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Abstract 

Background Previous studies have traditionally attributed the initiation of cancer cells to genetic mutations, con-
sidering them as the fundamental drivers of carcinogenesis. However, recent research has shed light on the crucial 
role of epigenomic alterations in various cell types present within the tumor microenvironment, suggesting their 
potential contribution to tumor formation and progression. Despite these significant findings, the progress in under-
standing the epigenetic mechanisms regulating tumor heterogeneity has been impeded over the past few years due 
to the lack of appropriate technical tools and methodologies.

Results The emergence of single-cell sequencing has enhanced our understanding of the epigenetic mechanisms 
governing tumor heterogeneity by revealing the distinct epigenetic layers of individual cells (chromatin accessibil-
ity, DNA/RNA methylation, histone modifications, nucleosome localization) and the diverse omics (transcriptomics, 
genomics, multi-omics) at the single-cell level. These technologies provide us with new insights into the molecu-
lar basis of intratumoral heterogeneity and help uncover key molecular events and driving mechanisms in tumor 
development.

Conclusion This paper provides a comprehensive review of the emerging analytical and experimental approaches 
of single-cell sequencing in various omics, focusing specifically on epigenomics. These approaches have the poten-
tial to capture and integrate multiple dimensions of individual cancer cells, thereby revealing tumor heterogeneity 
and epigenetic features. Additionally, this paper outlines the future trends of these technologies and their current 
technical limitations.
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Background
The term “epigenetics” was introduced by Conrad Wad-
dington in 1942 [1] to describe the phenomenon wherein 
alterations in gene phenotype occur without any cor-
responding changes in the DNA sequence [2]. At the 
molecular level, numerous specific modifying proteins 
are involved in such modifications, including "writers" 
that catalyze the deposition of specific modifications, 
"erasers" that catalyze the removal of specific modifica-
tions, and "readers" that recognize and bind to modifica-
tion sites catalyzed by the "writers" and form complexes 
[3].

The prevailing genetic theory posits that the accumu-
lation of somatic mutations is responsible for the forma-
tion of tumors, indicating that cancer cells may emerge 
from mutations in specific genes that drive oncogenesis 
[4, 5]. Nevertheless, the lack of mutations with potent 
oncogenic drivers in various tumor types has prompted 
researchers to redirect their attention toward non-
genetic determinants, such as epigenetic modifications, 
in the investigation of tumor heterogeneity. Research 
has demonstrated that changes in epigenetic modifica-
tions are significant contributors to malignant biological 
outcomes, including tumor proliferation, self-renewal, 
differentiation [6], treatment resistance [7], and tumor 
metastasis [8].

Despite the advancements brought about by Bulk 
sequencing in elucidating the mechanisms of epigenetic 
regulation of tumor heterogeneity, numerous inquiries 
remain unresolved. Notably, in the investigation of the 
intricate mechanism of HCC pathogenesis, a handful of 
studies have highlighted the involvement of ALKBH5 
and METTL4 in the pathogenesis of HCC; however, con-
flicting outcomes have been reported [9–11]. Similarly, 
in hepatocellular carcinoma, YTHDF2 and METTL3, 
among other m6A-related proteins, have also yielded 
conflicting findings [12–16]. The aforementioned phe-
nomenon could potentially be attributed to the intri-
cate cellular heterogeneity of tumors. Regrettably, the 
comprehensive gene expression data acquired through 
conventional sequencing techniques may obscure the 
infrequent cellular subtypes that play a pivotal role in 
tumor advancement, and the heterogeneity of tumor cells 
is concealed by the average information of a substantial 
cell population.

Currently, the field of cancer medicine has transi-
tioned into a phase of precision, whereby the advent of 
single-cell sequencing technology has provided a promis-
ing avenue for investigating the heterogeneity of tumors 
and the intricate epigenetic regulatory mechanisms that 
underlie them [17, 18]. In contrast to conventional bulk 
sequencing, single-cell sequencing offers a notable ben-
efit in its ability to evaluate tumor heterogeneity at the 

level of individual cells. This overcomes the limitation 
of traditional sequencing, which can only furnish aggre-
gated data and potentially obscure valid information. 
Consequently, single-cell sequencing has emerged as a 
potent instrument for uncovering the epigenetic mecha-
nisms that govern tumor heterogeneity (Fig. 1).

Tumors are intricate and heterogeneous biological sys-
tems, and it has been recognized that epigenetics plays 
a crucial role in cancer initiation and progression. Bulk 
sequencing alone is insufficient to fully elucidate the 
intricate epigenetic regulatory mechanisms underlying 
tumors. Single-cell epigenetic analysis has emerged as a 
valuable tool for exploring previously uncharted aspects 
of epigenetic heterogeneity associated with tumor biol-
ogy, including clonal heterogeneity, the tumor micro-
environment, cancer stem cells, circulating tumor cells, 
treatment resistance, intercellular communication, and 
tumor metastasis (Fig. 2).

However, there are extensive interactions between epi-
genomes and other omics, and examining epigenomics 
exclusively at the single-cell resolution can limit a com-
prehensive comprehension of epigenetic heterogeneity 
in tumors. By integrating single-cell epigenomic, tran-
scriptomic, genomic analyses, we anticipate expanding 
the current understanding of how epigenetic domains 
influence tumor heterogeneity through a multi-dimen-
sional single-cell epigenetic multi-omics approach. This 
approach is often unachievable with bulk or single-cell 
epigenetic sequencing alone.

Single‑cell sequencing technology applied 
to omics to explore the impact of epigenetic 
modifications on tumor heterogeneity
Since the first appearance of single-cell transcriptomics 
technology in 2009 [19], a plethora of such techniques 
have emerged. With continuous improvements in these 
technologies, we are now able to perform individual-
ized analyses of specific cellular features, moving from 
the multi-cellular level of tissues to the single-cell realm, 
thereby obtaining a more detailed understanding of 
tumor cell heterogeneity.

In recent years, the advent of numerous bulk and sin-
gle-cell level epigenetic sequencing methods has pro-
vided powerful tools for mapping various epigenetic 
modifications, such as chromatin accessibility, histone 
modifications, DNA methylation, and single-cell nuclear 
organization [20]. These tools have proven instrumen-
tal in unraveling the epigenetic mechanisms underlying 
malignant tumor cells [21].

However, studying only the epigenome of tumors 
is insufficient to fully reveal the complexity of tumor 
heterogeneity [22]. To address this issue, research-
ers have proposed integrating epigenomic data with 
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Fig. 1 Comparison of the characteristics of single-cell sequencing technology and Bulk sequencing technology
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transcriptomic, and genomic data from other omics 
levels at the single-cell resolution. This comprehensive 
analysis enables a holistic understanding of the rela-
tionship between epigenetic regulation and cancer het-
erogeneity [23] (Fig. 3).

Transcriptomics
Transcriptome sequencing is a method used to under-
stand the gene expression profile by sequencing all the 
expressed genes in a cell. Traditional transcriptome 
sequencing methods often require a large amount of 
cell samples, which obscures subtle differences between 

Fig. 2 Use of single-cell sequencing allows assessment of epigenetic regulation of tumor heterogeneity not accurately assessed by previous 
bulk methodologies. Due to the complex cellular heterogeneity of many types of tumors, valid information about individual cells is often 
masked by the average data of bulk sequencing when using bulk sequencing. However, the emergence of single-cell sequencing has enabled 
the investigation of epigenetic regulation of tumor heterogeneity, including clonal heterogeneity, cellular crosstalk, tumor stem cells, tumor 
metastasis, circulating tumor cells, treatment resistance, spatial organization, and tumor microenvironment (TME) mechanisms, which 
was previously unattainable. A Clonal heterogeneity: single-cell sequencing can monitor novel tumor cell subtypes adapted to the tumor 
microenvironment in the context of epigenetic alterations, revealing the impact of tumor heterogeneity in cancer patients by epigenetic 
modifications. B Single-cell sequencing can infer cellular interactions by correlating the expression of known ligands and receptors, and unravel 
the epigenomic alterations regulated by this interaction set that lead to tumor development. C Cancer stem cells: single-cell sequencing can study 
the epigenetic background of tumor stem cell differentiation trajectory to predict tumor progression and reveal the heterogeneity of tumor cells. 
D Tumor metastasis: single-cell sequencing can monitor rare cellular mutations that acquire invasiveness, metastasis, immune escape and EMT 
during tumor development and investigate the mechanisms underlying the epigenetic regulation of this process. E Circulating tumor cells: 
single-cell sequencing can be used to investigate the epigenetic regulation of metastasis by comparing the expression differences between CTCs 
in blood with metastatic dissemination of tumors and the primary tumor. F Treatment resistance: single-cell sequencing allows monitoring rare 
cellular mutations that acquire treatment resistance in tumors (e.g., intrinsic drug resistance and acquired drug resistance) and investigating 
the mechanisms of epigenetic regulation of this process. G Spatial organization: single-cell sequencing can obtain temporal and spatial information 
on gene expression, and in situ measurement of the epigenome can better reveal the association between cellular spatial distribution and gene 
regulation in tumor tissues. H Tumor microenvironment (TME): single-cell sequencing can investigate the phenotypic and functional heterogeneity 
of various cell types caused by epigenomic alterations in the tumor microenvironment (TME) during tumorigenesis and progression
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individual cells within a cell population, especially in 
highly heterogeneous tumor cells.

