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Abstract 

Background Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation 
of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit 
from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, 
we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML 
bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induc-
tion regimen.

Results A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly 
assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-
containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions 
using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions 
were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented 
on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 
of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 
CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability 
was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When 
evaluated in the non-azacytidine containing group, the AUC was 0.76.

Conclusions Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification 
of informative methylation changes. We also compared the informative content and discriminatory power of regions 
and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their 
association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being 
enriched at distinct loci rather than evenly distribution across the genome.
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Introduction
Acute myeloid leukemia (AML) is a biologically and 
clinically heterogeneous disease characterized by clonal 
expansion of undifferentiated myeloid precursors and 
consequently by impaired hematopoiesis. Despite recent 
advances in therapeutic interventions and supportive 
care, the prognosis remains poor, especially for elderly 
patients [1, 2].

Distinct recurrent cytogenetic and molecular genetic 
aberrations have been shown to define AML pathophysi-
ology and to harbor considerable prognostic relevance 
[3–5]. Disturbances of epigenetic mechanisms includ-
ing alterations of DNA methylation patterns significantly 
contribute to AML development and are tightly associ-
ated with patterns of genetic aberrations such as muta-
tions of epigenetic modifier genes (e. g. IDH1, IDH2, 
DNMT3A, TET2 etc.) and others such as CEBPA, NPM1, 
and FLT3 [6–9]. Genomewide epigenetic profiling has 
revealed DNA methylation driven AML subclassifica-
tions, some of which correlate with known genetic aber-
rations but also include novel subgroups [7, 8]. Recently, 
a comprehensive analysis has shown that AML can be 
subdivided into different epitypes based on DNA meth-
ylation, which can be associated with genetic aberrations 
and attributed to blockage of differentiation at specific 
stages of myeloid differentiation. [10]. Numerous aber-
rantly hyper- or hypomethylated genomic regions pos-
sess significant prognostic relevance and have been 
proposed as biomarkers [7, 11, 12].

DNA-hypomethylating agents (HMAs), e.g., azacy-
tidine (AZA) and its deoxy derivative 5-aza-2’-deoxy-
cytidine (DAC), which exert hypomethylating effects 
by passive incorporation into DNA during S phase and 
by covalently binding the maintenance methyltransferase 
DNMT1 [13], have been tested for in  vivo demethyla-
tion and have become an accepted standard treatment 
regimens for MDS and AML in elderly patients or in 
patients considered unsuitable for intensive chemother-
apy [2, 14, 15]. Azacytidine, both alone and in combina-
tion, e. g. with the BCL2 inhibitor Venetoclax, has been 
shown to be highly active in newly diagnosed AML 
and molecularly defined subsets of relapsed or refrac-
tory AML [16–18]. However, it remains unclear which 
patients will ultimately respond to HMAs [19–21]. Even 

for responders, development of resistance within a year 
is not an uncommon event, irrespective of superior over-
all survival and high rates of remission introduced by the 
novel combination of HMAs with BCL2-inhibition [17, 
22–25]. This development underscores the urgent need 
to identify reliable predictors of outcomes and particu-
larly to identify predictive biomarkers for drugs targeting 
the epigenome [26].

Biomarkers for response prediction to demethylat-
ing agents in MDS and AML are the subject of ongo-
ing research efforts [27]. However, studies on epigenetic 
changes in AML have not yet established a strong cor-
relation between response to HMA and baseline DNA 
methylation profiles, let alone developed a predictive 
toolkit that can be translated and used in routine clinical 
practice [28–32].

Several molecular markers with potential response 
prediction have been identified, including pharmaco-
logic factors, clinical or cytogenetic parameters, DNA 
methylation—and its dynamics upon HMA treatment—
as well as molecular alterations and changes in gene 
expression [33–36]. Additional file 3: Table 1 provides an 
overview of research work intended at identifying predic-
tive molecular markers for treatment with DNA-meth-
yltransferase-inhibitors (DNMTi) in AML, MDS and 
selected hematologic malignancies: To date, predictive 
methylation-specific biomarkers associated with AML 
have neither been successfully established nor introduced 
into clinical practice. Signatures of prognostic value have 
been shown to harbor predictive information, either in 
AML, MDS or MDS/MPN overlap but were either not 
validated in an independent cohort or derived from a 
very small sample set and could not be reproduced so 
far [37, 38]. Among other factors, the limited selection of 
genomic regions, e.g., strict focus on promoter methyla-
tion, has been consistently cited as a reason for failure in 
developing a robust predictive classifier.

Here we asked if unbiased genome-wide assessment of 
pre-treatment DNA-methylation profiles in AML bone 
marrow blasts could aid in identifying patients who will 
achieve a remission upon azacytidine-containing therapy 
or who will fail induction therapy. Bone marrow samples 
were obtained from the AMLSG 12-09 trial. This rand-
omized, controlled,  prospective, multi-institutional and 

Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our 
results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, 
that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, 
response prediction may become even more complicated.

Keywords DNA-methylation, Epigenetics, HMA-treatment, Predictive biomarker, Predictive signature, DNA 
methylation patterns, AML, Azacytidine
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controlled phase-II trial evaluated the incorporation of 
the hypomethylating agent azacytidine into intensive 
induction therapy as a substitute for cytarabine. The 
patient population was lacking molecularly defined sub-
types which would allow for genotype specific therapy 
approaches—mainly as participants in competing trials—
such as patients with mutated NPM1, AML with FLT3-
ITD,  PML-RARA  fusion, and CBF-AML. This resulted 
in a selection of patients with more high-risk disease 
features [39]. The results of this trial did not generally 
support the substitution of cytarabine by azacytidine 
in intensive induction therapy. Moreover, a predictive 
biomarker to identify patients who may benefit from 
the additional administration of an HMA has yet to be 
developed.

Results
Baseline characteristics of patients
A total of n = 155 patients with newly diagnosed AML 
treated within the AMLSG 12-09 trial and with avail-
able pre-treatment bone marrow samples were ran-
domly assigned to a screening (n = 58) and a refinement 
and validation cohort (n = 97). The median age in the 
screening cohort was 63  years (range 20 to 78) and 
60 years in the refinement and validation cohort (range 
19 to 82). 95% and 94% of patients were younger than 

75 years in the two cohorts, respectively. Sex distribu-
tion was imbalanced between both cohorts with 52% 
female patients in the screening cohort and 41% in the 
refinement and validation cohort.

Out of 58 patients of the screening cohort, 18 
received standard of care treatment (STD) and 40 
patients received experimental treatment (EXP) 
comprising AZA as substitute for cytarabine (araC) 
(Fig. 1A).

Within the STD arm, 10 patients achieved complete 
remission (CR) and 8 patients had incomplete remission/
induction failure (referred to as refractory disease, RD). 
For the EXP arm, CR was achieved in 19 patients and RD 
in 21 patients, respectively.

