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Abstract 

Background Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic vari-
ants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, 
reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tri-
carboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL 
tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational 
modifications and DNA methylation levels, alongside clinical phenotypes.

Results Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished 
from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation 
was compared between tumours from individuals who developed metastatic disease versus those that did not. The 
majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-
metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermedi-
ate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses 
performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously 
described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pitui-
tary tumour-transforming gene PTTG1.

Conclusions Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones 
that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated 
histone marks in Cluster 1 PPGLs.
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Introduction
Phaeochromocytomas (PCCs) and paragangliomas 
(PGLs), collectively referred to as PPGLs, are rare neu-
roendocrine tumours derived from chromaffin cells 
in the adrenal medulla and the sympathetic and para-
sympathetic paraganglia, respectively. PPGLs have the 
highest degree of heritability of any cancer type [1], and 
despite their relative rarity in the general population, 25% 
of PPGLs are life-threatening neoplasms [2]. Standard 
treatment of PPGLs is total surgical resection, when pos-
sible. No treatments are highly effective for metastatic 
PPGLs [3]; options include radiopharmaceuticals [4], 
chemotherapy [5] and external-beam radiotherapy [6]. 
Understanding more about the mechanisms of tumour 
formation is therefore a priority for the development of 
treatment regimens and disease screening stratification.

Around 40% of PPGLs are caused by inherited ger-
mline pathogenic variants in over 15 susceptibility genes 
that can be readily tested for [7]. It is estimated that an 
additional 30% of PPGLs arise due to somatic pathogenic 
variants. Somatic variants may arise in the same suscep-
tibility genes as in the germline. There are also a num-
ber of exclusively somatic variants implicated in PPGL 
development such as EPAS1, HRAS, BRAF, CSDE1 and 
UBTF-MAML3 fusion [8]. PPGLs are grouped in clusters 
based on their transcriptional profile [9] and tumorigenic 
mechanism underlying their aetiology [10].

Cluster 1A tumours have pathogenic variants in 
enzymes of the tricarboxylic acid (TCA) cycle, includ-
ing in the genes encoding the different subunits of suc-
cinate dehydrogenase SDHA, SDHB, SDHC, SDHD and 
the assembly factor SDHAF2 (collectively SDHx), fuma-
rate hydratase FH, isocitrate dehydrogenase IDH1/2, 
malate dehydrogenase 2 MDH2, glutamic-oxaloacetic 
transaminase 2 GOT2 and, rarely, the also metabolism-
related SCL25A11 and SUCLG2 [11]. Cluster 1B tumours 
harbour pathogenic variants in genes involved in oxy-
gen sensing (VHL, EPAS1, EGLN1/2). Cluster 2 tumours 
are characterised by aberrant kinase signalling due to 
variants in genes such as NF1, RET, HRAS, MAX and 
TMEM127. Recently, somatic variants in CSDE1 and 
in-frame RNA fusion transcripts of the UBTF-MAML3 
genes that activate Hedgehog and Wnt pathways have 
been identified, comprising Cluster 3 [1].

Gene expression is modulated by epigenetic mecha-
nisms in normal development with DNA methylation 
and post-translational modifications (PTMs) of histone 
proteins mediating this [12]. Epigenetic reprogram-
ming occurs in normal development [13], but in tumour 
cells, genome-wide reprogramming has been associated 
with tumour development [14], while tumour suppres-
sor genes are often silenced via DNA hypermethylation 
of their promoters despite more global hypomethylation 

[15]. In contrast, Cluster 1A PPGL tumours undergo dra-
matic epigenetic reprograming, including genome-wide 
DNA hypermethylation and alterations to histones [16], 
which have been associated with gene expression dys-
regulation [9, 17]. These epigenetic changes have been 
associated with epithelial-to-mesenchymal transition, 
which is involved in tumour invasion and aggressiveness 
[18, 19], impaired DNA damage repair [20] and invasive 
behaviour [21].

SDHB tumours (Cluster 1A) have an increased risk of 
developing distant metastases [22, 23]. Tumours with 
pathogenic variants in Cluster 1A genes are characterised 
by the accumulation of oncometabolites [24–27], which 
contribute to tumorigenesis [28] and their accumulation 
has been linked to epigenetic aberrations [29]. Dysregu-
lation of DNA methylation in PPGL Cluster 1A tumours 
identified the CpG island methylator phenotype (CIMP) 
as a prognostic factor associated with malignant behav-
iour [30].

Using early DNA methylation technologies, the first 
such study assayed a small number (1536) of cytosines 
in 29 PPGLs [31]. The development of higher reso-
lution approaches provided more coverage genome 
wide including one study that characterised four adre-
nal samples and 39 PPGL tumours, but only one with a 
Cluster 1A tumour [32] and another study involving 19 
PPGL tumours, again with only one tumour harbouring 
a Cluster 1A variant [33]. The PPGL arm of The Cancer 
Genome Atlas (TCGA) network undertook a compre-
hensive molecular characterisation of PPGL tumours 
using whole genome sequencing, transcriptomics and 
DNA methylation arrays for 173 cases of which 15 were 
SDHB and three were SDHD tumours [1]. Within this 
cohort, eight (5%) of the tumours were metastatic, with 
an additional nine (5%) exhibiting aggressive disease 
as defined by local recurrence or loco-regional disease. 
More recently, a study analysed PPGLs with single-nuclei 
and bulk RNA-seq to expand on the molecular classifica-
tion of these tumours and describe their microenviron-
ment [34]. Here, we explore the hypothesis of whether 
Cluster 1A PPGL tumours undergo distinct epigenetic 
changes involving both altered histone modifications and 
DNA hypermethylation compared to other PPGL sub-
types and how these could be linked to clinically-relevant 
phenotypes.