Single-cell transcriptome sequencing technology is 
a high-resolution approach that enables sequencing 
of mRNA in individual cells. Common techniques for 
single-cell transcriptome sequencing include single-
cell RNA sequencing (scRNA-seq) [24] and single-cell 
nuclear sequencing (scNuc-seq). These techniques 
utilize microfluidic chips, microarrays, droplet-based 
or partition-based approaches to isolate and capture 
individual cells, perform cDNA synthesis, DNA ampli-
fication, and high-throughput sequencing, to obtain 
transcriptomic information from individual cells and 

deeply study the heterogeneity and characteristics of 
tumor cells [25].

Single-cell transcriptome sequencing has broad appli-
cations in tumor research. Through this technology, 
we can identify and define different subgroups and cell 
types within tumor cells, gaining insights into the cel-
lular heterogeneity within tumors [26]. Additionally, 
the utilization of scRNA-seq assays to track tempo-
ral genealogy at various stages of tumor development 
can facilitate the identification of key gene mutations 
that initiate tumor progression, while also providing 
insights into the interplay between heterogeneity and 
temporal dynamics [27]. In the study of tumor immune 

Fig. 3 Single-cell mono-omics and single-cell multi-omics sequencing approaches to research the epigenetic mechanisms of cancer
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microenvironment, this technology helps to identify 
and characterize tumor-infiltrating immune cells and 
immune suppressive cells, predict patient responses to 
immunotherapy, and provide foundations for the devel-
opment of immunotherapy strategies [28]. Moreover, 
single-cell transcriptome sequencing can also predict 
patient responses to specific treatments, enabling per-
sonalized treatment selection, and provide insights into 
the mechanisms of treatment resistance for theoreti-
cal research [29]. Finally, this technology contributes 
to the discovery and validation of novel tumor-related 
genes and signaling pathways, providing potential tar-
gets and theoretical basis for targeted therapy and new 
drug development [17, 30, 31]. In summary, single-cell 
transcriptome sequencing provides a powerful and 
comprehensive tool for tumor research, greatly advanc-
ing our understanding of tumor development and treat-
ment, and providing important scientific foundations 
for personalized treatment strategies and new drug 
development.

A study utilized single-cell RNA sequencing to analyze 
individual cells from pancreatic ductal adenocarcinoma 
(PDAC) tumors and control tissues, revealing the cel-
lular heterogeneity and progression mechanisms within 
PDAC. The study identified a high degree of heterogene-
ity in PDAC, encompassing various malignant and stro-
mal cell types. The malignant subtypes were found to 
consist of multiple subpopulations with distinct prolif-
eration and migration capabilities. Additionally, the study 
observed a correlation between a subset of ductal cells 
and the inactivated state of tumor-infiltrating T cells. 
These findings provide valuable resources and insights 
for understanding the intra-tumoral heterogeneity in 
PDAC and identifying potential biomarkers for anti-can-
cer therapies [26].

There have also been studies through single-cell RNA 
sequencing (scRNA-seq) to analyze metastatic lung 
cancer before and during targeted therapy. They found 
a diverse and dynamic tumor ecosystem consisting of 
cancer cells and the tumor microenvironment (TME). 
The scRNA-seq analysis identified targetable oncogenes 
in cancer cells and revealed different gene expression 
patterns in residual disease (RD) and progressive dis-
ease (PD) under therapy. RD cells showed a transition 
to a primitive cell state, while PD cells exhibited upregu-
lated pathways related to kynurenine, plasminogen, and 
gap junctions. This study also observed the presence of 
active T-lymphocytes and reduced macrophages in RD, 
while immunosuppressive cell states characterized PD. 
These biological features identified through scRNA-
seq analysis served as biomarkers for clinical outcomes 
in independent patient cohorts. This research high-
lights the impact of therapy-induced adaptations in the 

multi-cellular ecosystem of metastatic lung cancer on 
treatment response and patient outcomes [32].

Another study analyzed cancer-associated fibroblasts 
(CAFs) in gastric cancer using single-cell RNA sequenc-
ing. The researchers discovered the heterogeneity of 
CAFs and their dynamic communication with compo-
nents of the tumor microenvironment. Four distinct sub-
sets of CAFs were identified, and two subsets, namely 
inflammatory CAFs (iCAFs) and extracellular matrix 
CAFs (eCAFs), exhibited enhanced pro-invasive activities 
and interactions with immune cell subsets. eCAFs were 
also associated with poorer overall survival in patients. 
Therefore, inhibiting the activation of these CAF subsets 
holds promise as a therapeutic strategy for improving the 
treatment of gastric cancer [33].

After the first single-cell transcriptome sequencing 
paper was published in 2009 [19], there have been sig-
nificant improvements in the capacity and resolution 
of single-cell sequencing libraries. These advancements 
have enabled us to simultaneously explore whole tran-
scriptome profiles of gene expression in thousands of 
cells (Table 1).

Single-cell transcriptomics has also been integrated 
with various novel technologies to provide a more com-
prehensive understanding of tumor heterogeneity. CITE-
seq is an example of such technology that combines 
transcriptome analysis with phenotypic characteriza-
tion, allowing simultaneous sequencing of the single-cell 
transcriptome and indexing of cell surface proteins [47]. 
CROP-seq, by integrating CRISPR screening with single-
cell transcriptome resolution, facilitates comprehensive 
analyses of complex regulatory mechanisms and different 
cell populations, enabling high-throughput functional 
profiling [48, 49]. The LINNAEUS technique enables 
simultaneous lineage tracing and transcriptomic analysis 
of numerous single cells, providing a systematic approach 
for tracing the origins of novel cell types or identifying 
known cell types under different conditions [50]. These 
advantages make single-cell transcriptome sequencing 
technology particularly suitable for studying the hetero-
geneity of tumor cells.

Table 1 presents the unique advantages and limitations 
of single-cell transcriptomics in terms of characteristics, 
throughput, and applicability.

Epigenomes
The significance of epigenetic regulation in the progres-
sion of development and disease is widely recognized. 
The introduction of single-cell sequencing technolo-
gies has facilitated the development of various methods 
for analyzing epigenetic regulation at different levels, 
including chromatin accessibility, DNA methylation, his-
tone modifications, and nucleosome positioning, among 



Page 7 of 26Hu et al. Clinical Epigenetics          (2023) 15:161  

others. These technologies have enabled researchers to 
investigate various aspects of epigenetics at the single-
cell level [20, 51]. Such techniques have emerged as pow-
erful tools for uncovering the distinctive epigenomic 
characteristics of rare cellular subtypes and the epige-
netic diversity present within cellular populations.

Chromosome accessibility
Nucleosomes serve as the fundamental structural units 
of eukaryotic chromatin which consist of DNA wrapped 
around a core of histone proteins. The chromatin struc-
ture is further organized into a three-dimensional 
arrangement, which includes densely packed regions and 
more open, accessible regions. These distinct regions of 
chromatin structure play a crucial role in regulating gene 
expression. During replication and transcription pro-
cesses, the tightly packed chromatin structure needs to 
be opened up to expose specific DNA sequences for reg-
ulatory factors to bind and carry out their functions. This 

opening up of the chromatin structure to allow regulatory 
factor binding is referred to as chromosome accessibility 
[52]. It involves the dynamic modulation of the chroma-
tin structure, allowing access to the DNA. Studies have 
demonstrated that the accessibility of DNA sequences 
within the chromatin structure can influence gene tran-
scription activity. Changes in chromatin accessibility can 
either promote or repress gene expression [52, 53]. This 
process is mediated by various mechanisms, including 
histone modifications, chromatin remodeling complexes, 
and interactions with transcription factors.

Chromatin accessibility is a field of active research 
and understanding its impact on gene expression has 
important implications in various cellular processes and 
diseases. By studying the accessibility of DNA within 
chromatin, scientists can gain insights into the mecha-
nisms underlying gene regulation and potentially dis-
cover new targets for therapeutic interventions. The 
field of single-cell chromatin accessibility sequencing has 

Table 1 Current methods available for single-cell RNA sequencing

Technique Technical features Designed by

CEL-Seq Lower throughput (hundreds to thousands of single cells); linear amplification sequencing method (lower cost); only be 
used for 3′ end sequencing; introduces barcode sequences; application to cellular heterogeneity and molecular mecha-
nisms; suitable for exploring cellular heterogeneity and molecular mechanisms

[34]

CEL-Seq2 As an upgraded version of CEL-Seq1;introduces UMI (Unique Molecular Identifier) to eliminate sequencing bias intro-
duced by PCR amplification

[35]

MARS-Seq High throughput (large numbers of single-cell samples); unique molecular tags enable hybrid sequencing of transcrip-
tomes from multiple cells (lower cost); suitable for exploring heterogeneity in tumors and capturing spatial transcrip-
tomic information

[36]

MARS-Seq2 As an upgraded version of MARS-Seq1;introduces UMI (Unique Molecular Identifier) to eliminate sequencing bias intro-
duced by PCR amplification

[37]

Quartz-Seq High throughput (hundreds to thousands of individual cells); relatively high loss of cells during sample preparation; 
requires microfluidic chips; high cost; suitable for studying gene expression patterns and cellular heterogeneity in single 
cells

[38]

Quartz-Seq2 As an upgraded version of Quartz-Seq; highly sensitive and high throughput; technical noise and bias: amplification bias 
and loss of a portion of low abundance RNA; requires a certain number of cells to obtain sufficient RNA quality

[39]

mcSCRB-seq The mcSCRB-seq’s "multi-channel" allows sequencing of multiple samples (reducing cost per sample), increasing 
throughput and efficiency; unique barcodes are incorporated during reverse transcription, allowing for the pooling 
and simultaneous sequencing of multiple cells

[40]

Smart-Seq Medium throughput (tens to hundreds of individual cells); high initial RNA volume requirements; bias and noise may 
be introduced during amplification; high cost per sample; captures full-length transcriptome information for detailed 
analysis of cell types or states with complex transcriptomic regulatory networks