Within the refinement and validation cohort, out of 97 
patients, 40 were treated in the STD arm and 57 in the 
EXP arm. CR within STD treatment was achieved in 29 
patients, while 11 patients had RD. For 34 patients with 
EXP therapy, CR was observed, while 23 patients had RD.

In the screening cohort (refinement and validation 
cohort, correspondingly in brackets), median white blood 
cell count was 6 G/l with a range of 0.6–155 G/l (6 G/l; 
range 1–214 G/l), median peripheral blood blast count 
was 17.5% with a range of 0–97% (23%; range 0–97% and 
median bone marrow blasts were 60.5% with a range of 
15–100 (70%; range 10–100%) (Table 1).

Table 1 Baseline patient and disease characteristics

WBC white blood cell count, PB blast peripheral blood blast count, BM blast, bone marrow blast count, CEBPA, CCAAT/ enhancer-binding protein alpha, DNMT3A DNA 
methyltransferase 3A, ASXL1 additional sex combs-like 1, RUNX1 runt-related transcription factor 1, IDH Isocitrate dehydrogenase, TP53 tumor protein P53

Total (n = 155) Screening cohort (n = 58) Validation cohort (n = 97) p

Age in years median (IQR) 60.50 (50.26, 68.49) 63.46 (50.32, 72.01) 59.69 (50.24, 67.84) 0.125

Sex, n (%) 0.32

female 69 (45) 29 (51) 40 (41)

male 85 (55) 28 (49) 57 (59)

WBC  109/L (n = 152) median (IQR) 5.30 (2.05, 25.80) 4.70 (1.70, 19.80) 5.85 (2.50, 33.02) 0.325

PB blast % (n = 141) median (IQR) 21.50 (4.00, 53.50) 16.00 (4.00, 53.00) 23.00 (4.50, 54.00) 0.535

BM blast % (n = 146) median (IQR) 63.00 (40.00, 80.00) 60.00 (41.50, 80.50) 70.00 (40.25, 80.00) 0.507

Cytogenetics, (n = 135)

CN-AML, n (%) 56 (42) 21 (42) 35 (42) 1

complex.karyotype, n (%) 26 (19) 9 (18) 17 (20) 0.927

t(11q23), n (%) 8 (6) 3 (6) 5 (6) 1

del(5q)/-5, n (%) 5 (4) 1 (2) 4 (5) 0.65

inv(3)/t(3;3), n (%) 2 (1) 1 (2) 1 (1) 1

other, n (%) 37 (28) 15 (30) 22 (26) 0.782

Mutated RUNX1, n (%) 32 (21) 15 (27) 17 (18) 0.239

Mutated IDH1, n (%) 12 (8) 5 (9) 7 (7) 0.758

Mutated IDH2, n (%) 22 (15) 10 (18) 12 (13) 0.492

Mutated DNMT3A, n (%) 26 (17) 16 (29) 10 (10) 0.007

Mutated ASXL1, n (%) 23 (17) 8 (16) 15 (18) 0.969

Mutated TP53, n (%) 14 (10) 6 (12) 8 (9) 0.854
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Cytogenetic analysis revealed 21 (35) patients with 
a normal karyotype (CN), 9 (17) patients with a com-
plex karyotype (CK), 1 (4) patient with a 5q-minus-syn-
drome or loss of chromosome 5 (del(5q)/-5), 2 (1) with 
a MECOM rearrangement (inv(3)/t(3;3)), 3 (5) patients 
with a translocation 11q23 and 15 (22) patients with a 
karyotype not otherwise specified. In total, cytogenetic 
information was missing in 7 (13) cases (Table 1). Recur-
rent aberrations leading to genotype-specific therapeu-
tic approaches (e. g. FLT3-ITD) at the time of inclusion 
in the study were excluded according to the protocol. 
Mutational status in a panel of seven genes recurrently 
mutated in myeloid neoplasia (TP53, ASXL1, DNMT3A, 
RUNX1, IDH1, IDH2, TET2) including regulators of the 
epigenotype did not correlate with AZA response. How-
ever, a significant difference in the number of DNMT3A 
mutations was observed between the screening and 
validation cohort.  Moreover, there was no association 
of cytogenetic subgrouping or mutations in epigenetic 
modifier genes with therapy response (Additional file 2: 
Fig.  1). To assess the impact of the mutations on the 
overall methylation landscape in the screening cohort, 
we performed unsupervised clustering of the 1.000 and 
10.000 most variable 500  bp bins of the MCIp analysis 
(Additional file  2: Fig.  2). Moderate clustering with dis-
crete methylation patterns of DNMT3A and IDH2 was 

evident, whereas IDH1 and ASXL1 did not appear to have 
a significant impact. The major clusters of this unsuper-
vised hierarchical clustering were not primarily driven 
by the mutations in the epigenetic modifier genes. In 
addition, we reviewed the distribution of mutations in 
the epigenetic modifier genes as well as the distribution 
of cytogenetic aberrations in our potential top DMRs 
between responding and refractory patients after evalua-
tion for differential methylation (Additional file 2: Fig. 3). 
There was no segregation with response. Standard and 
experimental treatment arms within the screening cohort 
did not differ significantly regarding clinical character-
istics except for bone marrow blast counts which were 
significantly higher in the exp-arm (66.5% versus 50.0%) 
than in the std-arm (p = 0.02) (Additional file 4: Table 2).

Genomewide DNA methylation screening 
within the screening cohort
For the development of a predictive classifier based on 
genome wide differential DNA methylation patterns, 
methyl-CpG immunoprecipitation-seq (MCIp-seq) of 
BM PBMC from AML patients in the screening cohort 
(n = 58) either treated within the STD or EXP arm 
was performed (Fig.  1B). Seven samples from the STD 
and EXP arm with very low read counts (mean read 
count < 1.0 × 10^6 reads) were flagged as outliers and 

Fig. 1 Analysis overview. A Overview of analysis steps based on DNA isolated from mononuclear cells from each pretreatment bone marrow 
aspirate from a subset of 155 AML samples derived from the AMLSG 12-09 trial. Global, genome-wide methylation status of a training set 
was analysed via MCIp followed by NGS-analysis on the HiSeq 2k platform. Differentially methylated regions were derived and ranked according 
to p-values and effect size. Methylation levels within a set of top regions were validated via 450k analysis at single CpG resolution and used 
to generate a classifier. B The validation cohort consisted of an independent subset of patients derived from the AMLSG 12-09 collective. 
Methylation status of the classifier contained CpGs was analysed via MassARRAY assay and used for validation. CR was defined as non-detectability 
of evidence for disease both cytomorphologically and via immunophenotyping in peripheral blood smear and bone marrow aspirate as well 
as via molecular genetics. AML acute myeloid leukemia; DMR differentially methylated regions; MCIp methyl-CpG immunoprecipitation; HiSeq 2k 
the HiSeq next-generation sequencing platform; NGS next generation sequencing; 450k Infinium® HumanMethylation450 Bead Chip; MassARRAY  
a benchtop multiplex genetic analyzer utilizing Matrix assisted laser desorption/ionization; time-of-flight mass spectrometry; std standard therapy 
arm; exp experimental therapy arm; CR complete response; RD refractory disease
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removed from further analyses (Additional file 2: Fig. 4). 
A total of 51 samples remained in the screening cohort.