Materials and methods
Patient cohort
Herein, we report on global histone PTMs, DNA meth-
ylation and the transcriptomes of PPGL tumours of 
known genetic aetiology, along with their clinical phe-
notypes, providing a comprehensive transcriptomic and 
epigenetic dataset of PPGLs. Histone PTMs of 30 PPGL 
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tumours were examined by mass spectrometry (MS) 
DNA methylation profiles of 52 PPGL tumours, and two 
normal adrenal medulla samples were performed. The 
transcriptomes of 29 PPGL tumours, with phenotype 
information, were generated (INA, KLN). DNA methyla-
tion analysis was performed on 28 of these same samples. 
This allows for comparisons to be made between gene 
expression and DNA methylation in the same individuals 
(Table  1). Tumour samples were obtained from several 
sources (Additional file 1: Figure S1):

• RNA sequencing data were obtained from 29 PPGL 
samples provided by the University of Pennsylvania 
(UPenn) (INA, KJN)

• DNA methylation profiles were analysed on 52 
samples in total obtained from (Table  1): Sixteen 
PPGL tumours from the public repository, Gene 
Expression Omnibus (GEO accession GSE111336 
[35]). One sample (PPGL 11) did not pass quality 
control and was excluded from subsequent analy-
ses.

• Twenty-eight PPGL tumours from the UPenn 
cohort (LF, INA, KLN)

• Six tumour samples from Guy’s & St. Thomas’ 
NHSFT (LI).

• Two normal adrenal medulla samples from Barts 
Health NHSFT (NT) isolated from tumour-free 
regions from two individuals with RET PCC (ESL) 
were analysed. These samples were preserved in 
FFPE and isolated using laser-capture microdis-
section (ZEISS PALM CombiSystem) from areas 
that were clear of disease, as delineated by a spe-
cialist endocrine histopathologist (MM).

Pathology tissue analysis of histones for mass spec-
trometry (PAT-H-MS) was performed on 31 samples (1 
normal adrenal and 30 PPGL samples) collected from 
GSTTFT (Additional file 7: Table S1) [35].

For 28 tumours, detailed clinical data were available; 
eight (28.6%) had been classified as metastatic and 20 
(71.4%) as non-metastatic. Twenty-four (85.7%) were 
primary tumours and four (14.3%) were from distant 
metastases. Seven tumours were recurring (25%) and 
11 (39.3%) tumours were classified as clinically aggres-
sive (Table 1 and Additional file 1: Figure S1). Metastatic 
disease was classified as the occurrence of metastases in 
non-chromaffin tissues including lymph nodes. Clini-
cally aggressive disease events were defined by the occur-
rence of distant metastases, positive regional lymph 

Table 1 Tumour samples are listed along with their pathogenic 
variant detected either by diagnostic test or by whole genome 
sequencing where known (column 2)

(ALL) N = 52 N

Group 52

 HRAS 2 (3.85%)

 IDH3B 1 (1.92%)

 NF1 1 (1.92%)

 Normal 2 (3.85%)

 RET 1 (1.92%)

 SDHA 1 (1.92%)

 SDHB 14 (26.9%)

 SDHD 5 (9.62%)

 Sporadic 20 (38.5%)

 VHL 5 (9.62%)

Location 50

 EAPGL 21 (42.0%)

 HNPGL 7 (14.0%)

 PCC 22 (44.0%)

Metastatic 50

 No 20 (40.0%)

 Unknown 22 (44.0%)

 Yes 8 (16.0%)

Primary 50

 No 4 (8.00%)

 Unknown 22 (44.0%)

 Yes 24 (48.0%)

Recurring 50

 No 21 (42.0%)

 Unknown 22 (44.0%)

 Yes 7 (14.0%)

Clinically aggressive 50

 No 17 (34.0%)

 Unknown 22 (44.0%)

 Yes 11 (22.0%)

ATRX double mutation: 50

 No 24 (48.0%)

 Unknown 22 (44.0%)

 Yes 4 (8.00%)

Cluster 52

 Cluster 1A 21 (40.4%)

 Cluster 1B 5 (9.62%)

 Cluster 2 4 (7.69%)

 Normal 2 (3.85%)

 Sporadic 20 (38.5%)

Sex 52

 F 15 (28.8%)

 M 21 (40.4%)

 Unknown 16 (30.8%)

Tissue 52

 Normal adrenal medulla 2 (3.85%)

 Tumour 50 (96.2%)
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nodes, or local recurrence [1]. The average follow-up 
time was 77  months (range 2–194  months). Overall, 21 
(40.4%) samples belonged to Cluster 1A (SDHA, SDHB, 
SDHD, IDH3B), 5 (9.6%) to Cluster 1B (VHL), 4 in Clus-
ter 2 (RET, NF1, HRAS) and 20 (38.5%) had no identified 
germline pathogenic variants in the PPGL predisposing 
genes (sporadic tumours) (Table 1).

DNA methylation analysis
Tumour DNA was extracted from ~ 20  mg fresh fro-
zen samples using the Quick-DNA Miniprep kit (Cat. 
#D3024, Zymo Research, Irvine, CA, USA) according to 
manufacturer’s instructions. DNA was extracted from 
four serial FFPE-preserved sections using the Quick-
DNA FFPE Miniprep kit (Cat. #D3067, Zymo Research).

Bisulphite conversion of 500 ng of genomic DNA was 
performed with the Zymo EZ DNA Methylation Kit (Cat. 
#D5001, Zymo Research) according to manufacturer’s 
instructions for DNA methylation analysis.

Illumina’s Infinium MethylationEPIC™ BeadChips 
(EPIC) assayed the DNA methylation status of ~ 850,000 
CpG sites genome wide including at promoters, and 
other functionally relevant regions of the genome, such as 
enhancer elements defined by the FANTOM5 study [36], 
data from DNaseI hypersensitive sites revealing regions 
of open chromatin, enhancers identified from ENCODE 
[37] and miRNA promoter regions [38]. The Infinium 
MethylationEPIC™ Kit (Cat. # WG-317-1001, Illumina) 
was used according to manufacturer’s instructions for 
eight samples of 400 ng of bisulphite-converted DNA per 
array and analysed using the Illumina iScan. DNA sam-
ples (KLN) were analysed at the GSTT BRC Genomics 
Core Facility. Eight DNA samples were assayed by the 
Human Genomics Facility of Erasmus University Medical 
Centre, Netherlands (Additional file 7: Table S1).

