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Abstract 

Background Epigenetic clocks constructed from DNA methylation patterns have emerged as excellent predictors 
of aging and aging-related health outcomes. Iron, a crucial element, is meticulously regulated within organisms, 
a phenomenon referred as iron homeostasis. Previous researches have demonstrated the sophisticated connection 
between aging and iron homeostasis. However, their causal relationship remains relatively unexplored.

Results Through two-sample Mendelian randomization (MR) utilizing the random effect inverse variance weighted 
(IVW) method, each standard deviation (SD) increase in serum iron was associated with increased GrimAge accel-
eration (GrimAA,  BetaIVW = 0.27, P = 8.54E−03 in 2014 datasets;  BetaIVW = 0.31, P = 1.25E−02 in 2021 datasets), Han-
numAge acceleration (HannumAA,  BetaIVW = 0.32, P = 4.50E−03 in 2014 datasets;  BetaIVW = 0.32, P = 8.03E−03 in 2021 
datasets) and Intrinsic epigenetic age acceleration (IEAA,  BetaIVW = 0.34, P = 5.33E−04 in 2014 datasets;  BetaIVW = 0.49, 
P = 9.94E−04 in 2021 datasets). Similar results were also observed in transferrin saturation. While transferrin manifested 
a negative association with epigenetic age accelerations (EAAs) sensitivity analyses. Besides, lack of solid evidence 
to support a causal relationship from EAAs to iron-related biomarkers.

Conclusions The results of present investigation unveiled the causality of iron overload on acceleration of epigenetic 
clocks. Researches are warranted to illuminate the underlying mechanisms and formulate strategies for potential 
interventions.

Keywords Iron metabolism, Iron homeostasis, Senescence, Aging, Epigenetic age acceleration, Mendelian 
randomization

Introduction
Aging is a natural process of all organisms characterized 
by loss of physiological integrity, function decline and 
vulnerable to death in a time-dependent manner [1]. Iron 
is one of the most essential transition metals in human 
body [2]. The balance of iron metabolism, also known 
as iron homeostasis, is strictly regulated due to its cru-
cial role in erythropoiesis, oxidative phosphorylation and 
redox reaction [3]. Evidences have connected altered iron 
homeostasis with biological aging. For example, epide-
miological research reported that over 10% of both men 
and women aged 65  years or older were anemic in the 
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US, in which iron deficiency made up approximately 20% 
of all anemia cases [4]. Chronic inflammation of the elder 
people might also contribute to the alteration of serum 
iron biomarkers, causing iron deficiency and impaired 
iron mobilization [3, 5]. On the other hand, cellular iron 
accumulation in older individuals was observed. Serum 
level of ferritin, which reflected the storage of iron, was 
reported to be increasing with age and negatively asso-
ciated with telomere length [6, 7]. Iron overload in cell 
induced the accumulation of lipofuscin, which was con-
sidered one of the hallmarks of aging and could be cyto-
toxic [5, 8]. However, little was known about the change 
of total iron content of body with age, as well as the rela-
tionship between iron homeostasis and aging.

The lifespan of organism is programed by its genetic 
information and influenced by its environment [9]. Dis-
tinct from conservative DNA sequence, the epigenome 
regulated gene expression based on a range of chemi-
cal modifications that were reversible [10]. Epigenetic 
alteration was proposed as one of the twelve hallmarks 
of aging and participated in the pathogenesis of several 
age-related diseases [1]. At present, the best character-
ized mark of epigenome is DNA methylation, a methyl 
group added on the fifth carbon of a cytosine residue, 
which could also be influenced by environmental factors, 
including the passage of time [11]. Thus, the epigenetic 
clocks, based on the DNA methylation status of human 
and their chronological age and health-related outcomes, 
were built to discover the impact of both genetic and 
environmental factors on human aging [12]. Epigenetic 
age acceleration (EAA) was used to describe individuals 
with greater epigenetic-clock-estimated age than their 
true chronological age, indicating worse health outcome 
[13]. Although iron homeostasis was in connection with 
aging, no research regarding the relationship between 
epigenetic clocks or EAA and iron homeostasis has been 
conducted.

Utilizing outcomes from genome-wide association 
studies (GWAS), Mendelian randomization (MR) has 
been widely used in discovering causality between expo-
sure factors and outcomes and has a better performance 
in controlling confounding and reverse causation [14]. To 
achieve MR analysis, single nucleotide polymorphisms 
(SNPs) are selected as instrumental variables (IVs) with 
three rules, IVs must be (1) associated with the exposure; 
(2) independent of all confounders of the exposure–out-
come association; and (3) independent of the outcome 
[15]. McCartney et  al. conducted a GWAS of four epi-
genetic clocks, and subsequent MR analysis identified 
several risk factors of EAAs [16]. Based on the GWAS 
statistics, Pan et  al. have reported bidirectional causal 
relationships between EAAs and kidney function [17]. 
To our knowledge, no MR analysis has been conducted 

exploring the causal relationship between iron homeosta-
sis and EAAs.