Informative differential CpG methylation was retrieved 
for 664,227 (14%) out of more than 6 × 10^6 genomic bins 
enriched for high methylation by removing all bins with 
no reads across all or all but one sample.

Principal component analysis did not show formation 
of sample clusters (Additional file 2: Fig. 4) and compo-
nents of variance did not display major effects in DNA 
methylation variance that allowed to reliably separate 
between treatment groups or response status. Overall, 
differences in variance distribution across principal com-
ponents were subtle (data not shown).

Differential methylation analysis between respond-
ing and non-responding patients revealed twice as 
many regions with a significantly differing positive log-
fold change (n = 384 vs. n = 157) in patients within the 
experimental treatment arm (Fig. 2A) indicating a higher 
fraction of hypermethylated regions in patients with 
refractory disease [40]. In the standard treatment arm, 
predominantly negative log-fold changes were observed 
within the group of responders (factor of 9.5 with 
n = 1109 vs n = 105) (Fig. 2B).

Overall distribution of differentially methylated regions 
(DMR) (n = 5.7 × 10^6, comprising both the EXP- and 
STD-set after filtering for positive read counts across all 
samples) within the filtered set of genomic bins shows 

higher read counts in exons while the set of top DMRs 
shows higher proportions of read counts with an inter-
genic and intronic location (Additional file 2: Fig. 5).

Identification of specific response prediction signature 
for the 5‑azacytidine containing treatment arm (EXP)
In total, considering both positive and negative log-fold 
changes, 1755 DMRs were identified at a false discovery 
rate (FDR) of 5% (541 in EXP and 1214 in STD arm) with 
adjustment for multiple testing. Identified DMRs were 
ranked according to q-values, i.e. adjusted p-values after 
multiple testing, and grouped into a top list. 50 candi-
dates were chosen for validation based on the following 
criteria: q-value ranking, effect size and consistency of 
differential methylation in either treatment group. Effect 
size was set to include a read count difference of at least 
2.5-fold in a consistent fraction of at least 50% of samples 
in either treatment group. Regions found on chromo-
somes 3 and 11 were excluded from analysis, as patients 
with inv(3)/t(3;3) and a translocation 11q23 could arti-
ficially introduce differential methylation on screening 
via MCIp-seq. This restriction affected less than 5% of 
choices for the top list. Because of the slightly uneven 
gender distribution between screening and validation 
cohort, sex chromosomes were also excluded from the 
analysis.

Fig. 2 Significant Baseline DNA Methylation Differences reveal less methylation in refractory disease of AZA containing treatment regimens. A 
Volcano Plot illustrating methylation differences between AZA-sensitive and AZA-resistant (Experimental Therapy) as well as B induction sensitive 
and induction resistant patients (Standard Therapy). Mean methylation difference between the 2 groups is represented on the x axis and statistical 
significance (-log10 unadjusted p-value) on the y axis. Negative binomial distribution-based testing with edgeR identified 1755 DMRs, indicated 
by red and blue dots (FDR < 5% with adjustment for multiple testing)
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To extract an AZA specific response signature, DMR 
sets identified both in the EXP and STD arm were 
checked for overlaps as these were considered to poten-
tially indicate unspecific global or chemotherapy associ-
ated effects on differential methylation, rather than AZA 
specific effects. Within the chosen top list, there were 
no overlaps between both DMR sets. Additional file  5: 
Table 3 contains a list of all filtered and significant DMRs, 
identified within the EXP arm. WNT10A shows an exem-
plary top hit (Fig. 3A).

Furthermore, enrichment in the vicinity of transcrip-
tional start sites (TSS) of identified top DMRs as com-
pared to the overall, filtered bin set could be observed. 

Moreover, GC content distribution in the set of top 
DMRs showed distinct skewing at a GC content level 
between 60 and 70% but was otherwise comparable 
to the entire genome, therefore indicating overrepre-
sentation of higher GC content in the set of top hits 
(Additional file 2: Fig. 6). The first top DMRs included 
the genes WNT10A, ZNF490, LZTS2, CIZ1, TNK1, 
PIEZO1, UNC119 and ATOH8. A gene ontology analy-
sis demonstrated a strong enrichment for regulation of 
phagocytosis and engulfment, cell maturation, regula-
tion of cell activation as well as of cell proliferation and 
might therefore be involved in crucial regulatory steps 
in myeloid differentiation and proliferation (data not 
shown).

B

A Experimental Therapy (EXP) Standard Therapy (STD)

Fig. 3 Technical Validation of Differentially Methylated Regions. A Selection of EdgeR-based testing results for differential methylation 
between responders and non-responders both in EXT and STD arm, prior to validation. B Validation criteria are exemplarily illustrated for the 500 bp 
region assigned to WNT10A and its corresponding probe cg22587479. For this probe, a strong and distinct correlation between beta values 
and RPKM exists (Spearman’s rank correlation coefficient > 0.8). Differences in beta regression levels between resp. and non-resp. patients showed 
statistical significance and overall methylation differences showed congruency in the change between modalities, i.e. hypermethylation in patients 
with refractory disease both in the MCIp-seq and 450k assay. CR Complete Response; RD Refractory Disease; RPKM Reads per kilobase per million 
mapped reads
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Confirmation of genomewide MCIp‑based DMR screening 
by 450 k infinium human methylation bead chip assay
Validation of the MCIp-derived DMRs was done with 
HumanMethylation  450k Bead Chip aiming at enabling 
easy clinical applicability and easy reproducibility of a 
DNA methylation based predictive signature.

Out of the 50 top hit regions, 80% were represented 
on the 450  k Bead Chip by at least one CpG probe. In 
total, remaining top DMRs (n = 40) were represented 
by a total of 105 CpG probes with a variable number 
of CpG probes per top region (1–7 probes per region) 
and 25% of regions being defined by a single probe. For 
WNT10A, Fig. 3B illustrates a single CpG-site validation 
with a correlation of 0.816 for 450 k beta-values of a CpG 
probe and the reads per kilobase per million mapped 
reads (RPKM) for the corresponding DMR identified via 
MCIp-seq. The median correlation coefficient rho over 
all CpGs was 0.69 (95% confidence interval 0.32–0.87). 
Additionally, as baseline requirement, a correlation coef-
ficient above the median and unidirectional differences in 
methylation changes between CR and RD were required 
for MCIp-Seq and 450  k Bead Chip results to meet the 
confirmation criteria. Based on the small sample size, the 
significance level for differential methylation within the 
450 k dataset was set at 0.2. With application of these cri-
teria, 90% of DMRs could be quantitatively confirmed via 
450 k array-based analysis. 65% of top DMRs met all vali-
dation criteria for each CpG probe, 25% met all criteria 
for at least one CpG probe and 10% of DMRs failed tech-
nical confirmation due to insufficient significance levels.