All data were analysed according to principles of best 
practice [39–43]. DNA methylation was measured at each 
CpG site by the respective probes present on the array. 
DNA methylation was quantified by the β-value = M/
(M + U + a), where M > 0 and U > 0 denote the methyl-
ated and unmethylated signal intensities, respectively. 
Between-array, dye-bias correction was performed with 
the out-of-band background correction method [44] as 
implemented by the methylumi package (vers. 2.34.0, 
[45]). Intra-array normalisation of type II probes was per-
formed with the use of Beta Mixture Quantile dilation 

(BMIQ) algorithm [46] using the wateRmelon package 
(vers. 1.32.0, [47]).

Differential DNA methylation analysis was conducted 
with the RnBeads package (vers. 2.4.0, [48]). Statistical 
significance for differential methylation was set at 5% 
false discovery rate (FDR) after multiple testing correc-
tion with the Benjamini–Hochberg procedure [49] and 
Δβ ≥ 0.15.

The variance of β-values of all filtered probes was cal-
culated across all 52 samples, and the probes were ranked 
in an order of decreasing variance. Hierarchical cluster-
ing of samples was performed with pheatmap package 
(vers. 1.0.12) based on the 5,000 most variable probes 
using Manhattan distances for column aggregation and 
Minkowski distances for rows, with complete linkage 
agglomeration method.

Principal component analysis (PCA) was performed on 
the 50,000 most variable probes using the stats package 
(vers. 3.6). Ellipses representing 95% confidence intervals 
incorporating unobserved population parameters such as 
the true population mean from the bivariate distribution 
were added to plots.
Β-value densities were calculated for probes, promoter 

and gene bodies to analyse their frequency distributions 
for each methylation level. Additionally, methylation lev-
els were plotted across promoter and gene bodies, after 
normalisation, to account for differences in gene length.

Gene expression analysis.
RNA was extracted using Trizol™. Paired-end, non-
stranded libraries were prepared after poly-A tail selec-
tion using the TruSeq™ Stranded Total RNA LT Sample 
Prep Kit and sequenced on an Illumina HiSeq2500 
with an average of 50 million reads per sample. Reads 
were pseudo-aligned with kallisto (vers. 0.46.1, [50]) on 
ENSEMBL 98 transcriptome [51] setting k-mer length of 
31 for index construction, number of bootstraps set to 
100 and enabling bias correction.

Differential gene expression analysis was performed 
using sleuth (vers. 0.30.0, [52]) by aggregating transcript 
p values with the Lancaster method as described Yi et al. 
[53]. Genes were considered differentially expressed 
when the effect size is ≥ 1 and statistical significance for 
multiple testing correction FDR < 0.05.

Sample preparation for histone post‑translational 
modifications analysis by MS
Tumour tissues were transferred to the bottom of tubes 
through centrifugation and histones were enriched as 
previously described [54]. Briefly, samples were homoge-
nised in 1 ml of phosphate-buffered saline (PBS) contain-
ing 0.1% Triton X-100 and protease inhibitors and filtered 

Table 1 (continued)
The location of the tumour site is listed (location) since this is relevant to DNA 
methylation pattern. The behaviour of the tumour is described as aggressive 
or metastatic or neither.  EAPGL: Extra-adrenal paraganglioma (i.e. of the 
thorax, abdomen or pelvis). HNPGL: Head and neck paraganglioma. PCC: 
Phaeochromocytoma
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through a 100  µm cell strainer. Nuclei were isolated 
through a 10 min centrifugation at 2300×g, resuspended 
in the same buffer containing 0.1% sodium dodecyl sul-
phate (SDS), and incubated for 5 min at 37°C in the pres-
ence of 250 U of benzonase (Merck). The yield of histones 
was estimated by SDS-PAGE gel by comparison with 
known amounts of recombinant histone H3.1 (NEB), fol-
lowing protein detection with colloidal Coomassie stain-
ing. Approximately 2–4 μg of histones were mixed with 
a heavy-labelled histone super-SILAC mix, which was 
generated as previously described and used as an internal 
standard for relative quantification among multiple sam-
ples [55, 56]. Proteins from each sample were separated 
on a 17% SDS-PAGE gel. A band corresponding to the 
molecular weight of the histone octamer (H3, H4, H2A, 
H2B) was excised from the gel, subjected to chemical 
acylation with propionic anhydride and in-gel digested 
with trypsin. After elution from the gel, the digested 
peptides were subjected to an additional chemical deri-
vatisation step of the released N-termini with phenyl iso-
cyanate, as described [57].

MS analysis of histone PTMs
Peptide mixtures were separated by reversed-phase 
nano-liquid chromatography on an EASY-Spray column 
(Thermo Fisher Scientific), 25-cm long (inner diameter 
75  µm, PepMap C18, 2  µm particles), which was con-
nected online to a Q-Exactive HF instrument through 
an EASY-Spray™ Ion Source (Thermo Fisher Scientific). 
Solvent A was 0.1% formic acid (FA) in ddH2O, and 
solvent B was 80% acetonitrile plus 0.1% FA. Peptides 
were injected in an aqueous 1% TFA solution at a flow 
rate of 500 nl/min and were separated with a 50-min lin-
ear gradient of 10–45% B. The Q-Exactive instruments 
were operated in the data-dependent acquisition (DDA) 
mode. Survey full scan MS spectra (m/z 300–1350) 
were analysed in the Orbitrap detector with a resolution 
of 60,000–70,000 at m/z 200. The 10 most intense pep-
tide ions with charge states comprised between 2 and 4 
were sequentially isolated to a target value for MS1 of 
3 ×  106 and fragmented by HCD with a normalised col-
lision energy setting of 28%. The maximum allowed ion 
accumulation times were 20 ms for full scans and 80 ms 
for MS/MS, and the target value for MS/MS was set to 
1 ×  105. The dynamic exclusion time was set to 10 s, and 
the standard mass spectrometric conditions for all exper-
iments were as follows: spray voltage of 1.8 kV, no sheath 
and auxiliary gas flow. The mass spectrometry proteom-
ics data have been deposited to the ProteomeXchange 
Consortium [58] via the PRIDE partner repository with 
dataset identifier PXD025689.