[41]

Smart-Seq2 As an upgraded version of Smart-Seq; Introduction of UMI (Unique Molecular Identifier) sequences and sample-specific 
index sequences; Smart-Seq2 uses T7 RNA polymerase for amplification with higher amplification efficiency (VS Smart-
Seq1 Linear amplification technique)

[42]

Smart-seq3 As an upgraded version of Smart-seq2, Smart-seq3 has 5′ UMI and achieves more efficient sequencing; Smart-seq3 
is able to detect more genes, especially low abundance genes; Efficiently removes most of the ribosomal RNA (rRNA)

[43]

ICELL8 High throughput (thousands of cells on a single chip); unique microfluidic chip required; Multi-Hole Options; Sufficient 
number of cells is required to ensure good capture efficiency

[44]

Drop-seq Drop-seq is a microdroplet-based technology; high throughput (thousands of single cells can be processed and millions 
sequenced); Lower sample cost

[45]

inDrop Drop-seq is a microdroplet-based technology; high throughput (thousands of single cells can be processed and mil-
lions sequenced); Lower sample cost; inDrop introduces an indexing technique (compared to Drop-seq) that enables 
simultaneous sequencing of multiple samples through the introduction of barcoded beads; suitable for exploring cellular 
heterogeneity

[46]
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made significant progress, enabling the detailed explora-
tion of chromatin accessibility in individual cells shown 
in Fig. 4. Among the techniques developed for this pur-
pose, single-cell ATAC-seq (scATAC-seq) has emerged 
as a powerful method. scATAC-seq leverages the Tn5 
transposase’s sensitivity to identify open and accessible 
chromatin regions [54]. It allows for the investigation of 
chromatin accessibility landscapes at a single-cell resolu-
tion, providing insights into the epigenetic regulation and 
heterogeneity within tumors.

In addition to scATAC-seq, other techniques have been 
employed to assess chromatin accessibility at the single-
cell level. For example, single-cell DNase-seq (scDNase-
seq) utilizes DNase I digestion to identify accessible DNA 
regions in individual cells [55]. This method enables the 
detection of regions of open chromatin and provides val-
uable information about transcription factor binding and 
regulatory elements. Other new technologies are shown 
in Table 2.

These single-cell chromatin accessibility methods 
have been widely applied in tumor research, offering 
insights into the heterogeneity and regulatory dynam-
ics within tumor cell populations. For instance, a study 
utilized single-cell ATAC-seq technology to analyze the 
cellular composition and state changes that occur dur-
ing the transformation from healthy colon to precancer-
ous adenomas to colorectal cancer (CRC). It revealed the 
cellular composition and state changes that occur during 

the transformation from healthy colon to adenomas and 
subsequently to CRC. In the cancerous state, the study 
observed T cell exhaustion, RUNX1-regulated cancer-
associated fibroblasts, and increased accessibility associ-
ated with HNF4A motifs in epithelial cells. Furthermore, 
in sporadic CRC, the DNA methylation changes were 
strongly anti-correlated with the accessibility changes 
along this continuum, thus providing additional regula-
tory markers for molecular staging of polyps [55].

The process of tumor metastasis is a prominent con-
tributor to mortality among individuals diagnosed with 
cancer [62, 63], and the utilization of scATAC-seq has 
significantly enhanced our comprehension of the under-
lying mechanisms involved in tumor metastasis. A study 
identified novel cell subpopulations with abnormally 
high CXCL14 expression levels in patients with breast 
cancer PL by transposase accessible chromatin (ATAC) 
sequencing (scATAC-seq) of breast cancer negative (NL) 
and positive lymph nodes (PL), and also identified poten-
tial regulators that may be associated with breast cancer 
lymph node metastasis, improving our understanding 
of the mechanism of lymph node metastasis of lymph 
node metastasis and provide a new prognostic marker for 
breast cancer lymphatic metastasis [64]. Another study 
confirmed that TCF7 promotes epithelial-mesenchymal 
transition (EMT) and that activation of EMT is a key pro-
cess in cancer metastasis by performing single-cell RNA 
sequencing and scATAC-seq on tumors from patients 

Fig. 4 Insights into the dynamic regulation of chromatin accessibility and methods for single-cell chromatin accessibility sequencing
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with low risk of recurrence, high risk of recurrence, and 
recurrent bladder cancer [65].

The tumor microenvironment encompasses diverse 
cellular and structural constituents that exert a piv-
otal influence on tumor advancement and resistance to 
therapeutic interventions. Moreover, the examination of 
single-cell chromatin accessibility can be extended to the 
analysis of the tumor microenvironment. In one study, 
by performing scRNA-seq and scATAC-seq on ccRCC 
primary tumor tissues, investigators identified key regu-
latory molecules in the tumor microenvironment that 
mediate tumor progression and manipulate immune cell 
function, and further experimentally validated their role 
in tumor growth [66]. Another study identified regula-
tory mechanisms associated with CD8 T-cell depletion 
by analyzing scATAC-seq profiles of serial tumor biopsies 
before and after programmed cell death protein 1 block-
ade [67].Twenty-two human IDH mutant gliomas were 
analyzed by scATAC-seq, which explained how differ-
ent subtypes of IDH mutant gliomas maintain different 
phenotypes and tumor microenvironments despite being 
derived from a common spectral hierarchy, and found 
that ATRX regulates glial identity and tumor microenvi-
ronment in IDH mutant gliomas [68].

scATAC-seq proves to be a valuable tool for investigat-
ing alterations in cellular response to therapeutic inter-
ventions throughout the course of tumor treatment. To 
improve the clinical outcome of CAR-T cell therapy, a 
study by scATAC-seq of sorted T-cell subsets from seven 
patient, it was found that IRF7-regulated chronic IFN 
signaling was associated with poor persistence of CAR-T 
cells in T-cell subsets and that TCF7 regulators were rel-
evant not only in maintaining naive and early memory 

T-cell states, but also in maintaining a good phenotype 
in effector cell lineages play a role [69]. Another study, by 
scATAC-seq of 12 breast cancer patients, found that the 
transcription factor GRHL2 cooperates with FOXA1 to 
initiate endocrine resistance and that epigenetic hetero-
geneity may contribute to endocrine resistance in breast 
cancer patients [70].

Table 2 presents the unique advantages and limitations 
of single-cell chromatin accessibility in terms of charac-
teristics, throughput, and applicability.

DNA methylation
DNA methylation is a modification in which –CH3 
methylation modification occurs on cytosine bases [71], 
specifically 5mC (5-methylcytosine) in this article. This 
methylation process is catalyzed by the DNA methyl-
transferase (DNMT) family, which adds methyl to the 
cytosine of the 5′ terminal CpG dinucleotide of human 
genes. A CpG island is a region in the 5′ → 3′ direction of 
a DNA sequence that is rich in CG dinucleotides. CpG 
islands can be found in the promoters of more than two-
thirds of all genes and in most cases these CpG islands 
are in an unmethylated state. CpG islands act as defini-
tive markers of DNA methylation and act as key switches 
in epigenetic regulation [72], restricting gene expres-
sion in the presence of methylation. Studies have shown 
that methylation of CpG islands plays an important role 
in transcriptional regulation and is usually altered dur-
ing malignant transformation. Approximately 5–10% of 
normal unmethylated CpG island promoters are aber-
rantly methylated in various cancer genomes. Methyla-
tion of promoter CpG islands mediates the phenomenon 
of gene silencing observed during tumorigenesis [73, 74]. 

Table 2 Current methods available for chromosome accessibility sequencing

Technique Technical features Designed by

scATAC-seq scATAC-seq enables sequencing of chromatin accessibility of each individual cell; technical complexity; data compli-
cated and high costs

[54]

scMNase-seq scMNase-seq sequences and analyzes chromatin structure and accessibility in individual cells by enzymatic cleavage 
of chromatin by micronucleases (MNases); limitations of technical complexity and fragmentation; high cost

[56]

sciATAC sciATAC is a DNA transposase-based single-cell sequencing technology for analyzing chromatin accessibility in single 
cells; introduced the strategy of combinatorial indexing; limitations of technical complexity and fragmentation; high 
cost

[57]

SNuBar-ATAC SNuBar-ATAC is a technology for measuring single-cell chromatin accessibility and gene expression with high resolution, 
integrated multiple measurements and microfluidics; data complicated and high costs

[58]

sciMAP-ATAC SNuBar-ATAC is a technology for measuring single-cell chromatin accessibility and gene expression with high resolution, 
integrated multiple measurements and microfluidics; limitations of technical complexity and fragmentation; high cost

[59]

scGET-seq scGET-seq is a hybridized transposase-based sequencing of single-cell genomes and epigenomic transposases, ena-
bling comprehensive probing of open and closed chromatin and simultaneous documentation of underlying genomic 
sequences

[60]

HyDrop-ATAC HyDrop-ATAC is a technology for measuring single-cell chromatin accessibility and gene expression with high resolu-
tion, direct sequencing and capture of dynamic information (introducing special fluorescent markers); limitations 
of technical complexity and fragmentation; high cost

[61]
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In addition, dysregulated DNA methylation is considered 
a hallmark of cancer. Genomic demethylation and gene-
specific hypermethylation are prevalent in oncogenes 
and tumor suppressor genes [75–77] (Fig. 5).