In total, 95 out of 105 CpG probes, contained within 36 
out of 40 top hit DMRs, could be confirmed and could 
subsequently be used to create a multivariable signature 
for therapy response prediction.

Generation and refinement of a methylation based 
predictive classifier based on single distinct CpGs
For an easy and clinically applicable signature, the MCIp-
identified regional differences in methylation were aimed 
to be transformed and compressed into a classifier that 
contains individual CpGs. A penalized logistic regression 
model with automated selection of variables was fitted for 
predicting response to hypomethylating therapy. Logit 
transformation of 450k data with transition of beta values 
to M values was performed. Subsequently, fivefold cross 
validation was done to find optimal penalty parameters 
as described in the supplement. The resulting classifier 
comprised 17 CpG dinucleotides which were associated 
with 12 different genes and two previously undescribed 
regions (Additional file 2: Fig. 7A). It allowed to perfectly 
match response or non-response to HMA therapy with 
AZA when fit to the screening dataset (Additional file 2: 
Fig. 7B).

Validation of the DNA methylation based predictive 
classifier 
Validation of the identified classifier within a validation 
cohort, derived from the AMLSG 12-09 study group trial 
cohort (validation cohort, n = 97) was performed using 
MALDI-TOF, a targeted approach for the quantifica-
tion of DNA methylation at single CpG-site resolution as 
described earlier [41]. For final data analysis, nine sam-
ples were removed from the validation cohort (remaining 
samples n = 88). One sample was removed due to cor-
rection of patient response status to early death, another 
sample was removed due to more than 50% of missing 
values after generation of mass spectra and the remain-
ing samples were removed due to insufficient amounts of 
DNA in final quality control before generation of mass 
spectra.

16 out of 17 classifiers-contained CpG dinucleotides 
could be addressed with primers suited for mass spec-
trometry at single CpG-site resolution. Designed prim-
ers also encompassed flanking regions with up to 125 bp 
and included CpGs. The analysis resulted in a total of 152 
informative CpG units. After quality control by removal 
of units with more than 20% of missing values, n = 71 
informative CpG units remained. For classifier-con-
tained mass spectra 15 out of 17 profiles generated were 
informative.

When the previously established classifier was mapped 
to these 15 CpG units as assessed by MALDI-TOF and 
applied to the validation cohort, validation failed within 
this cohort. The resulting receiver operating characteris-
tic (ROC) curve was only slightly above the bisecting line 
and the area under the curve (AUC) was 0,59 resulting in 
low performance (Additional file 2: Fig. 8).

Independently validated CpGs, in proximity of the classifier 
comprised CpGs allow for prediction of therapy response 
in the validation set (EXP arm), but are not specific for HMA 
treatment with AZA
We tested, if the signature’s distinction capacity could be 
preserved with the information from neighboring CpGs 
by the additionally generated methylation data from 
flanking regions. Significant differences in methylation 
were tested for between responders and non-responders 
by non-parametric Mann–Whitney-U testing both in the 
EXP and STD arm based on methylation data generated 
by mass spectrometry. Assessment was performed in the 
validation cohort and significant differences are visual-
ized in Fig. 4A. There was no overlap with significant hits 
from the STD arm (Additional file 2: Fig. 9). Significant 
hits comprised 5 out of 17 target regions from the origi-
nal classifier.

Based on these results the classifier was recom-
posed by penalized regression and included 8 out of 15 
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significantly differentially methylated MassARRAY units, 
consisting of up to 3 CpGs (Fig.  4B). In total, 12 CpGs 
were included in the refined classifier. With the refined 
classifier, prediction of therapy response has an appar-
ent misclassification error of 0.2157, if run without con-
sidering subsampling to avoid overfitting. Compared to 
the original classifier, predictive quality is significantly 
improved (AUC = 0.924). For the given results, a sensitiv-
ity of 93.3% and a specificity of 42.9% can be calculated 
(Fig. 5A, B; Additional file 2: Fig. 10).

For a final evaluation of classifier quality unbiased from 
potential overfitting, misclassification error and an AUC 
were calculated based on 0.632 + bootstrap resampling 
(Fig.  5C). The refined lasso signature has a bootstrap 
estimated unbiased misclassification error of about 35%, 
while the reference error for the null model is about 41%.

In summary, the value of this model for predicting 
therapy response in new samples is better than the null 
model. Nevertheless, a substantial error remains. The 
bootstrap-estimated AUC is about 0.77, which is lower 
than the AUC computed on the full data set, but better 
than the AUC for the reference model (Fig.  5C2). Our 
DNA methylation-based signature which was trained to 
predict response to therapy was also associated with a 
trend towards improved OS and a significantly improved 
EFS (data not shown).

To further assess the classifier’s specificity to HMA 
treatment it was tested within the STD arm of the vali-
dation cohort. With a misclassification error of 0.24 
and an AUC of 0.76, the signature unfolds a predic-
tion performance in the STD arm, comparable to the 
0.632 + -bootstrap estimates for misclassification error 
and AUC within the EXP arm (Additional file 2: Fig. 11). 

Though the recomposed classifier can better discriminate 
between response and non-response than the null model, 
it does not reach its genuine goal to discriminate therapy 
response, specific for AZA.

Multivariable analysis shows the association 
of 12‑CpG‑classifier with treatment response to be 
independent of potential confounders
Multivariable analysis including potential confounding 
variables showed that both mutational status of epige-
netic modifier genes such as DNMT3A and IDH1/2 and 
cytogenetics had no impact on the significance of the 
classifier (Fig. 6A, B). The effect of the 12-CpG signature 
remained statistically significant in all models, indicating 
that neither of these variables are important confounders 
for treatment response in our experimental setting. How-
ever, small sample size, the limited panel of mutations 
and protocol restrictions excluding several recurrent 
mutations in AML and an overall low fraction of patients 
with mutations restrict this multivariable analysis.

Discussion
As no classifier for therapy response prediction to HMA 
in AML exists, this study aimed at developing a robust, 
small, cost-effective, and clinically applicable signature 
for routine testing. This requirement involves fast turna-
round times, low amounts of input DNA, as well as mod-
erate technical requirements and manageable costs.