The acquired RAW data were analysed using Epiprofile 
2.0 [59], selecting the SILAC option, followed by manual 

validation. For each histone modified peptide, the per-
centage relative abundance (%RA) was estimated by 
dividing the area under the curve (AUC) of each modified 
peptide for the sum of the areas corresponding to all the 
observed forms of that peptide and multiplying by 100. 
Light/heavy (L/H) ratios of %RA were then calculated. 
The AUC values for all the samples analysed are reported 
in Additional file  8: Table  S2. Data display was carried 
out using Perseus [60] and GraphPad Prism (Graphpad). 
Statistical testing was performed using GraphPad Prism. 
Changes in single modified peptides between Cluster 1A 
samples and other samples were evaluated by multiple t 
test. Normalised L/H ratios, defined as L/H ratios of rela-
tive abundances normalised over the average value across 
the samples, were visualised and clustered with correla-
tion distance and average linkage as parameters.

Gene set enrichment analysis of DNA methylation 
and transcriptomic data
To understand the biological processes related to the 
changes in DNA methylation data, over-representa-
tion analysis (ORA) and gene set enrichment analysis 
(GSEA) [61] methylGSA package (vers. 1.6.1, [62]) was 
used implementing the robust rank aggregation method 
to adjust for number of CpGs per gene [63]. The Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) data-
base [64] as implemented by the KEGG.db package (vers. 
3.24), the Reactome database [65] as implemented by 
reactome.db package (vers. 1.70.0) and gene ontology 
(GO) terms [66] from the GO.db package (vers. 3.11.4) 
were used.

For gene expression analyses, functional enrichment 
with GSEA and ORA was performed on differentially 
expressed genes using WebGestalt software (vers. 2019, 
[67]). Parameters used were minimum number of genes 
for a category = 5, maximum number of genes for a cat-
egory = 2000 and multiple testing adjustment with the 
Benjamini–Hochberg procedure.

Correlations between DNA methylation and RNA expression
For the 28 PPGL samples that had both DNA methyla-
tion and transcriptomic data available, the correlations 
between promoter methylation status and gene expres-
sion were calculated to identify candidate loci where 
DNA methylation changes could have affected gene 
expression. The levels of differential DNA methylation at 
promoter regions (Δβ) were plotted against the degree of 
differential expression (b) for the genes that had both sig-
nificantly differentially methylated promoters and signifi-
cantly different expression (FDR ≤ 0.05). To minimise the 
risk of uneven coverage or averages that are not reflec-
tive of the DNA methylation levels of promoters with 
too few probes in the EPIC 850k array, only promoters 
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with more than 11 probes passing the filtering criteria 
were included. Pearson’s correlation coefficient ρ was 
calculated, and a linear regression model with standard 
error was fitted to the data using ggpubr package (vers. 
0.4.0). Locally estimated scatterplot smoothing (LOESS) 
was used to fit the nonparametric linear model, and the 
curves with 95% confidence intervals were plotted using 
ggplot2 package (vers. 3.3.2, [68]).

Software
Analyses were performed in R (vers. 3.4.3, [69]), Biocon-
ductor (vers. 3.9, [70]).

Results
The distribution of DNA methylation both around 
defined regulatory features and agnostic to functional 
annotation was examined. PPGLs with different under-
lying genetic aetiologies were included to identify gen-
otype-specific and shared features. DNA methylation 
data were compared to corresponding transcriptomes in 
the same individuals for a subset of tumour samples to 
interrogate whether gene expression could be linked to 
a mechanistic aetiology through DNA methylation. Fur-
ther, the phenotypes of tumours were compared, to iden-
tify genes associated with aggressive tumour behaviour 
and metastasis.

Cluster 1A tumours exhibit genome‑wide alterations 
in DNA methylation
The DNA methylation profiles of 50 PPGLs (21 Clus-
ter 1A, five Cluster 1B, four Cluster 2 and 20 sporadic 
tumours) plus two normal adrenal medulla samples were 
assayed. Global DNA methylation calculated as a meth-
ylation index (MI) [32] separates Cluster 1A and 1B 
tumours from sporadic, Cluster 2 tumours and normal 
medulla (Fig.  1A). Within Cluster 1A, SDHB tumours 
were the most hypermethylated (MI: 0.61 vs 0.58, Welch’s 
t test p = 0.06).

Principal component analysis (PCA) (Additional file 2: 
Figure S2) separated Cluster 1B from sporadic and Clus-
ter 2 tumours confirming that much of the DNA meth-
ylation variance is driven by the pathogenic variant 
underlying the tumour. Unsupervised hierarchical clus-
tering of the 5000 most variable probes segregated the 
tumours of Cluster 1A from the other samples (Fig. 1B), 
consistent with the MI values, and reflecting epigenetic 
changes known to occur in PPGL tumours.

The genome was divided into 5kbp serial “windows” 
(tiles) agnostic to content or functional relevance [48], 
and Cluster 1A tumours had had near complete DNA 
methylation across these regions. Cluster 1A samples 
also had the highest degree of promoter DNA meth-
ylation, a functionally relevant category with known 

regulatory relationship [71]. Gene bodies showed similar 
trends across samples with Cluster 1A tumours exhib-
iting a shift towards higher values of DNA methylation 
(Fig. 1C).