With the advancement of next-generation sequenc-
ing (NGS) technologies, high-throughput methylation 
sequencing methods have made significant progress, 
enhancing the accessibility and efficiency of sequencing. 
Among these methods, bisulfite sequencing is considered 
the “gold standard” for DNA methylation analysis due to 
its high accuracy and single-base resolution [78, 79]. This 
technology includes whole-genome bisulfite sequenc-
ing (WGBS), which evaluates the extent of methylation 
within CpG islands by converting unmethylated cytosine 
© to uracil (U) while leaving 5-methylcytosine (5mC) 
unchanged [80]. WGBS provides in-depth understand-
ing of the DNA methylation patterns across the entire 
genome and has revolutionized our understanding of 

DNA methylation. To reduce costs and increase sample 
throughput, researchers have developed methods that 
target specific regions for methylation sequencing, such 
as reduced representation bisulfite sequencing (RRBS) 
[81]. RRBS utilizes restriction enzymes to enzymati-
cally cleave the genome, reducing its complexity dur-
ing sequencing and enriching the analysis for important 
regulatory regions like promoters and CpG islands where 
detailed methylation analysis can be performed.

However, previous methods relied on bulk sequenc-
ing, which averaged the methylation information of cell 
populations, unable to resolve the heterogeneity present 
within individual cells. With the development of single-
cell sequencing technologies, single-cell methylation 
sequencing has become feasible. The first method based 
on single-cell bisulfite sequencing was single-cell methyl-
ation genome sequencing (scRRBS), which employs enzy-
matic cleavage to generate CpG-rich DNA fragments for 

Fig. 5 Insights into the dynamic regulation of DNA methylation and methods for single-cell DNA methylation sequencing
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subsequent library construction and sequencing [82]. 
However, the harsh conditions used in bisulfite conver-
sion can lead to DNA degradation, resulting in DNA loss 
and reduced sequencing quality, ultimately affecting the 
data yield. To address this issue, researchers have devel-
oped PBAT (post-bisulfite adaptor tagging) to mitigate 
the loss caused by degradation. Other single-cell meth-
ylation sequencing methods have also been developed, as 
shown in Table 3.

Methylation events have a major impact on the regu-
lation of cell fate, and single-cell DNA methylation 
sequencing has provided key new insights into the 
important issue of tumor heterogeneity. For instance, a 
study utilized single-cell bisulfite sequencing (scBS-seq) 
technology to characterize partial methylation domains 

(PMDs) within individual cells of colorectal cancer. The 
results revealed that over half of the genome was covered 
by PMDs, and Gain-PMDs, a specific subtype, exhibited 
a higher coverage of protein-coding genes. Furthermore, 
the study unveiled substantial epigenetic heterogeneity 
among different cells within the same tumor and demon-
strated that DNA methylation in cells is influenced by the 
tumor microenvironment [97].

Another study emphasizes the significance of genetic 
and epigenetic heterogeneity within tumors and its 
impact on the evolutionary trajectory of cancer. The 
researchers utilized single-cell bisulfite sequencing 
analysis (MscRRBS) to investigate this heterogeneity 
in chronic lymphocytic leukemia (CLL). Their findings 
revealed that CLL cells exhibit high rates of epigenetic 

Table 3 Current methods available for single-cell DNA methylation sequencing

Technique Technical characteristics Designed by

scBS-seq scBS-seq is a technique for single-cell DNA methylation analysis with the advantages of single-cell resolution, high-pre-
cision detection and integrate multi-omics information; large and complex data; incomplete methylation reactions may 
lead to low coverage and bias

[83]

BRIF-seq BRIF-seq is a sequencing method with high read rate and genomic coverage by single strand ligation, MDA amplification 
and Tn5-based library building of small fragments generated by random amplification

[84]

scWGBS scWGBS is based on sulfite sequencing technology for single-cell whole-genome DNA methylation analysis 
with the advantages of single-cell resolution, whole-genome coverage and high resolution

[85]

scRRBS scRRBS narrows down the analysis of whole-genome DNA methylation sequencing to key CpG sites to achieve downscal-
ing, high-precision detection, and sequencing cost savings; higher coverage in CpG islands and CpG-enriched regions, 
leading to potential bias

[82]

RETrace RETrace is a sequencing method that combines microsatellite capture with scRRBS; allowing simultaneous retrospective 
gene tracing and methylation analysis of single cells

[86]

scAba-seq scAba-seq is a technique for combinatorial analysis of single-cell antibodies with single-cell resolution, multi-parameter 
analysis, and high sensitivity; coverage of antibody probes, does not comprehensively reflect the expression of all antibod-
ies; technological complexity

[87]

CLEVER-seq CLEVER-seq is a sequencing technology for the detection of long-range DNA sequence variation, featuring long-range 
sequencing, high sensitivity and high resolution; reliance on precise primer design; the need for high efficiency in DNA 
ligation reactions; and the detection of genomic structural variation and copy number variation

[88]

scMAB-seq scMAB-seq is a technique for single-cell multi-antibody combinatorial analysis of multiple antibody combinations in a sin-
gle cell; characterized by multi-antibody analysis, high throughput, and single-cell resolution; limited by antibody probe 
coverage; technical complexity

[89]

scTEM-seq scTEM-seq combines transmission electron microscopy technology and sequencing technology for sequencing and ana-
lyzing individual cellular ultrastructures with high resolution and structural and transcriptome linkage; relatively low 
throughput; technical complexity; limited sample processing capacity; high cost

[90]

scTAM-seq scTAM-seq is a targeted bisulfite-free method that enables targeted high-confidence analysis of DNA methylation in sin-
gle cells

[91]

scAEBS scAEBS is based on agarose-embedded bisulfite treatment to investigate DNA methylation at multiple loci by multiplex 
PCR (multiplex scAEBS)

[92]

scCGI-seq scCGI-seq is a technique for single-cell CpG island methylation status analysis with single-cell resolution, high resolution, 
and multi-omics correlation; technical complexity; and coverage is limited by the coverage of the selected CpG island 
probe

[93]

snmC-seq snmC-seq is a sequencing technology for DNA methylation profiling of individual cell nuclei with single-cell resolution 
and DNA methylation resolution; loss of cellular subcellular structural information; low signal-to-noise ratio; high cost 
per sample

[94]

snmC-seq2 snmC-seq2 is a technique for determining methylation in individual neuronal cells; resolves DNA methylation status 
at the single-cell level; genome-wide assessment of DNA methylation in single cells; technical complexity; high cost

[95]

epi-gSCAR epi-gSCAR is a single-tube, bisulfite-free method that allows simultaneous genome-wide analysis of DNA methylation 
and genetic variation in single cells

[96]



Page 12 of 26Hu et al. Clinical Epigenetics          (2023) 15:161 

mutations, while showing minimal variation in muta-
tion rates among individual cells. Through comprehen-
sive single-cell analyses, the study elucidated the lineage 
diversity of CLL cells and their evolutionary patterns fol-
lowing treatment. Notably, the researchers observed spe-
cific lineage biases during therapy. By integrating genetic, 
epigenetic, and transcriptional information at the single-
cell level, this study reconstructed the genealogical his-
tory of CLL, thereby providing valuable insights into the 
understanding of tumor development [98].

There are also articles that investigated the DNA meth-
ylation profiles of circulating tumor cells (CTCs) using 
the scBS-seq technique and revealed the subclonal struc-
ture, evolutionary history and classification of tissue-
specific DNA methylation profiles in CTCs. The results 
indicate the heterogeneity of DNA methylation in CTCs 
and reveal the epigenetic regulatory mechanisms in can-
cer metastasis [99].

Prior epidemiological studies have established a sig-
nificant association between the consumption of food 
contaminated with aflatoxin B1 and the incidence of 
hepatocellular carcinoma. Scientists utilized single-cell 
RRBS technology to investigate the hepatotoxic mecha-
nism induced by aflatoxin B1 (AFB1) in S phase-arrested 
L02 cells. The study found that AFB1 caused apoptosis 
and S phase arrest in L02 cells, reduced mitochondrial 
membrane potential, increased reactive oxygen species 
generation, and led to an increase in DNA methylation 
levels. Through single-cell RRBS analysis, it was revealed 
that DNA methylation, regulated by the gonadotropin-
releasing hormone receptor pathway, Wnt signaling path-
way, and TGF-beta signaling pathway, was involved in 
the hepatotoxic mechanism induced by AFB1 in S phase-
arrested L02 cells [1].

Hannah Demond et  al. utilized single-cell bisulfite 
sequencing (scBS-seq) to investigate DNA methylation 
abnormalities caused by maternal effect mutations in the 
subcortical maternal complex (SCMC) of human oocytes. 
These mutations are associated with early embryonic fail-
ure, gestational abnormalities, and recurrent pregnancy 
loss. The researchers observed a genome-wide deficiency 
of DNA methylation in the oocytes of patients with 
SCMC mutations compared to normal oocytes. Both 
the germline differentially methylated regions (gDMRs) 
of imprinted genes and other sequence features that are 
normally methylated in oocytes were affected, indicating 
a lack of selectivity toward imprinted genes. The degree 
of methylation loss varied across different genomic fea-
tures. Furthermore, analysis of a preimplantation embryo 
and molar tissue from the same patient revealed persis-
tent methylation defects at imprinted genes after fertiliza-
tion, while non-imprinted regions of the genome showed 
near-normal methylation levels after implantation. These 

findings emphasize the critical role of the SCMC in de 
novo methylation in the female germline and provide 
valuable insights into imprinting defects and potential 
therapeutic strategies [100].

Nevertheless, single-cell methylation sequencing does 
have limitations. Firstly, due to the limited amount of 
DNA within a single cell, single-cell sequencing often 
faces challenges of low coverage and sparse results. Sec-
ondly, compared to traditional bulk cell sequencing, 
single-cell sequencing may exhibit higher technological 
noise. For example, the DNA amplification process can 
introduce biases, resulting in oversampling or undersam-
pling of certain methylation sites and impacting the final 
analysis results. Additionally, during the single-cell col-
lection process, there may be loss of cellular information, 
such as spatial relationships between cells, and some 
cells may not be successfully sequenced due to isolation 
process-related damage. In conclusion, single-cell meth-
ylation sequencing is crucial in uncovering the meth-
ylation heterogeneity within individual cells. However, 
challenges and opportunities for improvement remain 
in terms of throughput, sequencing depth, and accuracy. 
As technology continues to advance and improve, we 
can expect wider applications of single-cell methylation 
sequencing in life science research.