In this study, we conducted a two-sample MR analyses 
with summarized GWAS data mentioned above to inves-
tigate the causal relationship between iron homeostasis 
and EAAs. The results might provide new evidence for 
further research on intervening iron homeostasis of the 
elderly and its potential mechanics.

Results
Genetic instruments selection
Selection of qualified SNPs from summarized GWAS 
data was conducted, and the number of SNPs in every 
process is presented in Additional file 1: Figure S1. Nota-
bly, lack of qualified SNPs from pancreas iron content, 
thus 183 of SNPs that met the threshold of 5E−06 were 
elevated. Total F-statistics of SNPs were all larger than 
10, indicating strong IVs.

Causal effects of plasmatic iron biomarkers on EAAs
Random effect inverse variance weighted (IVW) analyses 
were carried out with iron-related traits from three meta-
GWAS as exposures and EAAs as outcomes. Serum iron, 
ferritin and transferrin saturation were simultaneously 
obtained from two independent GWAS (namely 2014 
datasets and 2021 datasets based on the year of publish). 
As plotted in Fig. 1A, B, genetically predicted serum iron 
was significantly associated with genetic predisposition 
to GrimAge acceleration (GrimAA,  BetaIVW = 0.27 years 
per standard deviation (SD) increase in serum 
iron, P = 8.54E−03 in 2014 datasets;  BetaIVW = 0.31, 
P = 1.25E−02 in 2021 datasets), HannumAge accel-
eration (HannumAA,  BetaIVW = 0.32, P = 4.50E−03 in 
2014 datasets;  BetaIVW = 0.32, P = 8.03E−03 in 2021 
datasets) and intrinsic epigenetic age acceleration 
(IEAA,  BetaIVW = 0.34, P = 5.33E−04 in 2014 datasets; 
 BetaIVW = 0.49, P = 9.94E−04 in 2021 datasets), but 
partially significant in PhenoAge acceleration (Phe-
noAA,  BetaIVW = 0.47, P = 2.54E−02 in 2014 datasets; 
 BetaIVW = 0.30, P = 1.28E−01 in 2021 datasets). Trans-
ferrin saturation of both datasets demonstrated signifi-
cant association with HannumAA  (BetaIVW = 0.27  years 
per SD increase in transferrin saturation, P = 1.45E−03 
in 2014 datasets;  BetaIVW = 0.24, P = 9.43E−03 in 2021 
datasets), IEAA  (BetaIVW = 0.27, P = 2.36E−04 in 2014 
datasets;  BetaIVW = 0.24, P = 3.09E−02 in 2021 data-
sets) and PhenoAA  (BetaIVW = 0.37, P = 8.01E−03 in 
2014 datasets;  BetaIVW = 0.34, P = 3.13E−02 in 2021 
datasets), but lacked significance with GrimAA in 2021 
datasets  (BetaIVW = 0.23, P = 1.27E−03 in 2014 data-
sets;  BetaIVW = 0.17, P = 7.36E−02 in 2021 datasets). As 
for ferritin, significant results were observed in Hannu-
mAA  (BetaIVW = 0.69  years per SD increase in ferritin, 
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Fig. 1 MR analyses of 2014 (A) and 2021 (B) datasets with epigenetic aging accelerations. MR, Mendelian randomization; SNP, single nucleotide 
polymorphism
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P = 1.20E−03), IEAA  (BetaIVW = 0.72, P = 5.04E−04) and 
PhenoAA  (BetaIVW = 0.91, P = 6.90E−04) from 2014 data-
sets, as well as PhenoAA  (BetaIVW = 0.45, P = 9.10E−03) 
from 2021 datasets. The same negative direction of asso-
ciations was obtained in genetically predicted transferrin 
from 2014 datasets and genetically predicted total iron 
binding capacity (TIBC) from 2021 datasets, the former 
was significant with GrimAA  (BetaIVW = -0.14  years per 
SD increase in transferrin, P = 1.45E−02), HannumAA 
 (BetaIVW = -0.19, P = 3.76E−03), IEAA  (BetaIVW = −0.13, 
P = 2.77E−02) and PhenoAA  (BetaIVW = − 0.21, 
P = 1.36E−02), while the latter was not.

In sensitivity analyses, opposite directions were found 
in part of analyses of ferritin and TIBC from 2021 data-
sets. Notably, severe heterogeneity was detected in serum 
iron from 2014 datasets to PhenoAA (I2 = 66.5%). No 
pleiotropy was observed among all analyses. Results 
remained consistent after adjusting outliners in serum 
iron and transferrin saturation from 2021 datasets. 
Taken together, serum iron might be the potential cause 
of acceleration of GrimAge, HannumAge and intrinsic 
epigenetic age. Transferrin saturation was significantly 
associated with increasing of GrimAA, HannumAA, 
IEAA and PhenoAA. Ferritin was associated with ele-
vated PhenoAA. All the above results were significant in 
two datasets and validated in sensitivity analyses. Serum 
transferrin demonstrated negative association with the 
four EAAs, but results of TIBC were only significant in 
IEAA and PhenoAA. Complete results are exhibited in 
Tables 1 and 2.