Differential DNA methylation analysis delineates the group 
of hypermethylated Cluster 1A tumours
To identify DNA methylation relevant to tumour behav-
iour, differences in DNA methylation patterns between 
groups were compared pairwise (Table  1). The number 
of statistically significant differentially methylated probes 
between groups in all comparisons is shown in Addi-
tional file 9: Table S3.

The highest number of differentially methylated probes 
was found in Cluster 1A compared to all other catego-
ries, consistent with the global DNA methylation analy-
sis (Fig. 1), confirming that Cluster 2 tumours are more 
similar to normal tissue in terms of DNA methylation, 
than Cluster 1A. A total of 2938 probes were hypermeth-
ylated and 2992 hypomethylated in the comparison of all 
tumour samples compared to normal adrenal medulla 
(Fig.  2A). Cluster 1A exhibited 146,635 hypermethyl-
ated and 1539 hypomethylated probes compared to non-
Cluster 1A tumours (Fig. 2B). A similar comparison with 
sporadic samples revealed 155,959 and 1474 differentially 
methylated sites, respectively. Differential methylation 
was of similar levels when all Cluster 1 tumours were 
aggregated (Cluster 1A + B) (Additional file 9: Table S3). 
These tumours share the pseudohypoxia phenotype but 
not the metabolic and biochemical aberrations of SDH 
deficiency. When compared to Cluster 2 tumours, Clus-
ter 1A samples had 203,474 hypermethylated and 11,390 
hypomethylated CpGs (Fig. 2C).

Tumours within Cluster 1A had fewer differentially 
methylated probes when compared to one another, than 
in inter-cluster pairwise comparisons (Additional file  9: 
Table S3). However, tumours within Cluster 2 (NF1, RET 
or HRAS) had no differentially methylated probes in 
any comparisons between this group. Sporadic tumours 
had fewer methylated probes than normal tissue (13,736 
hypomethylated vs 4,737 hypermethylated), consistent 
with findings typical of DNA methylation states in cancer 
[15].

Compared to normal tissue derived from the adrenal 
medulla, phaeochromocytomas had few differences in 
DNA methylation with 3,355 hypermethylated and 713 
hypomethylated CpG probes (Additional file 9: Table S3). 
Phaeochromocytomas were significantly different from 
head and neck paragangliomas with 1822 hypermethyl-
ated and 85,507 hypomethylated probes, and from extra-
adrenal paragangliomas with 340 hypermethylated and 
59,349 hypomethylated probes. These results could be 
partly explained by the higher frequency of Cluster 1A 
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pathogenic variants in HNPGLs and EAPGLs compared 
to PCCs.

Pathway analyses discriminate PPGLs into groups 
according to genetic aetiology. Data derived from array-
based DNA methylation analyses benefit from normali-
sation to account for multiple probes per gene set [62]. 
However, due to the large number of differentially meth-
ylated CpGs and their distribution, the results showed 
numerous significantly over-represented pathways. 
The use of more stringent selection criteria (FDR = 0.01 
vs FDR = 0.05) on the differentially methylated probes 
used as input data did not alter this. The 20 most over-
represented Reactome pathways (Benjamini–Hochberg 
adjusted p values 5.56 ×  10–23–3.22 ×  10–6) had ratios of 
0.87 to 0.92, indicating that nearly all the genes associ-
ated with each pathway were affected (Additional file 3: 
Figure S3).

Most of the illuminated pathways in Cluster 1A 
tumours are associated with PPGLs and chromaffin 
biology, as expected, with neuronal system and synap-
tic transmission as central pathways. The extracellular 
matrix reorganisation pathway has been highlighted as 
a disrupted pathway in tumours with SDHB pathogenic 
variants and linked to tumour phenotypes such as EMT, 
cell invasion, migration and metastasis [72]. MAPK sig-
nalling, which is central to Cluster 2 tumorigenesis, was 
perturbed in Cluster 1A tumours via RTK signalling, 
MAPK signalling itself and downstream pathways involv-
ing Rho GTPases and G alpha (q) signalling. DNA meth-
ylation patterns at genes related to Wnt signalling were 
perturbed more broadly in this study [1].

High gene ratios across multiple pathways are not 
typical of over-representation results. Therefore, the 
approaches employed may have been influenced by the 

Fig. 1 A Average DNA methylation levels from all the probes of the 850 K array: Cluster 1A tumours are significantly more methylated than sporadic 
(p < 0.0001, Kruskal–Wallis test) and Cluster 2 (p = 0.0014) tumours. In Cluster 1A, SDHB samples are shown as triangle and all the other samples 
with a star symbol. B Unsupervised hierarchical clustering of all samples based on the DNA methylation levels of the 5000 most variable probes. 
Three distinct groups are observed, largely coinciding with the clusters described in the literature previously. The SDHx tumours form a separate 
cluster with the VHL tumour, while sporadic and Cluster 2 tumours form one uniform group. C Comparison of β-value densities across samples 
from each group. Cluster 1A tumours have a higher peak on more methylated regions when the genome is divided in 5 Kbp-tiles agnostic 
of content and in both promoter and gene bodies
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large number of differentially methylated CpGs altered 
in Cluster 1A tumours, so pre-ranked gene set enrich-
ment analysis (GSEA), and a method used to add biologi-
cal context was utilised [61, 73]. GSEA on differentially 
methylated CpGs in promoter regions of Cluster 1A 
tumours revealed very similar results to the over-repre-
sentation analysis and included the terms extracellular 
matrix organisation, the L1 family of cell adhesion mol-
ecules (L1CAMs) interactions, signalling by RTK, VEGF 
signalling and Rho GTPase cycling (Fig. 2D).