Table 3 presents the unique advantages and limitations 
of single-cell DNA methylation in terms of characteris-
tics, throughput, and applicability.

Histone modification
Within a cell, genomic DNA is not just a string of linear 
sequences but exhibits a highly complex three-dimen-
sional (3D) spatial structure. This structure is largely 
dependent on histones, octamers composed of two units 
each of four core components (H2A, H2B, H3, H4) [101]. 
These histones possess protruding “tail” structures, which 
can be regulated via a series of chemical modifications.

Histone modifications represent a key epigenetic 
mechanism, encompassing, but not limited to, acetyla-
tion, methylation, phosphorylation, glycosylation, ubiq-
uitination, and nitrosylation. These modifications are 
usually catalyzed by specific enzymes, such as histone 
methyltransferase (HMT) and histone acetyltransferase 
(HAT). These enzymes add specific chemical groups to 
the amino acid residues of the histones or remove them, 
thus altering the state of the chromatin [102].

HMT and HAT can be perceived as “writers,” respon-
sible for adding chemical marks. In turn, histone dem-
ethylase (HDM) and histone deacetylase (HDAC) can be 
seen as “erasers,” tasked with erasing these marks [103]. 
This series of modifications affects the compactness of 
the chromatin structure, thereby changing its interaction 
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with DNA, and ultimately leading to the activation or 
silencing of genes.

The advent of next-generation sequencing (NGS) tech-
nologies has been a significant leap forward in under-
standing gene regulation and epigenetic mechanisms. 
Early techniques such as chromatin immunoprecipitation 
(ChIP) microarrays paved the way for more advanced 
methods, most notably Chromatin Immunoprecipitation 
Sequencing (ChIP-Seq). Compared to its predecessors, 
ChIP-Seq offers unparalleled resolution down to the sin-
gle base-pair level, reduced methodological artifacts, and 
comprehensive genomic coverage [104]. ChIP-Seq is the 
gold standard for genome-wide analyses of DNA–pro-
tein interactions, histone modifications, and nucleosome 
positioning. While it offers a wealth of data, traditional 
or ‘bulk’ ChIP-Seq falls short in assessing the variability 
in chromatin states across individual cells. This limitation 
was addressed in 2015, when a landmark paper by David 
Weitz and Bradley E Bernstein in Nature Biotechnol-
ogy introduced the concept of single-cell ChIP-Seq108. 
This innovation permitted the analysis of histone modi-
fications at the single-cell level, thereby unveiling a new 

dimension of chromatin state heterogeneity. Subsequent 
to this pioneering work, various methods have emerged 
to probe chromatin states at single-cell resolution. Tech-
niques such as scCUT&Tag [105], CoBATCH [106], and 
scChIC-seq [107] have further refined our understanding 
of chromatin dynamics. Each of these methods summa-
rized in Table 4 and Fig. 6.

The significance of single-cell protein modifications lies 
in revealing the identity and differentiation state of cells, 
unraveling cellular heterogeneity, studying disease mech-
anisms, and guiding treatment response and drug discov-
ery. Analyzing protein modification patterns in individual 
cells helps to understand cellular function and regulation, 
identify cell-to-cell differences, and provide insights into 
disease mechanisms for potential therapeutic targets.

A study utilized high-throughput single-cell ChIP-
seq technology to investigate chromatin heterogene-
ity and drug resistance in breast cancer. The researchers 
employed a microdroplet microfluidic platform to 
sequence and analyze the chromatin states of thousands 
of individual cells at single-cell resolution. The study 
revealed that in untreated drug-resistant tumors, there 

Table 4 Current methods available for single-cell Histone Modification sequencing

Technique Technical features Designed by

scChIP-seq scChIP-seq is used to study the localization and analysis of protein-chromatin interactions on specific chromatin in a sin-
gle cell; it features single-cell resolution, chromatin localization, and multi-omics correlation; higher signal-to-noise 
ratios; technological complexity

[108]

scCUT&Tag scCUT&Tag is a single-cell chromatin analysis technique for studying chromatin characteristics and transcription factor-
chromatin interactions in individual cells; with single-cell resolution, rapid acquisition of chromatin information, and low 
amplification bias; experimental complexity; data noise;

[105]

CoBATCH CoBATCH is a sequencing technology based on combined barcoding and targeted chromatin release for single-cell 
analysis of protein-DNA interactions

[106]

scChIC–seq scChIC-seq is a method for studying chromatin 3D interactions in individual cells; direct measurement of DNA interac-
tions; combines chromatin immunoprecipitation and chromatin conformation capture techniques to obtain high 
resolution; technical complexity; data complexity

[107]

itChIP-seq itChIP-seq is a technique used to study intracellular chromatin characterization; specific antibodies selectively immuno-
precipitate target chromatin modifications; preservation of intracellular chromatin organization and spatial information; 
error and noise depending on the specificity of the antibody and the abundance of chromatin modifications; technical 
complexity

[109]

ACT-seq ACT-seq is a high-throughput sequencing technology for analyzing chromatin openness and accessibility; features 
chromatin accessibility analysis, high-resolution and high-throughput sequencing; feasibility is limited by tissue source 
and cell type; experimental complexity

[110]

scChIL-seq scChIL is a method that amplifies genomic sequences closely related to target molecules prior to cell lysis Immunopre-
cipitation-free epigenomic analysis method

[111]

uliCUT&RUN uliCUT&RUN is a technology for the study of chromatin and genome-related features; featuring low-input samples, high 
resolution, and direct sequencing; applied to chromatin modification analysis, transcription factor binding site identifi-
cation, and cell type identification and phenotyping

[112]

sciTIP-seq sciTIP-seq is a labeling-based, linear amplification and combinatorial indexing method for mapping histone modifica-
tions of individual cells to transcription factor CTCF binding sites

[113]

AutoCUT&Tag AutoCUT&Tag is a technology for high-throughput, automated chromatin accessibility sequencing; high-throughput, 
automated, high-resolution; high throughput

[114]

iscChIC-seq scChIC-seq is a technique for the analysis of chromatin interactions in individual cells; other information (chromatin 
modifications, transcript determinations) can be obtained simultaneously; there are limitations in signal-to-noise ratios; 
technological complexity; applications in gene regulation studies, three-dimensional genome structure, and develop-
mental studies

[115]
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exists a subset of cells that share chromatin markers with 
drug-resistant cells, and these cells have lost the chroma-
tin marker H3K27me3 associated with genes promoting 
drug resistance. This single-cell ChIP-seq technology 
offers a novel approach to studying the role of chroma-
tin heterogeneity in cancer and other diseases, and aids 
in uncovering the regulatory mechanisms involved in cel-
lular differentiation and development [116].

There are also study through scCUT&Tag method, 
combined with scalable nanopore and droplet-based 
single-cell platforms, was employed to analyze specific 
chromatin regions in individual cells. The focus was on 
analyzing the polycomb group (PcG) silencing regions 
marked by the histone modification H3K27me3 as an 
orthogonal approach to identify cell states based on chro-
matin accessibility. Results showed that scCUT&Tag 
analysis of H3K27me3 could distinguish different cell 
types in human blood and generate cell type-specific PcG 
landscapes in heterogeneous tissues. Furthermore, the 
study utilized scCUT&Tag to analyze H3K27me3 in brain 
tumor patients before and after treatment, identifying 

cell types in the tumor microenvironment and revealing 
heterogeneity in PcG activity between primary samples 
and post-treatment [117].

Another study utilized automated CUT&Tag chroma-
tin profiling to investigate the impact of KMT2A onco-
fusion proteins in leukemias. By mapping fusion-specific 
targets across the genome, the researchers identified 
common and tumor-subtype-specific sites of aberrant 
chromatin regulation. They found that certain binding 
sites for KMT2A oncofusion proteins exhibited cell-
to-cell heterogeneity and were associated with lineage 
plasticity. Additionally, they discovered that abnormal 
enrichment of H3K4me3 in gene bodies could be tar-
geted by Menin inhibitors. The integration of automated 
and single-cell CUT&Tag techniques enabled the identi-
fication of epigenomic heterogeneity within patient sam-
ples and the prediction of therapeutic sensitivity [114].

Over the years, we have gradually come to recognize 
the complexity and importance of histone modifications 
and chromatin states in gene regulation. The emergence 
of single-cell technologies is a significant breakthrough, 

Fig. 6 Insights into the dynamic regulation of Histone Modification and methods for single-cell Histone Modification sequencing



Page 15 of 26Hu et al. Clinical Epigenetics          (2023) 15:161  

allowing us to explore previously uncharted layers of 
epigenetic regulation. New technologies are expected to 
emerge that integrate the advantages of existing methods, 
providing higher resolution and throughput, and possibly 
reducing costs as well. Furthermore, the continued devel-
opment of computational analysis and machine learn-
ing will help in parsing increasingly complex datasets. 
In short, the field of single-cell histone modification is 
still evolving and holds the promise of providing us with 
a deeper understanding of gene regulation. It may also 
inspire our insights into cellular processes and disease 
mechanisms.

Table 4 presents the unique advantages and limitations 
of Histone Modification sequencing in terms of charac-
teristics, throughput, and applicability.