To date, methylation-based biomarkers have not gained 
acceptance in routine clinical practice, mainly due to 
limitations in the regions studied, such as promoters, 
small sample size, or lack of reproducibility in independ-
ent cohorts [37, 38]. Of note is a study in 40 patients with 

Fig. 4 Significantly differentially methylated CpGs in close proximity to CpGs from original classifier define a recomposed classifier 
within an independent validation cohort. A Box plots for significant differences in methylation levels between responders (blue color) 
and non-responders (red color) as assessed by non-parametric wilcoxon rank sum tests in the EXP arm. Methylation levels were determined 
by MassARRAY assay. B Elements of a recomposed classifier based on a penalized likelihood regression model
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chronic myelomonocytic leukemia (CMML) who were 
treated with DAC [38]. Based on differences in baseline 
DNA methylation identified via genome-wide next-gen-
eration sequencing, a DNA methylation classifier com-
prising 16 features to distinguish DAC-responders from 
non-responders was generated and validated in an inde-
pendent sample set. Prediction accuracy was 87% and 
decreased to 71% when features were reduced to 6. The 
authors have suggested that to date, the magnitude of 
negative results regarding response prediction was largely 
due to the focus on promoter methylation. Instead, 
they hypothesized on promoter-distal and intergenic 
regions as informative for therapy response. Despite 
this encouraging finding, these results have neither been 
reproduced nor has an epigenetic classifier in any entity 

treated with HMA been introduced into clinical routine 
so far. Recently, a differential methylation signature for 
response prediction, based on 200 CpG probes, in a set of 
75 patients with high risk MDS or sAML was discovered 
by supervised analysis [37]. Although a promising result, 
an independent validation cohort was missing. Addition-
ally, within the same set of patients another set of 200 
CpG probes was shown to harbor prognostic information 
but was not independently validated.

Effects of DNMTi-therapy have been shown to 
include the activation of tumor suppressor genes, the 
downregulation of oncogenes and the unveiling of an 
innate antiviral immune response by reactivation of 
endogenous retroviral pathways respectively retrovi-
ruses and inducible, unannotated transcripts, thereby 

Fig. 5 Quality assessment of the predictive model. A The AUC for the recomposed classifier is 0.924 and significantly improved over the previous 
version (AUC 0.59) resulting in a sensitivity of 93.3% and a specificity of 42.85% with a corresponding positive predictive (70%) and negative 
predictive value of 81.8% for the given results (B). C Final assessment via correction for multiple testing with .0632 + bootstrap resampling estimates 
reveal a misclassification error of 35% (C1) and a bootstrap estimation for the AUC of 0.77 (C2). ROC Receiver Operating Characteristic Curve. AUC  
Area under the curve. λ lambda, lasso penalty value
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increasing immunogenicity [42–44]. In this context, 
the likelihood of capturing regions of interest seemed 
higher by focusing on larger regions (DMRs) instead of 
single CpGs.

To address these considerable limitations regard-
ing methylation-based analysis, we investigated DNA 
methylation over the whole genome in an unbiased way. 
Having chosen a global screening assay (MCIp-seq), we 
consecutively narrowed down towards a classifier by 
analysis of regional differences in methylation. Subse-
quently, by single CpG-site analysis via 450k beadchip 
assay, we were able to compare discriminatory effects 
between quantitative evaluation of single CpGs and the 
CpG-content of defined regions while at the same time 
increasing the resolution of methylation changes. We 
consecutively distilled regions of discriminatory power 
via differential methylation analysis between respond-
ing and non-responding patients. Secondly, we evaluated 
the effect of single-site CpGs within identified regions 
and included directly neighboring regions allowing for a 
comparison between the effect of single-site CpGs and 
regions, irrespective of a region’s CpG density. Based 
on the generated data, a classifier was trained and sub-
sequently fitted by inclusion of methylation changes of 
neighboring regions. Without the adjustment of the clas-
sifier by this additional information, validation in the test 
cohort failed.

Among top differentially methylated regions, identi-
fied in our screening, was WNT10A which is part of the 
extensively characterized Wnt/ß-catenin signaling path-
way and regulates the stability of transcription co-acti-
vator ß-catenin [45]. For MIR3186, another top DMR, a 
previous genome-wide differential methylation analysis 
in salivary gland inflammation in patients with Sjögren’s 
Syndrome, a chronic, multifaceted autoimmune dis-
ease, revealed 57 genes, amongst others MIR3186, to be 
enriched for DMRs in their respective promoters [46]. 
Leukemia cell lines treated with bortezomib, resulted 
in upregulation of CCAAT/enhancer binding protein 
delta (CEBPD) and induced multiple miRNAs such as 
MIR3154 amongst others, which were shown to target 
the 5’-flanking region of CEBPD and resulted in epige-
netic gene silencing, consistent with a new mechanism in 
miRNA-mediated gene regulation [47]. IFT140, intrafla-
gellar transport protein 140, a subunit of the IFT com-
plex, is essential for retrograde transportation in cilia 
and mutations as well as dysregulation are linked to syn-
dromic ciliopathies and male fertility [48]. Just recently, 
a region on chromosome 16, near IFT140, has been 
described as differentially methylated and associated 
with pancreatic cancer risk in an epigenome-wide associ-
ation study [49]. Moreover, IFT140 has been shown to be 
differentially methylated in fetal alcohol spectrum disor-
der [50]. Finally, for IGF2BP1, the oncofetal IGF2 mRNA 

Fig. 6 Coefficient plots for multivariable analysis of mutations (A) and chromosomal aberrations (B). A Coefficient plot for contained mutations, 
age and gender in comparison to the 12-CpG-signature. B Coefficient plot for karyotypes, age and gender in comparison to the 12-CpG-signature. 
Plots include the 95%-confidence interval for each predictor. Values in respective tables are the results from multiple logistic regression modelling. 
A model containing both mutational and cytogenetic variables could not be fitted because the sample size was too small to estimate all model 
parameters with sufficient confidence. Due to very small samples sizes for the del(5q)/-5 and t(11q23) groups (n = 2 each), both groups were 
combined with the group „other “ (n = 11) for the multivariable analysis. Karyotype merged comprises “del(5q)/-5 “, “t(11q23)“, “other “
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binding proteins (IGFBPs) are upregulated in various 
cancer entities and have been shown to possess a distinct 
conservation of highly oncogenic potential throughout a 
panel of five cancer-derived cell lines [51]. Together with 
data from knockout mouse models, IGF2BP1 seems to 
enhance an aggressive tumor cell phenotype by antago-
nizing miRNA-impaired gene expression [51].

Taken together, the DMRs, distilled from our analysis, 
have been shown to be not only differentially methylated 
in other entities as well, but to be also involved in key reg-
ulatory processes associated with oncogenic transforma-
tion as well as with defining distinct phenotypic disease 
characteristics. In addition, this study confirmed previ-
ous findings, such as the dominance of distal regulatory 
elements among response associated DMRs [38]. This 
supports the idea of relevant DMRs not being evenly dis-
tributed across the genome, but instead being enriched at 
distinct regions and is in line with recent reports of aber-
rant gene expression being correlated with aberrant DNA 
methylation, e.g. at enhancers in cell lines from various 
entities [52].