Many differentially methylated promoters between 
phaeochromocytomas and head and neck paragan-
gliomas belong to pathways related to development, 
including multiple homeobox genes, key transcriptional 
regulators (Additional file  10: Table  S4). Of those, pro-
moters of genes in the four HOX clusters had higher 

levels of DNA methylation in the phaeochromocytomas, 
whereas the other HOX genes were more methylated in 
head and neck paragangliomas (average Δβ = 0.29 and 
0.2, respectively). Differentially methylated promoters in 
extra-adrenal paragangliomas also differed from phaeo-
chromocytomas. Gene sets associated with the MAPK 
pathway were enriched in extra-adrenal PGLs, along with 
those related to extracellular matrix organisation, RTK 
signalling and the L1CAMs (Additional file 4: Figure S4). 
This deregulation of proteins related to the extracellular 
matrix could explain why extra-adrenal paragangliomas 
often show more aggressive tumour behaviour.

DNA methylation patterns differ between metastatic 
and non‑metastatic SDHB tumours
Tumours in patients harbouring mutations in SDHB have 
the highest risk of malignancy. However, so far, there are 

Fig. 2 A–C Scatterplots for differentially methylated sites genome wide. Each point represents a probe of the 850 K array, and significantly 
differentially methylated probes (FDR < 0.05) are marked with red. Cluster 1A has the highest number of differentially methylated sites 
when compared to all other tumour samples (non-Cluster 1A) (B) or when compared only to Cluster 2 (C). D Top 10 gene set enrichment analysis 
(GSEA) results on differentially methylated promoters in Cluster 1A tumours after collapsing the redundant pathways with their corresponding 
gene-rank plots. Receptor tyrosine kinase and MAPK signalling pathways and the extracellular matrix are amongst the most affected. NES: 
normalised enrichment score. F: β-values of differentially methylated probes between metastatic and non-metastatic SDHB tumours. In the case 
of non-metastatic tumours, DMPs are in a binary state, mostly completely unmethylated with some completely methylated. In contrast, these loci 
in metastatic tumours have intermediate methylation levels. Mean ± standard deviation error bars
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no specific prognostic factors or biomarkers to identify 
tumours at high likelihood for becoming malignant that 
have been clinically utilised. Seeing that hypermethyla-
tion is a central factor to these tumours, DNA methyla-
tion in the subset of SDHB tumours for which clinical 
data were available (n = 8) were examined.

Differentially methylated loci in the three SDHB 
patients (37.5%) who developed distant metastatic 
events after primary tumour formation compared to the 
other SDHB patients were examined (Additional file 11: 
Table S5). Twenty-three probes were differentially meth-
ylated (Fig. 2F). The majority of non-metastatic samples 
were either unmethylated or completely methylated (val-
ues of 0 or 1) with extremely low inter-sample variance. 
Metastatic tumours on the other hand, appear to be in an 
intermediate methylation state at these loci, on average. 
This pattern illustrates a distinction in DNA methylation 
state that follows a defined phenotype, suggesting loci of 
interest for further study.

One differentially methylated probe (cg19484328) is in 
the gene body of EPHA4 that codes for EPH Receptor A4, 
an RTK of the ephrin family, and another (cg12741345) is 
in the gene body of EFNA3, an ephrin which is a ligand 
of EPHA4. Ephrin activation modulates cell morphol-
ogy and in integrin-dependent cell adhesion [74]. Tissue 
hypoxia has been shown to regulate EFNA3 [75] that is 
a clinical prognostic and therapeutic predictor in lung 
adenocarcinoma and hepatocellular carcinoma [76, 77].

Histone post‑translational modification patterns 
distinguish cluster 1A PPGL tumours from other classes
Histone PTM levels in 31 patient samples were exam-
ined, including one normal tissue, 20 Cluster 1A tumours 
and 10 tumours in other classes (Fig. 3; Table 1). Quan-
titative mass spectrometry analysis quantified 25 differ-
entially modified histone H3 and histone H4 peptides to 
reveal differences between Cluster 1A tumours and other 
tumours, which separate into two well-defined clusters 
by both unsupervised hierarchical clustering and PCA 
analysis (Fig.  3A, B). The normal tissue, Cluster 2 and 
sporadic tumours clustered together but separately from 
Cluster 1A tumours. The significant changes included a 
general decrease in hyper-acetylated peptides (the tri- 
and tetra-acetylated form of the histone H4 tail, and the 
di-acetylated form of histone H3 9–17 and 18–26 pep-
tides), of H3K9me1 and H4K20me1, and an increase in 
H3K4me2 in Cluster 1A tumours (Fig. 3C). The decrease 
in overall histone acetylation fits with the observed 
increase in DNA methylation, as both are markers of 
silenced chromatin.

Gene expression comparison to differential DNA 
methylation in PPGL tumours
To identify the differences between tumours with differ-
ent underlying pathogenic variants, PCA on normalised 
gene counts was performed (Additional file 5: Figure S5). 
Based on their transcriptomic profiles, PPGL samples 
from Cluster 1A form a group that is distinct from spo-
radic samples, in concordance with DNA methylation. 
VHL samples are more similar in their expression profile 
to sporadic rather than Cluster 1A tumours indicating a 
high degree of similarity after dimensionality reduction.

Gene expression levels from Cluster 1A and non-
Cluster 1A tumour samples were compared with one 
another (Fig. 4A). In addition to the previously described 
genes KRT19, SPOCK2 and DNAJA4 which are down-
regulated in SDHx tumours [9], the tumour suppressor 
RGS22 implicated in EMT and metastasis is differentially 
expressed [78, 79]. Downregulation of these genes may 
be involved in the invasive phenotype of SDH-deficient 
cells.

Data from non-metastatic versus metastatic tumours 
were compared to detect differences and identify genes 
involved in metastatic tumour behaviour (Fig. 4B). Some 
of the most upregulated genes in the metastatic tumours 
are the pituitary tumour-transforming gene (PTTG1), 
a marker of invasion in many tumour types including 
endocrine cancers [80] and the pro-proliferative cyclin 
B2 CCNB2. ECM-related integrin, beta-like 1 (ITGBL1), 
cadherin 11 (CDH11) and trophinin-associated protein 
(TROAP) were upregulated, perhaps reflecting a reorgan-
isation of the tumour microenvironment that is permis-
sive of invasion and metastasis.