Nucleosome localization
Nucleosome positioning refers to the precise localization 
of nucleosomes, which are structural units composed of 
an octamer of histone proteins and the wrapped DNA, 
on the genome [109]. In eukaryotic chromosomes, the 
binding of DNA to histones is not static, and the accurate 
determination of nucleosome positions on the genome, 
known as nucleosome positioning, is crucial for main-
taining genome structure and function.

The regulation of nucleosome positioning is closely 
associated with the spatial organization of chromatin, 
DNA replication, transcription, and gene expression 
regulation [118]. Nucleosome positioning can influence 
the chromatin state and accessibility, thereby impact-
ing the transcriptional activity of genes. The positions 
of nucleosomes on the genome can affect the binding 
of transcription factors and the accessibility of promot-
ers, determining the transcriptional levels and patterns of 
genes.

The study of nucleosome positioning can be conducted 
using various experimental techniques and computa-
tional methods. Among them, micrococcal nuclease 
sequencing (MNase-seq) is a widely used approach that 
involves the digestion of chromatin with micrococcal 
nuclease to degrade nucleosome structures, releasing the 
core DNA of nucleosomes, which can then be sequenced 
using high-throughput sequencing technology [56]. By 
analyzing the sequencing data, the positions and posi-
tioning patterns of nucleosomes can be determined.

Recent studies have demonstrated that even within a 
homogeneous population of cells, different cells exhibit 
significant heterogeneity in chromatin states [119, 120], 
which may be related to heterogeneity in chromatin 
accessibility. scMNase-seq is a high-throughput sequenc-
ing technique used for studying nucleosome positioning 
at the single-cell level. It can uncover the heterogeneity 

of nucleosomes between cells and investigate cell-specific 
chromatin states and gene regulatory mechanisms [56].

In one research, through single-cell MNase-seq analy-
sis, researchers identified distinct accessible chromatin 
regions in all lymphoid progenitor cells (ALP), early ILC 
progenitors (EILP), and ILC progenitors (ILCP). Within 
EILP, different subpopulations were identified, indicating 
their potential to differentiate into either dendritic cell 
lineage or ILC lineage based on epigenetic profiles. The 
researchers found that the transcription factors TCF-1 
and GATA3 co-bound with lineage defining sites (LDS-
Is) associated with ILC, while PU.1 binding was enriched 
in LDS (LDS-As) associated with alternative dendritic 
cell fate. TCF-1 and GATA3 were found to be essen-
tial for the epigenetic priming of LDS at the EILP stage. 
These findings suggest that the fate of multipotent pro-
genitors during the differentiation into ILC and hemat-
opoietic stem cells is pre-defined by their epigenetic state. 
The presence of distinct subpopulations within multipo-
tent progenitors and their regulation by key transcription 
factors highlight the heterogeneity of cells that contrib-
ute to lineage specification. The application of single-cell 
MNase-seq technology enables a deeper understanding 
of the epigenetic changes during cellular differentiation, 
shedding light on the molecular mechanisms and role of 
transcription factors in determining cell fate [121].

Genomics
With the advancement of technology, researchers are 
able to study cells in a more detailed manner through 
methods such as single-cell genomics sequencing, rather 
than relying on bulk tissue samples alone. This provides 
us with a unique perspective that allows us to gain a 
deeper understanding of the underlying mechanisms 
of complex diseases, particularly cancer. Cancer can be 
understood as a genomic disorder in which the accumu-
lation of somatic mutations and epigenetic modifications 
plays a crucial role in its development. Somatic muta-
tions include various types of genomic alterations intro-
duced into the genome, such as single nucleotide variants 
(SNVs), structural variations, gene splicing variants, and 
copy number variations [122]. These genomic altera-
tions contribute to the occurrence of cancer and other 
diseases. Considering the frequencies of these changes 
in the human genome, it becomes particularly important 
to comprehensively understand the gene expression pat-
terns of individual cells.

Traditional genomics sequencing involves sequenc-
ing DNA or RNA from populations or tissues. However, 
this method typically results in the average sequencing 
of the genome from the population and loses the genetic 
information of individual cells, as well as cellular hetero-
geneity, the ability to detect rare variations, distinguish 
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between cell types, and lack of cellular functional infor-
mation [123].

To overcome these limitations, the field of single-cell 
genomics (SCG) has emerged as an important technol-
ogy within the genomics field, aiming to perform high-
throughput sequencing of individual cells’ genomes to 
reveal their genetic characteristics and structures, pro-
viding a new approach to understanding tumor develop-
ment and disease progression [124]. Through single-cell 
genomics sequencing, researchers can obtain genetic 
information about individual cells, including gene muta-
tions, copy number variations, chromosomal structures, 
and rearrangements. Additionally, it can reveal impor-
tant features such as genomic-level cellular heterogene-
ity, cell type differentiation, and development.

Currently, the most common application of SCG is the 
analysis of copy number variations (CNVs). For example, 
in a study on hepatocellular carcinoma (HCC), single-cell 
DNA sequencing (scDNA-seq) revealed that the accumu-
lation of CNVs follows a biphasic copy number evolution 
model, confirming for the first time at the single-cell level 
that multiploid hepatocellular carcinoma originates from 
diploid cells [125]. Another study examining colorectal 
cancer patients found that fibroblasts with somatic copy 
number alterations (SCNAs) in tumor tissues were sig-
nificantly more abundant than in adjacent normal tissues, 
suggesting potential functional consequences or effects 
of these chromosomal-level SCNAs in tumor develop-
ment. Fibroblasts with SCNA may interact with cancer 
cells, contributing synergistically to tumor development 
[126].

Mutation detection is another significant application of 
single-cell genomics (SCG), which holds great potential 
but can be costly. To enhance cost-effectiveness, a strate-
gic approach involves initially conducting bulk sequenc-
ing, followed by targeted sequencing with increased 
depth focusing on specific loci of interest for mutation 
analysis. This sequential approach allows for a broader 
survey of genomic information through bulk sequencing, 
followed by a more in-depth analysis of specific regions 
of interest, optimizing both resource utilization and 
mutation detection efficiency.

This article employs single-cell mutational profiling 
to investigate myeloid malignancies, particularly acute 
myeloid leukemia (AML). The study reveals that AML is 
primarily driven by a small number of dominant clones, 
often carrying co-occurring mutations in epigenetic 
regulatory genes. Conversely, mutations in signaling 
genes tend to occur in distinct subclones, contributing 
to increased clonal diversity. Through single-cell analysis, 
interactions between mutations are unveiled, along with 
the relationship between immunophenotype and somatic 
genotype/clonal architecture. This research provides 

valuable insights into the pathogenesis of myeloid malig-
nancies and the evolution of disease progression.

With the continuous advancement of sequencing tech-
nologies, single-cell whole-genome sequencing (scWGS) 
has become possible. scWGS is a technique for analyz-
ing the DNA of individual cells, enabling the sequencing 
of their complete genomes at the single-cell resolution 
[127]. It involves amplifying the DNA of single cells 
through methods such as multiple displacement amplifi-
cation (MDA) or polymerase chain reaction (PCR), and 
the amplified DNA is then subjected to high-throughput 
sequencing technologies such as Illumina sequencing. 
The sequencing data obtained through scWGS can pro-
vide valuable information about the genomic features of 
individual cells within heterogeneous cell populations. 
It can help identify genetic variations within single cells, 
including single nucleotide variants (SNVs), copy number 
variations (CNVs), and structural variations (SVs).

For example, a study utilized scWGS to analyze recur-
rent liver metastatic lesions in patients with metastatic 
colorectal cancer. The study found that treatment resulted 
in a severe reduction in the number of tumor cells in the 
liver metastatic lesions, but previously differentiated cell 
lineages remained alive and potentially survived through 
migration to different sites within the liver. These cell 
lineages underwent slow evolution under adjuvant drug 
treatment for 2 years and then rapidly diversified within 
a short period of time. The study also identified several 
non-silent mutations specific to these cell lineages and 
speculated that chemotherapy contributed significantly 
to the overall genomic mutational burden. Overall, the 
study revealed that subclones of metastatic colorectal 
cancer could undergo local migration and escape surgical 
resection, continue to evolve under chemotherapy, and 
exhibit explosive re-expansion [128].

Another study used scWGS to analyze cells from a Chi-
nese female patient with cervical cancer before and after 
radiotherapy. They discovered a deleterious mutation in 
the NFKB12 gene that increased in frequency after radio-
therapy. Functional analysis revealed that NFKB430 acts 
as a tumor suppressor, and the mutation in NFKB1 weak-
ened its tumor suppressive function. NFKB1 enhanced 
radiation sensitivity, and its mutation reduced this effect. 
The study suggests that NFKB1 could be a potential 
molecular target for future cervical cancer radiotherapy 
[129].

However, scWGS has certain limitations when it comes 
to detecting copy number variations (CNVs), such as 
lower accuracy and insufficient amplification fidelity. To 
overcome these limitations, a series of new techniques, 
including MALBAC, eMDA, LIANTI, SISSOR, and 
META-CS, have emerged to improve the accuracy of 
CNV detection and reduce false-positive rates. Table  5 
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provides an overview of single-cell genomics sequencing 
methods.

Table 5 presents the unique advantages and limitations 
of single-cell genomic sequencing in terms of character-
istics, throughput, and applicability.