Causal effects of organic iron content on EAAs
Genetically predicted liver iron content was associated 
with increased GrimAA  (BetaIVW = 0.25  years per SD 
increase in liver iron content, P = 8.49E−03), HannumAA 
 (BetaIVW = 0.35, P = 9.09E−04), IEAA  (BetaIVW = 0.42, 
P = 1.88E−05) and PhenoAA  (BetaIVW = 0.49, 
P = 9.97E−03), with no severe heterogeneity detected 
and no pleiotropy observed. One outliner (rs1799945) 
was observed by Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier (MR-PRESSO), removing of 
which did not influence the result. However, negative 
results were reported in genetic predisposition to pan-
creas iron content, despite all analyses returned the same 
positive direction, as illustrated in Fig. 2 and Table 3. In 
summary, genetically predicted concentration of iron in 
liver was associated with acceleration of four epigenetic 
clocks.

Causal effects of EAAs on iron‑related traits
To analyze the possible reverse causality, IVW method 
followed by sensitivity analyses were also performed 
with EAAs as exposure. The IVW results of EAAs on 

2014 datasets, 2021 datasets and organic iron content are 
pictured in Additional file 1: Figures S2, S3 and S4, with 
sensitivity analyses on Additional file 1: Tables S1, S2 and 
S3, respectively. Briefly, none of the genetically predicted 
EAAs was associated with any of the seven iron-related 
traits. The sensitivity analyses did not reveal significantly 
association either. No pleiotropy was observed in every 
MR-PRESSO test, suggesting reliable results. Collectively, 
lack of enough evidence to support the causality of EAA 
on iron-related traits.

Discussion
In present research, we explored the causal relationship 
between iron-related biomarkers and epigenetic clocks. 
In the iron-related traits, genetically predicted serum 
iron was associated with increasing GrimAA, Hannu-
mAA and IEAA. Transferrin carries and transports most 
of the serum iron to organs and tissues by combining 
with transferrin receptor of cytomembrane. Serum trans-
ferrin was negatively associated with EAAs, despite lack 
of validation in another GWAS. TIBC is used to describe 
the maximal capacity of iron transportation in circulation 
[18]. Transferrin saturation refers to the proportion of 
transferrin binding with iron, which is normally around 
20–40%, derived as serum iron divided by TIBC [3, 19]. 
Transferrin saturation was associated with all increased 
EAAs in present study, while TIBC was only significantly 
associated with IEAA and PhenoAA. Ferritin is respon-
sible for the storage of iron and holds the largest amount 
of non-functional iron [5]. Serum ferritin from both data-
sets was associated with PhenoAA, which was supported 
by results from previous observational study [6]. Liver is 
rich in iron and plays important role in iron homeostasis. 
Ferroportin (FPN) is the only cellular exporter of iron, 
which is regulated by hepcidin synthetized and secreted 
by liver [20]. Liver is also responsible for recycling iron 
from aged erythrocytes with Kupffer cells, which export 
iron to transferrin [3]. In our results, increased liver iron 
content is associated with all four types of EAAs, which 
was in agreement with previous results of ferritin levels 
and ferritin iron saturation in the liver of rats increased 
with age [21]. However, pancreas iron content displayed 
no association with EAAs. Although it has been proposed 
that inflammaging, the aging-driven systemic inflamma-
tion, induced the increase of ferritin and was responsible 
for the iron deficiency and many other diseases [5]. The 
results did not support the causal relationship of EAA on 
neither plasmatic nor organic iron content, suggesting 
other mechanisms involved. Taken together, higher iron 
concentration in transport and storage were both associ-
ated with increased epigenetic age, while lack of concrete 
evidence to support the causal inference conversely.
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Table 1 Sensitivity analyses of serum iron biomarkers in 2014 datasets with epigenetic aging accelerations

a Heterogeneity in the random effect IVW methods was reported
b MR-PRESSO (NbDistribution = 10,000, P < 0.05)
c MR-Egger was used to detect Pleiotropy. There is no pleiotropy was observed among all analyses (P > 0.05)

CI, confidence interval, MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, IE Intrinsic epigenetic

Exposure Outcome Weighted median MR‑egger regression Heterogeneitya MR‑PRESSO outlier 
 detectb

Pleiotropyc

Beta (95% CI) P value Beta (95% CI) P value Beta (95% CI) P Value

Ferritin Grim 0.76 (0.23, 1.29) 4.82E− 03 0.76 (− 0.33, 
1.85)

3.04E−01 I2 = 39.6%; 
Cochrane Q = 5; 
P = 0.174

No significant outliers Inter-
cept = -0.031; 
P = 0.603

Ferritin Hannum 0.82 (0.33, 1.31) 1.04E−03 0.83 (− 0.25, 
1.91)