To confirm our findings, we consecutively evaluated 
our classifier in a validation set of patients from the same 
clinical trial. While identification of responders with our 
signature was possible with reasonable discriminative 
power (AUC = 0.77), response prediction was also pos-
sible within the STD treatment group of the validation 
set, resulting in a nearly identical AUC (0.76). This result 
highlights the predictive power of our signature, but at 
the same time illustrates that it was not possible for us to 
identify a HMA treatment specific response prediction. 
One major reason for this outcome might be the design 
of the AMLSG 12-09 trial. The rationale for incorporat-
ing AZA in AMLSG 12-09 was based on its hypomethyl-
ating properties when administered at a low dose rather 
than its cytotoxic effects observed at higher doses in a 
patient cohort, ineligible for targeted therapy [53]. As the 
trial failed to support the substitution of AraC by AZA 
in intensive induction therapy, it might probably not be 
entirely possible to detect an HMA-specific signature in 
a patient cohort where a strong chemotherapy backbone 
is part of both trial arms. Both event-free and overall sur-
vival were significantly inferior in the AZA containing 
arms as compared to the standard therapy arm resulting 
in a negative trial. Thus, the identified signature might 
need to be applied to other data sets to evaluate its dis-
criminatory power.

It is possible that the data used to train our classifier 
are not sufficiently representative in terms of patient 
numbers and the distribution of patient (genetic) char-
acteristics to build a robust classifier and to demon-
strate statistical independence in multivariable testing. 
The limitation of the small sample size results from the 

limited availability of samples from the AMLSG 12-09 
trial which is due to the study design. Despite the limited 
number of patients, the fact that the generation of our 
predictive epigenetic signature was based on a prospec-
tive randomized trial represents a key quality feature. 
Therefore, we are confident that our approach in terms of 
analysis strategy, potential limitations and pitfalls is a val-
uable contribution for the development and evaluation of 
predictive biomarkers for hypomethylating agents.

Second, the bone marrow blast count was the only 
significant difference in an otherwise homogeneous 
sample cohort with a significantly higher bone marrow 
blast count in the EXP arm. This fact has the potential to 
introduce a bias into the differential methylation analysis 
by affecting the alignment of identified DMRs between 
the EXP and STD arms such that correction for unique 
DMRs in the EXP arm could be ineffective. This might 
lead to a higher risk of identifying DMRs which account 
for rather global, chemotherapy-associated effects. 
Regarding the different frequency of DNMT3A mutations 
in the cohorts, we consider a bias in the construction of 
our classifier unlikely, because no association with geno-
types was found in the multivariable analysis. In addition, 
DNMT3A or further DMRs near DNMT3A were not part 
of the DMR top list and were therefore not included in 
the final classifier.

Third,  the use of different platforms for DNA meth-
ylation assessment could have the potential to introduce 
error and variability into the analyses. In this case, the 
overall goal was to develop a small, robust, and easily 
applicable predictive signature starting from genome-
wide unbiased screening. This goal required the sequen-
tial application of different techniques with different 
characteristics. The use of different assays allowed us to 
highlight the informational value of individual CpG units 
compared to regions in terms of differential methylation. 
Nevertheless, we cannot exclude that technical aspects 
may have contributed to the lack of discriminative power 
for the HMA response signature by this approach. In 
conclusion, we were able to show that the methylation 
status of regions, as determined by MCIp-seq, can be 
confirmed via quantitative analysis of representative CpG 
units. The identified regions might even be function-
ally linked. our technical approach with confirmed CpG 
units showed a loss in discriminatory power that could 
be compensated for by inclusion of close-by CpG units 
resulting in a predictive classifier. While assessment of 
the classifier within the STD arm confirmed response 
prediction, it was not HMA specific. Thus, our findings 
suggest that a predictive epigenotype seems to be carry-
ing its information on methylation on a complex, genome 
wide scale and is confined to regions, rather than to sin-
gle CpGs. Trials with a larger sample cohort and a more 
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representative cross-section of the otherwise heteroge-
neous AML biology are needed to pin down subsets of 
AML patients, for whom a predictive tool set might be 
developable.

In summary this work once again demonstrates that 
there seems to be no easy way to determine prediction to 
HMA agents based on pretreatment methylation param-
eters. As has been proposed, response prediction in 
HMA, Venetoclax or other therapies might only be har-
nessed when longitudinally monitoring the methylation 
status of patients treated with HMA [30]. In the context 
of increasing therapeutic complexity with combination 
regimens including HMA, response prediction might 
even become more complicated. Further studies are 
needed to evaluate the dynamics of methylation changes 
over the course of treatment and to correlate them with 
therapy response. In this scenario, a predictive classifier 
must be significantly faster in predicting response than 
the natural course of the disease.

Conclusions
This study aimed at developing a fast and affordable 
predictive classifier for therapy response prediction 
to HMAs in AML. While previous attempts at utiliz-
ing methylation-based biomarkers have shown promise, 
none have been consistently reproduced or introduced 
into clinical practice. Here, for the first time, we inves-
tigated DNA methylation profiles with a genome-wide 
screening that is not limited to specific genomic regions 
which we consider to be a prerequisite for the successful 
development of epigenetic predictive signatures.

While the identified classifier can predict response, it 
is not specific to HMAs, suggesting that the methylation 
information is complex and genome-wide, confined to 
regions rather than single CpG sites. Based on our data, 
it is unlikely that a response prediction can be derived 
from a simple signature containing only a few CpG 
dinucleotides.

A potential signature is likely to be highly dependent 
on the therapeutic context, e.g., the HMA combination 
partners as in our case, where the chemotherapy back-
bone could be dominant and mask the identification of 
an HMA-specific signature.

In summary, our analyses are a step towards the devel-
opment of epigenetic biomarkers and highlight potential 
problems and relevant aspects that should be considered 
future development of predictive epigenetic signatures.

Patients and methods
AMLSG 12‑09 trial
All samples were obtained from the AMLSG 12-09 trial 
(ClinicalTrials.gov number: NCT01180322, EudraCT 
number: 2009-016142-44), a prospective, randomized, 

multicenter, controlled four-armed phase-II design 
[39]. This trial tested the rationale of substituting cyta-
rabine (araC) in the standard arm (STD) by different 
schedules of azacytidine (experimental arm, EXP) in 
idarubicin and etoposide containing induction therapy 
of newly diagnosed AML patients. 277 adult patients 
(age range 18–82) were enrolled between October 2010 
and March 2012. In this trial, molecularly defined sub-
types allowing for genotype specific therapy approaches 
such as  patients  with mutated NPM1, AML with FLT3-
ITD,  PML-RARA  fusion, and CBF-AML were excluded. 
Induction therapy was followed by maintenance therapy 
with 5-azacitidine for two years. Details of the trial design 
and analysis are given in the final trial report [42]. In the 
final analysis, regarding the primary endpoint of therapy 
response, the substitution of cytarabine by azacytidine 
failed to improve response rates [39]. All study arms were 
associated with a worse outcome than the standard arm.