Multi‑omics
Recent advances in single-cell genomics technology have 
allowed us to analyze the epigenome, genome, and tran-
scriptome of individual cells with single-cell resolution, 
greatly enhancing our ability to study tumor heterogene-
ity. Tumors can be viewed as ecosystems with complex 
interactions between different phenotypes [140]. How-
ever, analyzing cells at the individual level may only pro-
vide a partial picture of the intricate regulatory networks, 
limiting our understanding of the mechanisms driving 
cancer initiation and progression. Currently, advanced 

analysis techniques and experimental methods are being 
developed to effectively capture information from multi-
ple epigenomic layers within individual cells. By integrat-
ing epigenomics with other omics technologies, we can 
gain a more comprehensive understanding of these intri-
cate interactions, thus unraveling the nature of tumor 
heterogeneity. In cancer research, the epigenome, tran-
scriptome, and genome exhibit significant heterogeneity. 
The integration of single-cell epigenomics with multi-
omics analysis holds promise in better elucidating the 
mechanisms driving cancer initiation and development, 
as well as the regulatory heterogeneity [141] (Table 6).

In recent years, multi-omics technologies have 
emerged as crucial tools for deciphering the complexity 
of biological systems, particularly at the single-cell level. 
Independently, single-cell transcriptomics and single-
cell epigenomics provide rich information about gene 

Table 5 Current methods available for single-cell genomic sequencing

Technique Technical features Designed by

DOP-PCR DOP-PCR is a polymerase chain reaction (PCR) method that uses specific oligonucleotide primers and DNA polymerase 
to amplify specific DNA sequences; high amplification efficiency; applicable to DNA samples from a variety of sources, 
including genomic DNA and cDNA; may be over-amplified or selectively amplified; may cause non-specific amplification; 
restrictive selection

[130]

MDA MDA is a technique for whole-genome amplification in low-complexity DNA samples; has whole-genome amplification, 
allele retention, and no need for specific primers; has limitations of amplification bias, localized error rates, and sample 
contamination; and costs low

[131]

LIANTI LIANTI is an improved single-cell whole-genome amplification (WGA) method that accurately detects copy-number vari-
ations (CNVs) at a microscale resolution; It enables the observation of DNA replication origin firing patterns and addresses 
the origin of cytosine-to-thymine mutations in single-cell genomics; advancements in CNV detection, amplification fidel-
ity, and the study of DNA replication and mutation profiles in single cells

[132]

META-CS META-CS is a single-cell whole-genome amplification method that utilizes the complementarity of double-stranded DNA 
to accurately identify single-nucleotide variations (SNVs); the ability to amplify diploid and haploid cells, high success rate 
of single-cell amplification, simplified experimental procedure, and reduced sequencing cost; false positive mutations 
and inconsistent amplification efficiency

[133]

MALBAC MALBAC is a single-cell whole genome amplification technique for amplifying DNA from a single cell; reduced amplifica-
tion randomness and bias, increased homogeneity of amplification products; low error rate; limitations of reduced amplifi-
cation quality, loss of complexity, and amplification bias

[134]

eWGA eWGA is an enhanced whole-genome amplification technique used to amplify DNA samples starting from very low 
quantities to obtain sufficient amounts of DNA for subsequent analysis; characterized by high amplification efficiency, 
low amplification bias, homogeneity, and accuracy; limitations of preferential amplification, localized error rates, and co-
amplification contamination; and relative economy

[135]

SISTOR SISSOR is a method used for precise sequencing of single-cell genomes and haplotype analysis; based on a microfluidic 
processor to separate and amplify the DNA strands in individual cells; This enables independent sequencing of comple-
mentary strands and assembly of long haplotypes; low error rates and can generate DNA fragments that can be assem-
bled into haplotype contigs

[136]

ScWGS scWGS is a method that enables deep sequencing of the genomic DNA of individual cells; based on microfluidic technol-
ogy and DNA amplification techniques; relatively lower throughput; capture mutations present in different cells, study rare 
events, not require a large amount of starting material; amplification bias, complex data analysis; cost high

[137]

scWES scWESis a targeted sequencing method that allows for the sequencing of the exome, including the coding regions 
of the genome, within individual cells; provides a comprehensive view of the genetic variations present in the coding 
regions of single cells, including single nucleotide variants (SNVs), small insertions or deletions (indels), and structural 
variations; relatively lower throughput; amplification biases and technical noise; relatively expensive; studying cellular 
heterogeneity

[138]

scDNA-seq scDNA-seq allows for the whole-genome sequencing of individual cells, providing a comprehensive view of genomic 
variations, including mutations, copy number variations, and structural variations; relatively low throughput; detecting 
low-frequency mutations and copy number variations; Limitations include sequencing depth constraints, potential ampli-
fication biases, and technical noise; relatively expensive; data complex; reveals information about genetic heterogeneity 
between cells and cell evolution

[139]
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Table 6 Current methods available for single-cell multi-omics sequencing

Technique Technical features Designed by

Paired-Tag Paired-Tag is a high-throughput genomic sequencing technology that enables simultaneous sequencing of target 
DNA and its adjacent regions; high throughput; relatively low cost; comprehensive sequencing information; applica-
bility in gene structure analysis, genomic variation analysis, and chromatin conformation studies; requires rigorous 
primer design; complex data analysis

[155]

Paired-seq Paired-seq is a high-throughput sequencing technique that integrates scRNA-seq and scDNA-seq to enable simulta-
neous analysis of the transcriptome and genome of cells; high throughput; relatively higher costs; requires complex 
primer design and data analysis;

[1]

scDAM&T-seq scDAM&T-seq is a high-throughput sequencing technique that combines single-cell DNA adenine methylome 
and transcriptome sequencing; simultaneous analysis of the DNA adenine methylation and gene expression 
at the single-cell level; high throughput; relatively higher costs;

[156]

sci-CAR-seq sci-CAR-seq simultaneously analyzes the transcriptome and chromatin conformation information of individual cells; 
simultaneous view of gene expression and chromatin three-dimensional structure at the single-cell level; high 
throughput; relatively higher costs

[144]

SHARE-seq SHARE-seq allows for the simultaneous analysis of the transcriptome and chromatin interactions; high throughput; 
relatively higher costs

[145]

SNARE-seq SNARE-seq can simultaneously obtain transcriptome and chromatin accessibility data from the same individual cell; it 
is suitable for tissues that are difficult to separate into single-cell suspensions; Microfluidic-based Single-Cell Isolation 
and Barcoding Technology; medium to high throughput

[146]

ASTAR-seq ASTAR-seq is a new single-cell sequencing technology that simultaneously measures the transcriptome and chro-
matin accessibility of cells; multiple cells are processed at the same time in a single experiment, which improves 
experimental throughput; incompatible with automated platforms; may result in gene loss

[147]

scCAT-seq scCAT-seq, a technique for simultaneous determination of chromatin accessibility and transcriptome within the same 
single cell; accurate construction of regulation between cis-regulatory elements and target genes

[143]

scMT-seq scMT-seq is a composite sequencing technology that allows for simultaneous analysis of the genome, transcriptome, 
and methylome of individual cells; lower throughput, higher cost, and complex operation; reveals the interactions 
between different biological molecular levels within single cells

[151]

scmCT-seq Methylome + transcriptome [152]

scM&T-seq scM&T-seq is a technology that enables the simultaneous acquisition of DNA methylation and transcriptome informa-
tion from individual cells; relatively costly and technically complex

[153]

scGEM scGEM is a single-cell genome and epigenome sequencing technology that allows for the simultaneous analysis 
of the genome and epigenome of individual cells; relatively costly and technically complex; offers high throughput 
and reveals genetic and epigenetic heterogeneity among cells

[154]

Pi-ATAC Pi-ATAC combines CRISPR-Cas9 gene editing technology with ATAC-seq (Assay for Transposase-Accessible Chro-
matin with high-throughput sequencing) to enable site-specific genome editing while simultaneously measuring 
the impact on genome accessibility; high throughput capacity; higher cost; technically complex

[162]

ASAP-seq ASAP-seq is a high-throughput sequencing technique that combines single-cell DNA adenine methylome and tran-
scriptome sequencing; simultaneous analysis of the DNA adenine methylation and gene expression at the single-cell 
level; high throughput; relatively higher costs

[163]

scNMT-seq scNMT-seq allows concurrent profiling of nucleosome structure, DNA methylation, and transcriptome information 
from individual cells, providing comprehensive analysis across different cellular levels; high throughput capabilities; 
higher costs; technical complexity

[157]

scNOMeRe-seq scNOMeRe-seq is a sequencing technique that allows for the simultaneous analysis of nucleosome occupancy 
and DNA methylation information from individual cells; high throughput; high costs and complex data analysis; opera-
tionally and analytically complex

[158]

scChaRM-seq scChaRM-seq is a sequencing technique that allows for simultaneous profiling of chromatin accessibility and DNA 
methylation information from individual cells; high throughput; high costs; technical complexity

[159]

snmCAT-seq snmCAT-seq is a sequencing technique that allows for the simultaneous measurement of multiple omics information, 
including gene expression, chromatin accessibility, and DNA methylation, from individual cell nuclei; high throughput; 
utilizes a combination of multiple molecular markers, such as RNA, DNA methylation, and chromatin accessibility 
tags, to capture the multi-dimensional; research cell typing, cell type classification, and functional analysis; complex 
experimental procedures

[160]

Smart-RRBS Smart-RRBS can simultaneously obtain transcriptome information and copy number alteration (CNA) information; 
technical complexity; high throughput

[149, 150]

scNOME-seq scNOME-seq is a single-cell technology used to determine the assembly of nucleosomes and DNA methylation 
patterns within cells; detection of subtle variations in DNA methylation patterns; relatively low throughput; limited 
by sequencing depth restrictions

[164]
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expression and epigenetic regulation. However, integrat-
ing these two single-cell-level holistic analytical methods 
has the potential to reveal deeper insights. This integra-
tion is especially critical in the context of tumor biol-
ogy. Individually, these technologies can describe the 
transcriptional states, expression profiles, and epigenetic 
features of individual cells within tumor tissues. How-
ever, by jointly analyzing these two types of data, we can 
not only identify epigenetic patterns within specific cell 
populations but also unravel how these patterns directly 
influence or are influenced by transcriptional activ-
ity. Specifically, such multi-omics analysis enables us to 
explore in detail how epigenetic regulation affects the 
maintenance and transition of cell identity. Furthermore, 
it helps us understand how these epigenetic mechanisms 
manipulate cellular fate, driving cells into specific lineage 
trajectories and generating varying levels of heterogene-
ity within tumor tissues [142].