3.74E−01 I2 = 0%; 
Cochrane Q = 2; 
P = 0.380

No significant outliers Inter-
cept = -0.018; 
P = 0.812

Ferritin IE 0.75 (0.27, 1.24) 2.29E−03 0.98 (0.14, 1.82) 1.51E−01 I2 = 1.6%; 
Cochrane Q = 3; 
P = 0.384

No significant outliers Inter-
cept = -0.028; 
P = 0.554

Ferritin Pheno 0.80 (0.18, 1.41) 1.18E−02 0.77 (− 0.43, 
1.97)

3.34E−01 I2 = 6.7%; 
Cochrane Q = 3; 
P = 0.360

No significant outliers Inter-
cept = 0.014; 
P = 0.820

Iron Grim 0.30 (0.06, 0.55) 1.33E−02 0.49 (0.09, 0.90) 9.77E−02 I2 = 14.5%; 
Cochrane Q = 5; 
P = 0.322

No significant outliers Inter-
cept = -0.045; 
P = 0.309

Iron Hannum 0.31 (0.08, 0.53) 8.00E−03 0.54 (0.06, 1.01) 1.15E−01 I2 = 32.1%; 
Cochrane Q = 6; 
P = 0.208

No significant outliers Inter-
cept = -0.043; 
P = 0.396

Iron IE 0.27 (0.02, 0.51) 3.16E−02 0.65 (0.25, 1.06) 5.09E−02 I2 = 0%; 
Cochrane Q = 3; 
P = 0.480

No significant outliers Inter-
cept = -0.064; 
P = 0.180

Iron Pheno 0.55 (0.24, 0.85) 4.81E−04 0.60 (− 0.40, 
1.6)

3.24E−01 I2 = 66.5%; 
Cochrane Q = 12; 
P = 0.018

No significant outliers Inter-
cept = -0.027; 
P = 0.787

Transferrin 
saturation

Grim 0.27 (0.10, 0.44) 1.62E−03 0.28 (0.03, 0.52) 7.80E−02 I2 = 0%; 
Cochrane Q = 3; 
P = 0.856

No significant outliers Inter-
cept = -0.011; 
P = 0.678

Transferrin 
saturation

Hannum 0.28 (0.12, 0.44) 7.46E−04 0.32 (0.01, 0.63) 9.98E−02 I2 = 30.3%; 
Cochrane Q = 9; 
P = 0.196

No significant outliers Inter-
cept = -0.013; 
P = 0.716

Transferrin 
saturation

IE 0.28 (0.11, 0.44) 9.04E−04 0.41 (0.16, 0.66) 2.36E−02 I2 = 0%; 
Cochrane Q = 2; 
P = 0.870

No significant outliers Inter-
cept = -0.035; 
P = 0.238

Transferrin 
saturation

Pheno 0.36 (0.14, 0.58) 1.49E−03 0.33 (− 0.19, 
0.85)

2.67E−01 I2 = 56.8%; 
Cochrane Q = 14; 
P = 0.031

No significant outliers Inter-
cept = 0.010; 
P = 0.869

Transferrin Grim − 0.05 (− 0.21, 
0.12)

5.68E−01 − 0.18 (− 0.35, 
0.01)

8.77E−02 I2 = 4%; 
Cochrane Q = 9; 
P = 0.403

No significant outliers Inter-
cept = 0.009; 
P = 0.633

Transferrin Hannum − 0.12 (− 0.29, 
0.05)

1.79E−01 − 0.15 (− 0.34, 
0.05)

1.82E−01 I2 = 29.5%; 
Cochrane Q = 14; 
P = 0.164

No significant outliers Inter-
cept = -0.012; 
P = 0.530

Transferrin IE − 0.03 (− 0.19, 
0.13)

6.71E−01 − 0.17 (− 0.34, 
0.02)

9.29E−02 I2 = 0.7%; 
Cochrane Q = 9; 
P = 0.432

No significant outliers Inter-
cept = 0.011; 
P = 0.547

Transferrin Pheno − 0.17 (− 0.36, 
0.03)

9.24E−02 − 0.19 (− 0.44, 
0.07)

1.83E−01 I2 = 27.4%; 
Cochrane Q = 14; 
P = 0.184

No significant outliers Inter-
cept = -0.005; 
P = 0.830
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Table 2 Sensitivity analyses of serum iron biomarkers in 2021 datasets with epigenetic aging accelerations

a Heterogeneity in the random effect IVW methods was reported
b MR-PRESSO (NbDistribution = 10,000, P < 0.05)
c MR-Egger was used to detect pleiotropy. There is no pleiotropy was observed among all analyses (P > 0.05)

CI, confidence interval, MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, IE Intrinsic epigenetic

Exposure Outcome Weighted median MR‑egger regression Heterogeneitya MR‑PRESSO outlier 
 detectb

Pleiotropyc

Beta (95% CI) P Value Beta (95% CI) P value Beta (95% CI) P Value

Ferritin Grim − 0.17 (− 0.57, 
0.22)