Patients and bone marrow samples
Mononuclear cells from pretreatment bone marrow 
aspirates were available from n = 155 patients following 
patients’ informed consent under the institutional review 
of ethics-committee of Ulm University (number: 175/10, 
October 11, 2010). Informed consent was obtained in 
accordance with the Declaration of Helsinki and approval 
was obtained from institutional review committees at 
participating centers.

A screening set was assembled from 58 samples with 
18 patients receiving standard (STD) therapy (Ida/AraC/
Eto) and 40 patients receiving experimental (EXP) treat-
ment (Ida/Aza/Eto) within the AMLSG 12-09 trial. For 
validation of differentially methylated regions, an inde-
pendent subset of 97 patient samples derived from the 
AMLSG 12-09 collective was obtained. The validation 
cohort consisted of 40 patients receiving standard ther-
apy and 57 patients receiving experimental treatment. In 
accordance with standard ELN criteria, responders were 
defined by achieving complete response (CR) defined 
as < 5% bone marrow blasts, an absolute neutrophil 
count ≥ 1,0 G/L, a platelet count of > 100 G/L, no blasts 
in the peripheral blood and no extramedullary leukemia.

DNA extraction and bisulfite conversion
DNA from bone marrow mononuclear cells of AML 
patients was isolated using the QIAmp DNA Mini Kit 
(QIAGEN) according to the manufacturer’s instructions.

Bisulfite conversion of genomic DNA was performed 
with EZ DNA Methylation™ kit from Zymo Research 
(Zymo Research, Irvine, USA) according to the manufac-
turer’s protocol using 500 ng of genomic DNA per sam-
ple. Conversion rate of bisulfite treatment was tested with 
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PCR amplification of the SALL3 gene locus as described 
previously [43].

Genome‑wide DNA methylation screening by methyl‑CpG 
immunoprecipitation (MCIp)‑seq
Methyl-CpG immunoprecipitation (MCIp) was per-
formed as described previously [44]. In brief, a total of 
3.0  μg DNA from bone marrow mononuclear cells was 
sonicated with the Covaris S220 focused-ultrasonica-
tor (Covaris, Woburn, USA) to fragments of an optimal 
fragment size ranging between 100 and 200 bp as moni-
tored via capillary electrophoresis on an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, USA). 
Sonicated DNA was enriched with 90  μg of purified 
methyl-CpG-binding domain-Fc protein coupled to 60 μl 
protein A-coated magnetic beads. Enrichment resulted 
in increased mean fragment size of about 40 bp. Subse-
quently, DNA was eluted by incubation with increasing 
salt concentrations (fraction A, 300  mM; B, 400  mM; 
D, 550  mM; F, 1000  mM). Non-methylated alleles elute 
at low-salt while methylated alleles elute at high-salt 
concentration. Desalted eluates were controlled for 
enrichment of methylated DNA by real-time PCR via 
quantification of abundance of the housekeeping gene 
GAPDH and a selected ribosomal RNA gene promoter 
with variable expression [1]. Enriched fragments were 
subsequently sequenced on the Illumina HiSeq™ 2000 
platform as described earlier [45]. Details are to be found 
in the supplement. MCIp-enriched methylated DNA 
fragments were submitted to the DKFZ Genomics and 
Proteomics Core Facility for library preparation and next-
generation sequencing. Afterwards, fragmented DNA 
was end-repaired and ligated to Illumina-paired end 
adaptors using NEBnext DNA Library Prep Master Mix 
Set (New England Biolabs) in accordance with the man-
ufacturer’s instructions. Adapter ligated libraries were 
directly amplified by 14 cycles of PCR with the standard 
Illumina index primers and distributions were validated 
using the Agilent Bio- analyzer before it was quanti-
fied by a Qubit fluorometer (Invitrogen). The libraries 
were sequenced on the Illumina HiSeq 2000 sequencer 
(50 bp, single read 50 bp) using standard Illumina proto-
cols. Details about MCIp-seq and bioinformatic analyses 
are given in Additional file 1.

Quality assessment, bioinformatic processing and data 
analysis of MCIp‑seq raw data
Sequencing reads were aligned to the hg19 genome 
assembly of the human reference genome using the 
Burrows-Wheeler Alignment tool. Aligned reads were 
further processed by merging lane-level data and remov-
ing duplicates. The remaining uniquely mapped reads 
were converted to Sequence Alignment Map or Binary 

Alignment Map formats using SAMtools. Read counts 
of each sample were normalized for total read length and 
the number of sequencing reads (reads per kilobase per 
million mapped reads; RPKMs). Peak calling was per- 
formed using the software HOMER (v4.4).

Array‑based quantitative assessment of DNA methylation 
applying the Infinium® Human Methylation 450k Bead 
Chip from llumina®

Quantitative DNA methylation assessment was per-
formed with the Infinium® HumanMethylation  450k 
Bead Chip for comprehensive genome-wide coverage 
of methylation data as described previously [38]. Logit 
transformation of 450k data with transition of beta values 
to M values was performed. Quality control of generated 
data was performed with the RnBeads package for R [46]. 
For background correction, the NOOB method [47] and 
for data normalization the BMIQ algorithm [48] were 
applied.

Quantitative assessment of DNA methylation applying 
MassARRAY® technology from Sequenom®

Quantitative DNA methylation analysis was performed 
using MALDI-TOF mass spectrometry (MassARRAY, 
Sequenom, San Diego, USA) as previously described 
[41]. Target regions for DNA methylation analysis 
were designed to yield maximum information for sin-
gle CpG dinucleotides by in silico processing using cus-
tom R-based scripts. Primers were designed, tested, 
and optimized for PCR amplification. In-silico bisulfite 
conversion, in-silico fragmentation, and fragment yield 
estimation in mass spectrometry using the RSeqMeth 
package were considered in primer design. [49]. Final 
primer pairs were fitted for a fragment length between 
200 and 500 bp, an ideal primer length of 22–25 bp, an 
ideal annealing temperature of 60  °C, a maximum tol-
erated difference in annealing temperature between 
forward and reverse strand primers of 5  °C, low overall 
thymine content, cytosine-rich 3’end content and obligate 
exclusion of CpG dinucleotides. A ratio of informative to 
total CpGs of at least 0.7 was met. Target gene regions 
were amplified by PCR after sodium-bisulfite modifica-
tion of genomic DNA. Subsequently deoxynucleotides in 
the PCR reaction were inactivated by dephosphorylation 
using shrimp alkaline phosphatase (SAP). By tagging the 
reverse PCR primer with the T7 recognitions sequence, 
a single-stranded RNA copy of the template was gener-
ated by in vitro transcription. After base specific (U-spe-
cific) cleavage by RNase A, the cleavage products were 
then analyzed using MALDI-TOF mass spectrometry. 
Cleavage product signals with a 16 Da shift (or a multi-
ple thereof ) are representative for methylation events 
and signal intensity is correlated with the degree of DNA 
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methylation. For quantitative methylation assessment 
within the validation cohort, out of 152 informative CpG 
units, all units with more than 20% of missing values 
were excluded with n = 71 informative distinct CpG units 
remaining. Remaining missing values were computed by 
single imputation using k-nearest neighbor imputation 
[50]. For CpG probes assessed by several CpG units in 
mass spectrometry, mean values across CpG units were 
calculated.

