthma including the asthma 
severity outcome (no, mild-moderate or severe asthma), 
lung function measures (FEV1 and FEV1/FVC), IgE, 
BMI, BAL eosinophilia, blood eosinophilia, maternal 
asthma status, age, gender, race, current smoking status 
and ancestry PCs. Lastly, modules significantly correlated 
with asthma severity and lung function measures were 
selected for further analysis(P value < 0.05). The DMCs 
within significant co-methylated modules and DEGs 
within co-expressed modules are hypothesized to have an 
influential role in regulating diseases [36].

Pathway analysis of module genes
The network module level analysis between co-methyl-
ated and co-expressed module genes was conducted to 
integrate DNAm and gene expression analysis. At the 
network module level, we used a hypergeometric test in 
the GeneOverlap [37] package to measure overlapping 
genes between CpG mapped genes in the co-methylation 
modules associated with asthma severity and lung func-
tion and DEGs in the co-expression modules associated 
with asthma severity and lung function. A hypergeo-
metric test with P value < 0.05 was used to assess the sig-
nificance of overlapping genes between co-methylation 
modules and co-expression modules. Then, pathway 
enrichment analyses by Ingenuity Pathway Analysis (IPA) 
software [38] were used to understand the biological 
function of genes in the co-methylated and co-expression 
modules that were associated with asthma severity and 
lung function. The IPA method evaluates proportional 

representation of module genes from a defined set in a 
canonical pathway in all set of known genes. Canonical 
pathways related to input module genes were elucidated 
with a ratio to evaluate significant pathway enrichment 
adjusted for multiple testing. The adjusted P value was 
calculated based on B-H procedure and biological func-
tions with adjusted P value < 0.05 were defined as signifi-
cant canonical pathways.

Construction and validation of multi‑omics risk score 
models
We constructed three asthma risk prediction models: 
methylation-based risk score (MRS), transcriptomic-
based risk score (TRS) and multi-omics risk model 
(MRS + TRS). Differentially co-methylated CpG sites and 
differentially co-expressed genes obtained from differ-
ential and WGCNA analysis with adjusted P value < 0.05 
were included in supervised Boruta algorithm. The 
Boruta algorithm is type of machine learning technique, 
which was used to select important CpG sites and genes 
whose DNAm levels and gene expression levels are rel-
evant for asthma risk prediction [39] using Boruta R 
package. Important CpG sites and genes yielded the 
‘confirmed’ status in Boruta iterations were selected for 
subsequent analysis. Next, multiple logistic regression 
model was utilized to generate coefficients of the CpGs 
and genes, separately for asthma risk prediction. Then, 
MRS = Σβi × methyl-CpGi, where methyl-CpG is the 
M value and β is the regression coefficient from logistic 
regression analysis [40] and TRS = Σβi × exp-genei, where 
exp-gene is the normalized gene expression value and β is 
the coefficient from logistic regression analysis were con-
structed. Finally, multi-omics risk score model by inte-
grating TRS and MRS was constructed using 118 samples 
having both DNAm and gene expression data in the dis-
covery BCEs dataset. The prediction performances were 
assessed in the discovery BEC datasets using area under 
the ROC curve (AU-ROC) as implemented in pROC 
[41] R package. The risk prediction performances were 
validated using 81 samples having both DNAm and gene 
expression data in the validation AECs dataset.

Correlation analysis between CpG methylation level 
and expression level of DEGs
To evaluate whether identified differentially methyl-
ated CpGs are correlated with corresponding mapped 
DEGs, we performed correlation analysis using Pearson 
correlation coefficient ( Ri ) as calculated below based on 
M-values of methylated CpGs and normalized expression 
values of DEGs [42] of 118 subjects in discovery BECs 
dataset.
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Here, pij represents the M-values of i-th CpG site in 
the j-th subject, pi is the mean M-value of i-the CpG site 
over subjects; gij represent the expression value of i-th 
gene in the j-th subject, gi is the mean expression value of 
i-the gene over subjects and Ri is correlation coefficient 
between i-th CpG site M-values and i-th gene expres-
sion values, where the i-th CpG site is mapped to the i-th 
gene. Significant correlations between the differentially 
methylated CpGs and mapped DEGs in discovery BECs 
dataset were validated based on 81 samples having both 
DNA methylation and gene expression data in the inde-
pendent validation AECs dataset.

Mediation analysis
After evaluating the correlation between methylated 
CpGs and the corresponding mapped DEGs in the dis-
covery dataset, we conducted mediation analysis to 
explore whether any proportion of the association 
between methylated CpGs and asthma severity/FEV1 is 
mediated by DEG [43–45] among the subjects with both 
DNAm and gene expression data. In our mediation anal-
ysis, we constructed three models: including (1) mediator 
model (a-path) to evaluate the association between the 
gene expression and DNAm of CpG using linear regres-
sion model. (2) Outcome models (b-path and c′-path) 
to evaluate the effect of DNAm and gene expression on 
asthma severity using ordinal logistic regression or FEV1 
using linear regression. (3) Total effect model (c-path) to 
evaluate the effect of DNAm on the asthma severity using 
ordinal logistic regression or FEV1 using linear regres-
sion. All models were adjusted for covariates: age, gender, 
and ancestry. The regression models used in our study 
are described in Fig. 1 and as follows.

• a-path: gene expression ~ DNA methylation + covari-
ates,

• b-path and c′-path: FEV1 or asthma severity ~ DNA 
methylation + Gene expression + covariates,

• c-path: FEV1 or asthma severity ~ DNA methyla-
tion + covariates (total effect).

The mediation effect of each CpGs was performed 
separately. The standardized coefficients were estimated 
based on 1000 nonparametric bootstrap resampling 
quasi-Bayesian approximation method using mediation 
package [46]. The total effect from DNAm to asthma 
severity/FEV1 was decomposed into the indirect effect or 
mediated effect (ME) through gene expression (methyla-
tion CpGs → gene expression → asthma severity or FEV1) 

Ri =

∑n
i=0

(

pij − pi
)(

gij − gi
)

√

∑n
i=0

(

pij − pi
)2∑n

i=0

(

gij − gi
)2

and the direct effect (methylation CpGs → asthma sever-
ity or FEV1) not mediated by gene expression but could 
be mediated by other factors or a direct link between 
DNA methylation changes and asthma severity or FEV1. 
The ME is equal to a × b, which is equivalent to c–c′ 
and denotes the part of the DNAm effect of each CpG 
on asthma severity or FEV1 mediated by gene expres-
sion. Significance of association was defined based a P 
value < 0.05 as cut-off.

Statistical analysis
All preprocessing and statistical analysis were performed 
using R software version 4.2.2 and associated Biocon-
ductor packages. Comparisons of median among three 
groups were tested using pairwise median test. The 
ANOVA test was used to compare means of three groups 
using multcomp package. The Tukey Honest significant 
differences test was utilized to compare mean between 
two groups. Associations between two continuous vari-
ables were assessed by either Spearman or Pearson cor-
relation coefficient. Statistical significance based on 
B-H  adjusted P value < 0.05 was used, unless otherwise 
stated.
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