3.86E−01 0.33 (− 0.26, 
0.92)

2.77E−01 I2 = 30.9%; 
Cochrane 
Q = 101; P = 0.008

No significant outliers Inter-
cept = -0.010; 
P = 0.374

Ferritin Hannum − 0.08 (− 0.45, 
0.30)

6.85E−01 0.35 (− 0.17, 
0.87)

1.95E−01 I2 = 17%; 
Cochrane Q = 84; 
P = 0.116

No significant outliers Inter-
cept = -0.012; 
P = 0.217

Ferritin IE 0.07 (− 0.35, 
0.49)

7.53E−01 0.16 (− 0.43, 
0.76)

5.91E−01 I2 = 30.7%; 
Cochrane 
Q = 101; P = 0.009

-0.02 (-0.31, 
0.27)

8.88E−01 Inter-
cept = -0.003; 
P = 0.821

Ferritin Pheno 0.24 (− 0.27, 
0.75)

3.58E−01 0.70 (0.02, 1.39) 4.90E−02 I2 = 17%; 
Cochrane Q = 84; 
P = 0.117

No significant outliers Inter-
cept = -0.011; 
P = 0.418

Iron Grim 0.53 (0.18, 0.87) 2.82E−03 0.45 (0.06, 0.84) 3.01E−02 I2 = 0%; 
Cochrane Q = 28; 
P = 0.743

No significant outliers Inter-
cept = -0.011; 
P = 0.374

Iron Hannum 0.47 (0.12, 0.81) 7.57E−03 0.55 (0.18, 0.93) 6.71E−03 I2 = 0%; 
Cochrane Q = 28; 
P = 0.75

No significant outliers Inter-
cept = -0.019; 
P = 0.125

Iron IE 0.67 (0.29, 1.04) 5.01E−04 0.75 (0.30, 1.21) 2.79E−03 I2 = 29.5%; 
Cochrane Q = 47; 
P = 0.056

No significant outliers Inter-
cept = -0.021; 
P = 0.159

Iron Pheno 0.24 (− 0.21, 
0.68)

2.93E−01 0.45 (− 0.16, 
1.07)

1.60E−01 I2 = 35.8%; 
Cochrane Q = 53; 
P = 0.02

0.36 (0.03, 0.69) 3.96E−02 Inter-
cept = -0.012; 
P = 0.534

Iron binding 
capacity

Grim − 0.09 (− 0.32, 
0.15)

4.71E−01 0.05 (− 0.25, 
0.34)

7.66E−01 I2 = 27.8%; 
Cochrane Q = 78; 
P = 0.03

No significant outliers Inter-
cept = -0.007; 
P = 0.553

Iron binding 
capacity

Hannum 0.01 (− 0.20, 
0.22)

9.18E−01 − 0.11 (− 0.37, 
0.14)

3.94E−01 I2 = 6.6%; 
Cochrane Q = 60; 
P = 0.333

No significant outliers Inter-
cept = 0.001; 
P = 0.951

Iron binding 
capacity

IE − 0.02 (− 0.28, 
0.23)

8.58E−01 − 0.15 (− 0.49, 
0.18)

3.72E−01 I2 = 42.3%; 
Cochrane Q = 97; 
P = 0.001

No significant outliers Inter-
cept = 0.009; 
P = 0.501

Iron binding 
capacity

Pheno − 0.17 (− 0.44, 
0.10)

2.19E−01 − 0.06 (− 0.43, 
0.30)

7.29E−01 I2 = 22.5%; 
Cochrane Q = 72; 
P = 0.071

No significant outliers Inter-
cept = 0.005; 
P = 0.728

Transferrin 
saturation

Grim 0.24 (− 0.01, 
0.49)

6.08E−02 0.18 (− 0.13, 
0.49)

2.65E−01 I2 = 0%; 
Cochrane Q = 38; 
P = 0.547

No significant outliers Inter-
cept = -0.001; 
P = 0.909

Transferrin 
saturation

Hannum 0.26 (0.01, 0.52) 4.38E−02 0.29 (− 0.02, 
0.59)

7.63E−02 I2 = 0%; 
Cochrane Q = 37; 
P = 0.626

No significant outliers Inter-
cept = -0.004; 
P = 0.700

Transferrin 
saturation

IE 0.22 (− 0.04, 
0.47)

9.78E−02 0.35 (− 0.03, 
0.73)

7.80E−02 I2 = 29.4%; 
Cochrane Q = 57; 
P = 0.042

No significant outliers Inter-
cept = -0.009; 
P = 0.490

Transferrin 
saturation

Pheno 0.38 (0.03, 0.73) 3.13E−02 0.64 (0.11, 1.17) 2.31E−02 I2 = 45.1%; 
Cochrane Q = 73; 
P = 0.001

0.38 (0.11, 0.65) 9.17E−03 Inter-
cept = -0.025; 
P = 0.183



Page 7 of 13Wang et al. Clinical Epigenetics          (2023) 15:159  

To utilize iron in physiological process while avoid 
its toxicity to the organism, the concentration of iron 
is strictly modulated in different types of cells, which is 
typically named as iron homeostasis [3]. Although iron 
deficiency occurred commonly in the elderly, accumula-
tion of iron in certain organs and tissues was observed, 

including brain, liver, spleen, kidney, and skeletal mus-
cles, indicating malfunction of iron homeostasis [5, 22]. 
Iron deposition in senescent cells was observed, which 
was found associated with increased risk of age-related 
diseases, including malignancies, neurological disorders 
and cardiovascular diseases [23].