The effect sizes (b statistic) of differentially expressed 
genes between metastatic and non-metastatic tumours 
were compared to the DNA methylation levels of their 
respective promoters (Fig.  4C). A moderate anticorre-
lation (Pearson’s ρ = −0.3587, p = 3.7 ×  10–13) between 
levels of differential promoter DNA methylation and dif-
ferential gene expression was observed. A similar anti-
correlation was observed comparing sporadic to SDHB 
tumours (Pearson’s ρ = −0.3515, p = 2.7 ×  10–14) but not 
between VHL and SDHB tumours (Pearson’s ρ = −0.1409, 
p = 0.32) (Additional file 6: Figure S6).

Pathway analysis
GSEA enrichment analyses comparing non-metastatic 
versus metastatic tumours were performed. The two 
most enriched gene sets were “regulation of cell divi-
sion” (GO:0051302) with normalised enrichment score 
of 2.9 (FDR < 1 ×  10–6) and “tricarboxylic acid metabolic 
process” (GO:0072350) which had a negative normalised 
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enrichment score of −2.74 (FDR < 0.01), indicating down-
regulation of the genes in this dataset (Additional file 12: 
Table S6).

Over-representation analysis (ORA) for Biological Pro-
cess and Cellular Component gene ontology terms and 
Reactome pathway analysis on upregulated genes (Addi-
tional file 13: Table S7, Additional file 14: Table S8) and 
downregulated genes (Additional file 15: Table S9, Addi-
tional file  16: Table  S10, Additional file  17: Table  S11) 
in Cluster 1A compared to non-Cluster 1A tumours 
highlighted perturbed pathways such as extra cellu-
lar regulation of signal transduction and regulation of 
transcription.

ORA on genes upregulated in metastatic tumours 
compared to non-metastatic ones revealed perturba-
tions in genes associated with the extracellular matrix, 
cell motility and replication regulation (Additional file 18: 

Table  S12, Additional file  19: Table  S13, Additional 
file 20: Table S14).

ORA on the Pharmacogenomics Knowledgebase 
(PharmGKB) that curates data on the impact of human 
genetic variation on drug responses was interrogated 
using the upregulated genes in the metastatic tumours 
as input. The results pointed to the drug group taxanes, 
the commonly used chemotherapy agents docetaxel, 
epirubicin and paclitaxel (Additional file  21: Table S15), 
as likely to yield a favourable/mechanistically relevant 
response.

Finally, we analysed differential expression between 
metastatic sporadic and metastatic SDHx tumours (all of 
which were SDHB mutated). The only significantly upreg-
ulated pathway in SDHB tumours was the TCA cycle and 
respiratory electron transport, highlighting the metabolic 
dysregulation in these tumours.

Fig. 3 A Heatmap display of histone PTM levels in PPGL patient tissues. L/H (light/heavy) relative abundances ratios were obtained using a spike-in 
strategy (light channel: sample, heavy channel: spike-in standard) and were normalised over the average ratios across samples. The grey colour 
indicates peptides that were not quantified. Right panel: Modified peptides were compared in samples belonging to Cluster 1A or other tumour 
classes by multiple t test. The red colour indicates a significant increase (FDR < 0.05) in Cluster 1A, and the blue colour indicates a significant 
decrease. B PCA analysis based on quantitative histone PTM data obtained from the samples shown in A. C Boxplot display of the data shown in A, 
for selected PTMs. *** FDR < 0.001 by multiple unpaired t test
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Discussion
PPGLs present with a diverse group of phenotypes; 
although the majority of these tumours remain localised, 
metastatic events are not uncommon and currently it is 
not possible to predict in which patients they will occur, 
or when. Tumours with an SDHB pathogenic variant 
confer the highest risk of metastasis. It is not well under-
stood why pathogenic variants in the SDHB subunit gene 
are more likely to result in metastatic tumours than in 
other SDH subunits or other PPGL genes. A plethora of 
potential mechanisms responsible for this have been sug-
gested, including activation of epithelial-to-mesenchymal 
transition pathways, reactive oxygen species imbalance, 
metabolic rewiring, angiogenesis, pseudohypoxia and 
iron homeostasis [72, 81–83].

SDHB PPGLs also exhibit profound hypermethylator 
phenotype which we characterised at high resolution 
in this study. Whether this extreme hypermethylation 

results in gene expression alterations that are directly 
responsible for the more aggressive phenotype, or the 
consequences of hypermethylation drive the emergence 
of genetically heterogeneous subclones of cancer cells 
is not known. Using mass spectrometry, we also studied 
histone PTMs for the first time in PPGLs, finding that 
SDHx tumours have a significant decrease in hyper-acet-
ylated marks. Since there are no curative therapies for 
metastatic disease, which often presents many years later, 
studying these tumours at the transcriptomic and epig-
enomic level can inform our understanding of the mech-
anistic processes that underpin them.

Advances in omics technologies have improved the 
understanding of tumour cell development and deter-
minants of progression to metastatic states [84]. Despite 
the accumulated data on tumours associated with known 
pathogenic variants, the ability to use this information in 

Fig. 4 A–B Volcano plots showing the effect size (b) of differential gene expression and its statistical significance for the comparisons Cluster 
1A versus non-Cluster 1A and metastatic versus non-metastatic tumours from the RNA-seq data. C Correlation plot of differentially methylated 
promoters and differentially expressed genes in metastatic tumours shows an inverse relationship between the more differentially methylated 
(higher Δβ) and the level of downregulation. Pearson’s correlation coefficient ρ = −0.3587, p = 3.7 ×  10–13. D Over-representation analysis 
of upregulated differentially expressed genes between metastatic and non-metastatic tumours for molecular function ontology revealed enriched 
terms were mainly related to motor proteins, the Wnt-pathway and the extracellular matrix



Page 12 of 16Chatzikyriakou et al. Clinical Epigenetics          (2023) 15:196 

predictive diagnostic test development for clinical appli-
cations remains limited.