Analytical strategy and statistical analysis
Details on the analytical strategy and statistical analysis 
are found in the supplement. In brief, based on the Feb-
ruary 2009 assembly of the human genome, DMRs were 
identified based on a genome binning approach by group-
ing the genome into factions of 500 bp length. Reads were 
assigned and normalized to each 500 bp window with the 
HOMER software. Uninformative regions were filtered. 
Bins with no reads across all or across all but one sample 
were discarded. Differential methylation was calculated 
with edgeR [51]. Top lists of DMRs were generated for 
STD and EXP-arms respectively and ranked according 
to effect size and p-values. Overlaps between both lists 
were excluded and a top list was generated. Quantitative 
methylation analysis was performed via HumanMethlya-
tion  450k Bead Chip. Via penalized logistic regression 
analysis and fivefold  cross-validation for identification 
of optimal penalty parameters a predictive classifier was 
trained and assessed with a test cohort.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 023- 01580-z.

Additional file 1. Patients & Methods. This section provides extended 
details on the handling of patient samples and specifics about DNA 
extraction and bisulfite conversion as well as genome-wide DNA methyla-
tion screening by methyl-CpG immunoprecipitation (MCIp)-seq. Moreover 
a detailed description of data and sample processing for the Array-based 
quantitative assessment of DNA methylation (Infinium® Human Methyla-
tion450 Bead Chip, lllumina®)  and the quantitative assessment of DNA 
methylation (MassARRAY® technology, Sequenom®) are provided. The 
section also contains details on the analytical strategy and statistical 
analyses.

Additional file 2. Fig S1. Distribution of somatic mutations and 
cytogenetics in the screening cohort. Overview of somatic mutations 
in epigenetic modifier genes. No association between mutations in 
epigenetic modifiers and therapy response as well as methylation pat-
terns was observed. The overall screening sample set did not exhibit 
distinct clustering patterns. Fig S2. Unsupervised hierarchical clustering 
of the 1.000 (A) and 10.000 (B) most variable regions  Assessment of the 
impact of karyotypes and mutations in epigenetic modifier genes by 
unsupervised hierarchical clustering of the top 1000 and top 10000 most 
variable CpG regions in the screening cohort. Fig S3.1–3.10. Distribution 
of mutations in epigenetic modifier genes and cytogenetic aberrations in 
the top 10 DMRs.The distribution of mutations in the epigenetic modifier 
genes as well as the distribution of cytogenetic aberrations in the top 
10 DMRs (WNT10A, ZNF490, LZTS2, CIZ1, TNK1, LOC100133991, PIEZO1, 
C5orf65, UNC119, ATOH8) between responding and refractory patients is 

shown. There is no segregation of mutation patterns with response in 
the selection of DMR candidates. Fig S4. Principal Component Analysis 
(PCA) on 500-bp bins after primary filtering of uninformative regions on all 
samples (A) and on the EXP arm (B) within the screening cohort. Principal 
component analysis based on 664,227 bins for the overall sample set and 
the experimental therapy arm. Labeled samples indicate extreme values 
in read count numbers, i.e. the top and bottom 5% read count values. 
Blue and red dots represent data points that were identified as potential 
outliers based on either extremely low total read counts, as shown in blue, 
or extremely high total read counts, as shown in red. For subsequent steps 
of differential methylation analysis, blue samples, i.e. unsaturated samples 
with low total read counts were ignored. Fig S5. Distribution of differen-
tially methylated regions (DMRs) across the genome with (A) a Box-
Whiskers plot indicating distribution of DMRs within the total set of DMRs 
filtered for bins with positive read counts across all samples and with (B) 
bar plots indicating the distribution of genomic annotations in the set 
of top candidates. Fig S6. GC content distribution and the relationship 
between GC content and transcriptional start sites (TSS) with (A) regions 
with higher GC content showing an over-representation in the set of top 
candidates, irrespective of data normalization with CQN and (B) regions in 
the set of top candidates showing a close relation to transcriptional start 
sites. “Top hits (std)” denominate data not normalized by application of 
CQN. A graph for CQN normalized data is included for (A) and (B). Fig  S7. 
Components of the primary classifier with (A) a multivariable signature for 
therapy response prediction containing 17 probes. CpG dinucleotides are 
associated with 12 genes and two previously undescribed regions and (B) 
a prediction matrix for therapy response (CR - green color) generated by 
applying a penalized logistic regression model (“elastic-net penalty”) to 
the 450k M-values within the set of validated candidates. The y-axis gives 
the probability for refractory disease (RD - red color). Fig S8. ROC curve for 
the primary 450k elastic net signature linear predictor. Receiver operating 
characteristic curve for the 17 CpG containing classifier as assessed within 
the validation cohort. Both sensitivity and specificity do not allow for a 
reliable prediction of therapy response.Fig S9. Significantly differentially 
methylated flanking CpGs as assed by MassARRAY for classifier refinement 
showing significant DMRs in EXP arm only. A and B show Manhattan plots 
for univariable testing of candidate regions based on MassARRAY data 
from validation sample set. Significant hits are limited to patients treated 
with a combination therapy regimen as shown on the left whereas the 
group of patients receiving standard therapy showed no significant 
hits. Fig S10. Probability estimates and misclassifications for the refined 
classifier. Probability estimates for complete response to demethylating 
therapy. CR and RD indicate complete response and refractory disease, 
respectively. Unstained dots indicate samples with correct predictions to 
therapy, whereas red dots indicate misclassifications. Fig S11. ROC curve 
for the lasso signature linear predictor applied to STD arm. Evaluation for 
5-azacytidine treatment arm specificity by application of the classifier 
onto the STD arm results in a misclassification error of 0.24 and an AUC 
of 0.76. The result is comparable to the .632+-bootstrap estimates for the 
misclassification error and the AUC for the EXP arm. This finding indicates 
unspecificity in the EXP arm.

Additional file 3. Overview of predictive epigenetic biomarkers. The table 
provides a short review of published predictive biomarkers related to 
DNA-methylation and hypomethylating agents.

Additional file 4. Patient characteristics within the screening cohort both 
for the standard arm as well as for the experimental arm are provided.

Additional file 5. Overview of top differentially methylated regions within 
the experimental treatment arm. Selected candidate regions are marked 
in green. Logarithmic fold change (logFC) and p-values are given for all 
regions. Respective values form the standard arm are highlighted in yel-
low. All regions are arranged in ascending order of p-values (experimental 
arm).
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