Fig. 2 MR analyses of organic iron content to epigenetic aging accelerations. MR, Mendelian randomization; SNP, single nucleotide polymorphism

Table 3 Sensitivity analyses of organic iron content with epigenetic aging accelerations

a Heterogeneity in the random effect IVW methods was reported
b MR-PRESSO (NbDistribution = 10,000, P < 0.05)
c MR-Egger was used to detect pleiotropy. There is no pleiotropy observed among all analyses (P > 0.05)

CI, confidence interval, MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, IE Intrinsic epigenetic

Exposure Outcome Weighted median MR‑egger regression Heterogeneitya MR‑PRESSO outlier 
 detectb

Pleiotropyc

Beta (95% CI) P value Beta (95% CI) P value Beta (95% CI) P Value

Liver iron 
content

Grim 0.28 (0.05, 0.50) 1.63E−02 0.27 (− 0.03, 
0.56)

1.12E−01 I2 = 0%; 
Cochrane Q = 8; 
P = 0.538

No significant outliers Inter-
cept = -0.003; 
P = 0.892

Liver iron 
content

Hannum 0.35 (0.13, 0.57) 2.01E−03 0.42 (0.08, 0.76) 3.97E−02 I2 = 21.1%; 
Cochrane Q = 11; 
P = 0.249

No significant outliers Inter-
cept = -0.014; 
P = 0.598

Liver iron 
content

IE 0.39 (0.16, 0.62) 8.75E−04 0.32 (0.02, 0.62) 7.22E−02 I2 = 0%; 
Cochrane Q = 7; 
P = 0.520

No significant outliers Inter-
cept = 0.019; 
P = 0.421

Liver iron 
content

Pheno 0.39 (0.09, 0.69) 1.19E−02 0.21 (− 0.36, 
0.77)

4.95E−01 I2 = 58.5%; 
Cochrane Q = 22; 
P = 0.010

0.43 (0.12, 0.74) 2.54E−02 Inter-
cept = 0.052; 
P = 0.241

Pancreas iron 
content

Grim 0.11 (− 0.35, 
0.57)

6.35E−01 0.57 (− 0.29, 
1.43)

2.10E−01 I2 = 4.2%; 
Cochrane Q = 22; 
P = 0.404

No significant outliers Inter-
cept = -0.029; 
P = 0.316

Pancreas iron 
content

Hannum 0.08 (− 0.42, 
0.58)

7.46E−01 0.50 (− 0.41, 
1.41)

2.96E−01 I2 = 9.9%; 
Cochrane Q = 23; 
P = 0.328

No significant outliers Inter-
cept = -0.030; 
P = 0.328

Pancreas iron 
content

IE 0.35 (− 0.30, 
1.00)

2.87E−01 0.45 (− 0.84, 
1.75)

5.00E−01 I2 = 16.4%; 
Cochrane Q = 25; 
P = 0.242

No significant outliers Inter-
cept = -0.004; 
P = 0.931

Pancreas iron 
content

Pheno 0.18 (− 0.29, 
0.66)

4.48E−01 0.35 (− 0.51, 
1.21)

4.35E−01 I2 = 0%; 
Cochrane Q = 17; 
P = 0.715

No significant outliers Inter-
cept = -0.011; 
P = 0.701
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Several mechanisms have been found to be involved 
in iron accumulation in senescent cells and its cytotoxic 
effect. In cells, labile iron pool (LIP) functions as trans-
fer station of imported free iron to stored, and utilized 
iron. The level of ferritin in senescent cells was elevated, 
as a result of impaired ferritinophagy, the process of 
ferritin degradation in lysosome, causing iron seques-
tration [24]. On the other hand, increased LIP induces 
the production of reactive oxygen species (ROS), which 
leads to oxidative stress, lipid peroxidation, and DNA 
damage, and finally causes damage to cell and promotes 
cell death [25]. Lipofuscin is also induced by labile iron, 
the accumulation of which could jeopardize lysosome 
and promote apoptosis [26]. Ferroptosis, promoted by 
increased free iron, is involved in malignancies and 
neurodegeneration [27]. In mitochondria, iron is used 
to produce heme or iron–sulfur clusters [28]. Overload 
of iron in mitochondria is related to oxidative stress 
and malfunction of mitochondria [23].