A recent large-scale genomic profiling study of 156 
PPGLs, with a range of genetic aetiologies, from 128 
unrelated patients, found that although PPGL tumour 
formation is driven by germline or somatic mutations, 
the process of metastasis can involve immunologic and 
cell-extrinsic events. In addition to genetic features asso-
ciated with metastasis such as high mutational load, 
microsatellite instability, somatic copy number altera-
tion burden associated with ATRX/TERT alterations, 
or CDK1 overexpression and the presence of MAML3-
fusions as potential markers, the study also found that 
immunogenic markers, which while heterogeneous, did 
point to the potential for immunologic characterisation 
to be considered in the clinical management of PPGL 
prognostication [85].

A machine learning-based tool based on clinical phe-
notypes has also shown promise in predicting metastatic 
disease [86]. This type of approach could also have utility 
in the prognostication of metastatic potential in PPGLs. 
DNA methylation and histone PTM data can be input 
to these models, potentially increasing their sensitivity 
and accuracy. This offers the potential of a better under-
standing of the mechanisms of tumour development and 
molecular targets leading to the development of triage 
tools with immediate clinical application. Currently, the 
utility for routine clinical practice of the known molecu-
lar markers is unclear because these types of features are 
not usually available pre-operatively, so more develop-
ment is needed.

Here, hypermethylation of the genome in PPGL 
tumours has been substantiated and characterised in high 
resolution. As expected, Cluster 1A tumours have higher 
DNA methylation levels with more DNA methylation 
changes as compared to normal tissue than either spo-
radic or Cluster 2 tumours. This hypermethylation may 
mediate the unfavourable tumour behaviour through the 
silencing of promoter(s) of tumour suppressor or other 
genes that normally suppress metastatic tendency. This 
type of DNA methylation assay examines DNA meth-
ylation agnostic to sequence or as annotated functional 
elements, and in both approaches, SDHB pathogenic 
variants stand out as the most hypermethylated tumour 
types. Non-metastatic tumours had either completely 
DNA methylated or unmethylated sites, with low inter-
sample variance. Metastatic tumours on the other hand 
consistently showed an intermediate DNA methylation 
state.

Pathway analysis comparing aggressive and non-
aggressive tumours highlighted pathways and genes that 
may contribute to aggressive tumour behaviour. Genes 
highlighted include the proto-oncogene PTTG1 found to 

be significantly upregulated in metastatic tumours, con-
sistent with studies that have associated it with metastatic 
behaviour of endocrine and non-endocrine tumours [80]. 
It is a potential candidate marker of aggressiveness that, 
either alone or as part of scoring systems, could stratify 
patients according to their risk for metastasis. Downreg-
ulation of the tumour suppressor gene RGS22 suggests a 
potential involvement in the invasive phenotype of SDH-
deficient cells.

DNA methylation is highly tissue-specific both dur-
ing development and in differentiated tissues. The loca-
tion and/or tumour cell of origin therefore could be a 
factor that contributes to the pattern of DNA methyla-
tion. For PPGL, the site of tumour origin is associated 
with differences in clinical outcome, with extra-adrenal 
paragangliomas generally being more aggressive than 
phaeochromocytomas and head and neck paraganglio-
mas. To note, the DNA methylation signatures of extra-
adrenal paragangliomas are different not only from that 
of normal adrenal medulla, but also from phaeochro-
mocytomas, despite their developmental and anatomi-
cal proximity. These differences in methylation patterns 
could potentially relate to the differences in clinical 
phenotype.

Developmental genes, including multiple HOX genes, 
had differentially methylated promoters between tumour 
subtypes. Deregulation of promoter methylation of HOX 
genes has been observed in numerous cancers [87] and 
is implicated in cancer progression through the induc-
tion of proliferation, angiogenesis, as well as cell invasion, 
adhesion and migration.

This study employed a proteomics approach using 
mass spectrometry to investigate histone modification in 
PPGLs. The 25 histone modifications characterised glob-
ally, similarly to DNA methylation, readily distinguished 
PPGL Cluster 1A tumours from other pathogenic vari-
ants. Specifically, an increase in H3K4me2 and decrease 
in hyper-acetylated peptides were hallmarks of Clus-
ter1A. Although these studies provide an insight into 
PPGL tumours and their epigenomes across a range of 
pathogenic variants, they did not highlight a single bio-
marker for tumour behaviour. However, various histone 
deacetylase inhibitors have shown promising results in 
subsets of patients with PPGLs or other neuroendocrine 
tumours [88]. Based on the heterogeneity of acetylated 
histone marks in these tumours, with Cluster 1A having 
significantly lower levels, which could be an epigenetic 
vulnerability that can be targeted by histone deacetylase 
inhibitors.

PPGLs have been classified by their transcriptomes 
into three, well-established, groups. Herein, we exam-
ined RNA-seq data from different PPGLs and detected 
both known differentially expressed genes that support 
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Cluster 1A as distinct in terms of gene expression, as well 
as novel genes, including PTTG1 and RGS22, that are 
differentially expressed. Pathway analyses highlighted, 
the TCA cycle, and a number of disease-relevant themes 
emerged including extracellular matrix organisation and 
RTK signalling which might explain the aggressive clini-
cal phenotypes that these tumours can exhibit.

Recent advances in single-cell RNA sequencing could 
provide a way to profile individual tumour cells and small 
groups of cells to detect differences between metastatic 
and non-metastatic tumours. Identifying potential rare 
cell populations with a “pre-metastatic”-like expression 
profile/state that bulk-sequencing approaches may not 
be able to detect, could reveal more about the genes and 
mechanisms behind these phenotypic differences.

Conclusions
This report substantiates transcriptomic and epig-
enomic distinctions between PPGL tumours with patho-
genic variants in different genes. We used a multi-omic 
approach of transcriptomic and epigenomic data to iden-
tify biologically relevant genes that distinguish Cluster 
1A tumours and identified DNA methylation differences 
that could account for the metastatic behaviour we more 
often see in SDHB-related PPGLs.
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