At the individual level, longevity of organisms could 
be extended by regulating iron absorption and metabo-
lism. Inhibition of iron absorption has been observed to 
prolong lifespan in Drosophila and C. elegans [29, 30]. 
Reduction of mitochondrial iron in C. elegans could 
also extend the lifespan  [31]. C. elegans, Drosophila, 
and mice fed with iron-chelating agents demonstrated 
increased the average lifespan [32]. Deregulation of 
iron-related genes, including inositol phosphosphin-
golipid phospholipase  C (ISC1), MET18 in yeast, the 
homologue of methyl-methanesulfonate sensitivity 
protein 19 (MMS19) in human, frataxin (FXN), have 
been reported to be associated with shorten lifespan 
of in  vivo models [33–35]. The mammalian target of 
rapamycin (mTOR) is an important regulator of cell 
growth and proliferation. Iron activates mTOR, which 
could be reversed by iron chelators. The activation of 
mTOR results in iron accumulation via hepcidin, which 
could be reversed by rapamycin, which was reported to 
extend the lifespan of mice [36, 37].

In previous study, DNA methylation has been found 
in connection with iron metabolism. For example, 
in  vitro experiment showed DNA methylation of iron 
sensing genes modulated the expression of HAMP, who 
encodes hepcidin [38]. Tibetans with iron overload had 
a higher ratio of methylation in cytosine-guanine dinu-
cleotide (CpG) compared with normal controls [39]. 
Iron deficiency was associated with altered DNA meth-
ylation in hippocampus of neonate [40]. Serum ferritin 
of maternal early pregnancy was inversely associated 
with three CpGs in cord blood [41]. Hemochromatosis 
(HFE) mutation, which caused hereditary hemochro-
matosis featured as iron deposition in cells, resulted 

in attenuated DNA methyltransferase activity and 
decreased brain methylation in mice [42].

This study is the first MR analysis on iron homeo-
stasis and aging. Epigenetic clock and telomere length 
have been considered as the most plausible candidates 
of biological age predictors [12]. In MR study, leuko-
cyte telomere length was commonly used as traits for 
aging, which could also be influenced by environmental 
factors [43]. Although telomere length has been widely 
validated in different kinds of health outcomes, its pre-
dictive power was low [12]. Currently, no MR analysis 
focusing on iron homeostasis and telomere length has 
been reported. EAA provided more abundant infor-
mation of impact by both genetic and environmen-
tal factors, making it an excellent trait for aging and 
aging-related outcomes. To make sure external validity 
of the results, two independent GWAS for serum iron 
biomarkers were employed, as well as one GWAS for 
organic iron content. Moreover, only GWAS based on 
individuals of European ancestry were applied in pre-
sent study to avoid potential bias due to population 
stratification.

This study also has several limitations. First, not all 
four EAAs demonstrated unanimous results in some 
MR analyses. This is probably due to heterogeneity of 
EAAs, as they were trained based on different tissues 
and clinical outcomes. To make results concrete, sen-
sitivity analyses were performed and conclusion would 
be made only when all analyses exhibited the same 
direction and no pleiotropy was reported. Second, lack 
of evidence to support iron content in liver or pancreas 
to represent iron content of whole body. However, 
no other GWAS represented body iron content was 
available. Positive result of liver iron content partially 
reflected the storage of body, as a compensation to 
serum ferritin. Third, lack of enough genome-wide sig-
nificant (P < 5E−08) SNPs when applying pancreas iron 
content as exposure, which might affect the strength of 
IVs. No F-statistic of pancreas iron content IVs was less 
than 20; thus, bias due to weak instrument was unlikely.

Present study demonstrated the potential influence of 
impaired iron homeostasis, particularly iron overload 
status, on DNA methylation alteration of human, which 
represented biological aging and higher mortality risk.

Conclusions
In a nutshell, our results demonstrated the potential 
causal relationship of iron overload to accelerate epige-
netic clocks. Further researches are required to eluci-
date the mechanisms and additionally intervene health 
outcomes via iron homeostasis.
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Methods
Overview of present study is shown in Fig.  3. The 
causal relationship of iron homeostasis to EAAs and 
the reverse causality was explored, with totally eighty 
of two-sample MR analyses were performed. Sensitivity 
analyses of each analysis were also carried out.

GWAS for iron‑related traits
A total of five serum iron biomarkers and two organic 
iron contents were selected to represent the sta-
tus of iron metabolism. Benyamin et  al. reported a 
meta-GWAS (n = 48,972) for iron homeostasis with 
four traits, serum level of iron, level of ferritin, level 
of transferrin and its saturation based on 19 cohorts 
[44]. Another similar meta-GWAS was constructed by 
Bell et  al., in which individuals of three studies in Ice 
land, UK and Denmark were enrolled and serum iron 
(n = 163,551), ferritin (n = 246,139), transferrin satura-
tion (n = 131,471) and TIBC (n = 135,430) were intro-
duced [19]. Liu et al. reported GWAS for iron content 
in liver (n = 11,069) and pancreas (n = 5,525) by using 
high-throughput MRI combining deep learning with 
imaging and clinical data from UK biobank [45].

GWAS for epigenetic clocks
To measure biological aging, GWAS (n = 34,710) of 
four types of EAAs reported by McCartney et  al. were 
exploited, which integrated data from 29 studies [16]. To 
predict chronological age based on the status of DNA 
methylation, Hannum et  al. and Horvath et  al. estab-
lished epigenetic clocks, respectively, now both known 
as the first generation of epigenetic clocks. The former 
was built using CpG markers of whole blood cells, which 
were processed with the Illumina Infinium HumanMeth-
ylation450 BeadChip, and the latter applying 51 types of 
human tissues and cell types analyzed by Illumina Infin-
ium HumanMethylation27 or 450 BeadChip [46, 47]. 
IEAA, derived from the Horvath clock, was developed to 
alleviate the influence of varied blood components [16]. 
To better link epigenetic alterations with age-related out-
comes, PhenoAge and GrimAge were developed, which 
were usually called the second generation of epigenetic 
clocks. PhenoAge was trained and validated with mor-
bidity and mortality risk (phenotypic age), with DNA 
methylation sequencing of whole blood from published 
databases, which exceeded the first generation in predict-
ing mortality [48]. GrimAge was trained on mortality, 
using DNA methylation data of blood samples from the 

Fig. 3 Workflow of present study and basic assumptions of MR analysis. Genetic instruments must be (i) associated with the exposure; (ii) 
independent of confounders; (iii) independent of the outcome. MR, Mendelian randomization, MR-PRESSO, Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier
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Framingham heart study (FHS) Offspring Cohort, out-
performing the other three in predicting years of time to 
death [49]. All GWAS included in present study are listed 
in Table 4.

Genetic instruments selection criteria
SNPs associated with exposure at a genome-wide sig-
nificant (P < 5E−08) level were applied in identifying IVs. 
Restriction was loosened to a threshold of 5E−06 if IVs 
were less than three in IVW analysis. SNPs in linkage 
disequilibrium (LD,  r2 > 0.01, clump window < 10,000 kb) 
were discriminated and abandoned to keep used SNPs 
independent based on 1000 Genomes LD reference 
panel in European ancestry. SNPs with potential weak 
instrument bias (F-statistic < 10) were removed. SNPs 
significantly associated with outcome (P < 5E−08) were 
excluded to avoid violation of MR principles. Elimina-
tion of palindromic SNPs was performed using R package 
“TwoSampleMR” [50].  All the IVs of every MR analy-
sis are listed in Additional file 2: Tables S4–S83.

MR analyses
To verify the true causality between iron homeostasis 
and aging, IVW method was applied in this research, 
as it provided stable causal inference regardless of het-
erogeneity [51]. Weighted median, MR-Egger regression, 
heterogeneity test, Cochrane’s Q test and MR-PRESSO 
were utilized to assess the robustness of IVW. Weighted 
median model is able to generate consistent estimates, 
in which more than half of the analytical weights are 
derived from valid IVs [51]. MR-Egger regression allows 
pleiotropy in more than half of IVs, while the statisti-
cal power is influenced [52]. MR-PRESSO corrects bias 
due to horizontal pleiotropic outliers [53]. To estimate 
heterogeneity among SNPs for exposures, Cochrane’s Q 
test was performed. The conclusion of causal inference 
was drawn if the same direction results of IVW and all 
sensitivity analyses were presented, besides no horizon-
tal pleiotropic effect in the intercept test of MR-Egger 
regression. Finally, to evaluate the strength of IVs for 
exposures, total F-statistics were calculated [54].

Statistical analyses
All MR analyses were performed in R 4.2.2 (https:// 
www.R- proje ct. org/). R package “TwoSampleMR” (https:// 
github. com/ MRCIEU/ TwoSa mpleMR)  [50] “MRPRESSO” 
(https:// github. com/ rondo lab/ MR- PRESSO) [53] 
were used. A two-sided significance level was set as P 
value < 0.05 for all statistical testing.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 023- 01575-w.

Additional file 1: Figure S1. Procedure of IVs selection. Figure S2. MR 
analyses of epigenetic aging accelerations with 2014 datasets serum iron 
biomarkers. Figure S3. MR analyses of epigenetic aging accelerations with 
2021 datasets serum iron biomarkers. Figure S4. MR analyses of epige-
netic aging accelerations with organic iron content. Table S1. Sensitivity 
analyses of epigenetic aging accelerations with serum iron biomarkers in 
2014 datasets. Table S2. Sensitivity analyses of epigenetic aging accelera-
tions with serum iron biomarkers in 2021 datasets. Table S3. Sensitivity 
analyses of epigenetic aging accelerations with organic iron content.

Additional file 2: Tables S4–S83. Instrumental SNPs for serum iron bio-
markers, organic iron content and epigenetic aging accelerations in the 
univariable Mendelian randomization analysis.
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