For example, scCAT-seq, which stands for single-cell 
chromatin accessibility and transcriptomics sequenc-
ing, is an advanced multi-omics technique that enables 
simultaneous analysis of chromatin accessibility and 
gene expression within individual cells [143]. It com-
bines the strengths of single-cell chromatin accessibility 
analysis such as ATAC-seq or DNase-seq, with single-cell 
RNA sequencing (scRNA-seq), providing a comprehen-
sive view of the epigenetic and transcriptional landscape 
within single cells. By integrating chromatin accessibil-
ity and transcriptomic data obtained from scCAT-seq, 
researchers can study the relationship between chroma-
tin structure and gene expression at single-cell resolu-
tion. This integrative analysis allows for the identification 
of regulatory elements involved in specific transcriptional 
programs and characterization of cellular heterogene-
ity based on epigenetic and transcriptional states. The 

scCAT-seq technique successfully acquired precise chro-
matin accessibility (CA) and gene expression (GE) infor-
mation in lung, cervical, and colorectal cancers [143]. 
Other tools for joint transcriptome chromatin accessibil-
ity analysis include sci-CAR-seq [144], SHARE-seq [145], 
SNARE-seq [146], ASTAR-seq [147], and Joint scATAC-
Seq/scRNA-seq [148].

Smart-RRBS is an advanced single-cell multi-omics 
technique that provides single-cell-level information 
on genomic DNA methylation and transcriptome. This 
technology is of great significance in exploring cellular 
heterogeneity, developmental processes, and epigenetic 
regulation in disease mechanisms [149, 150]. By integrat-
ing genomic DNA methylation and gene expression data, 
Smart-RRBS enables in-depth analysis of the functional-
ity and regulatory patterns of gene regulatory networks 
within cells.

One notable study utilized this technique to examine 
chronic lymphocytic leukemia (CLL) and glioblastoma 
cells, uncovering the crucial role of intratumoral epige-
netic heterogeneity in cancer progression. For instance, 
Gaiti et  al. [150] employed Smart-RRBS to map CLL 
lineage history and predict its evolution after therapy 
by leveraging epigenetic information. Another study 
by Chaligne et al. focused on glioma cells, revealing the 
heritability of epigenetic patterns within this popula-
tion. They discovered distinct variations in cell plasticity 
states between IDH-mutant and IDH-wild-type glioblas-
toma, demonstrating the significance of epigenetic traits 
in differentiating glioblastoma subtypes [1]. Methods 
for simultaneous analysis of DNA methylome and tran-
scriptome from the same cell at single-cell resolution 
also include scMT-seq [151], scmCT-seq [152], scM&T-
seq [153], and scGEM [154]. Single-cell transcriptomes 
can also be combined with histone modifications and 

Table 6 (continued)

Technique Technical features Designed by

scMethyl-HiC scMethyl-HiC is a technology that combines single-cell DNA methylation sequencing with chromosome conforma-
tion capture (Hi-C) to simultaneously detect DNA methylation and chromosomal spatial structure information in indi-
vidual cells; insights into the heterogeneity of DNA methylation and spatial structure between cells; relatively low 
throughput; higher costs; complex experimental workflow and data analysis requirements; high sequencing depth 
requirements and a complex experimental process

[164]

sn-m3C-seq sn-m3C-seq is a single-nucleus multi-omics methylcytosine and chromatin conformation sequencing technology 
that enables simultaneous measurement of DNA methylation and chromatin 3D structure information in individual 
cells; reveals the heterogeneity of DNA methylation and chromatin structure among cells, providing insights into cel-
lular variability; relatively low throughput; higher costs; complex experimental workflow and data analysis

[165]

scCOOL-seq scCOOL-seq is a single-cell chromatin conformation and open chromatin sequencing technology used for simultane-
ously measuring the chromatin 3D structure and open chromatin regions in individual cells; low throughput; higher 
costs; exploration of the relationship between chromatin structure and gene regulation in individual cells; complex 
experimental workflow and data analysis

[166]

iscCOOL-seq iscCOOL-seq is an improved single-cell COOL-seq method based on the TAILS strategy. iscCOOL-seq can simultane-
ously analyze chromatin accessibility, DNA methylation, and gene expression; sequencing depth and coverage are 
limited; and sample processing and experimental manipulation are demanding

[167]
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protein-DNA interactions, such as Paired-Tag [155], 
scDAM&T-seq [156].

The regulation of gene expression involves a dynamic 
interplay in  vivo among various epigenomic layers, 
including DNA methylation, chromatin accessibil-
ity, and others, rather than functioning independently 
of one another. cNMT-seq [157], scNOMe-seq [158], 
scChaRM-seq [159], and snmCAT-seq [160] can com-
bine single-cell transcriptomics and multiple epigenomic 
layers to analyze the relationship between multiple epi-
genetic features and gene expression at single-cell resolu-
tion and play a crucial role in further understanding the 
epigenetic-dependent associations on transcription and 
cellular states. For instance, Bian et  al. used scTrio-seq 
to study colorectal cancer tumors and metastases from 
10 patients. They found that DNA methylation levels 
were consistent within genetic lineages but varied sig-
nificantly among clones. The technique provided insights 
into tumor evolution and the relationship between DNA 
methylation and genetic lineages. Overall, scTrio-seq 
allowed for a comprehensive analysis of mutations, tran-
scriptome, and methylome in individual cells, shedding 
light on tumor heterogeneity and metastasis [161].

There are many other tools that can combine single-
cell proteomics with single-cell epigenomics such as Pi-
ATAC [162] and ASAP-seq [163]. Pi-ATAC can identify 
both epigenomic and proteomic heterogeneity in a single 
cell. A study by quantifying the protein levels of Pi-ATAC 
on TFs NF-kB and HIF1α in mouse mammary tumors 
and measuring the DNA occupancy of both found that 
the primary role of HIF1α protein in the tumor microen-
vironment of tumor hypoxia is through shaping the regu-
latory groups in parenchymal tumor cells and infiltrating 
immune cell subpopulations [162].

Some tools can explore the epigenome of several lay-
ers of a single cell simultaneously to achieve a more com-
prehensive epigenomic analysis, such as scNOME-seq 
(chromatin accessibility + DNA methylation status) [164], 
scMethyl-HiC [164] and sn-m3C-seq (chromatin 3D 
structure + methylome) [165].

Other multi-omics analysis solutions include scCOOL-
seq [166] and iscCOOL-seq [167] that allow simultane-
ous analysis of chromatin state/nucleosome localization, 
DNA methylation, copy number variation and chromo-
some ploidy in individual cells, enabling the combination 
of different epigenomic sequencing layers in a single cell 
at the same time. Although integrated multi-omics tech-
nologies such as iscCOOL-seq in single-cell analysis have 
tremendous potential in exploring the interplay between 
multiple layers of the epigenome and the genome within 
individual cells, their application in tumor research is 
still not widely adopted. This relatively new technol-
ogy faces several challenges and limitations. Firstly, the 

maturity of these techniques is relatively low, requiring 
more laboratories to become familiar with and master 
the experimental and data analysis workflows. Secondly, 
the experimental procedures of these techniques are 
complex and require optimization of experimental con-
ditions and coordination of multiple steps. Additionally, 
the complexity of data interpretation and analysis poses a 
challenge, necessitating the development of more reliable 
multi-omics data analysis methods and resources. Lastly, 
sample requirements and feasibility are also limiting fac-
tors for the application of these technologies, particularly 
in obtaining a sufficient quantity and quality of single-
cell samples from tumors. Despite these challenges, we 
can anticipate further research efforts to overcome the 
technical challenges, improve data interpretation and 
analysis, and expand feasibility, thereby promoting the 
widespread application of technologies like iscCOOL-
seq in tumor research to uncover mechanisms of tumor 
development and facilitate precision therapeutics.

Table 6 presents the unique advantages and limitations 
of multi-omics sequencing in terms of characteristics, 
throughput, and applicability.

Concluding remarks and future perspectives
Nowadays, cancer medicine has entered the era of pre-
cision medicine, and single-cell sequencing technologies 
based on next-generation sequencing are rapidly advanc-
ing. Traditional bulk sequencing methods often provide 
analysis based on the average values of multiple cells, 
which cannot provide a high-resolution view of the cel-
lular composition in the tumor ecosystem. Compared to 
bulk sequencing methods that provide averaged data, sin-
gle-cell sequencing has significant advantages. It allows 
analysis of the transcriptome, genome, and epigenome of 
individual tumor cells, revealing the heterogeneity within 
the tumor.

The interplay of various "omics" within a cell follows 
a complex regulatory mechanism, starting from the 
genome and epigenome, extending to the transcriptome, 
proteome, and back again [22]. This intricate process 
highlights the crucial role of epigenetic regulation in the 
gene regulatory network. Cancer can be viewed retro-
spectively as an epigenetic disease, wherein the iden-
tity and function of different cell types within various 
tumor cells are determined by the epigenetic landscape 
of those cells. Consequently, non-genetic factors signifi-
cantly contribute to tumor progression [141]. The study 
of epigenetics has greatly enhanced our understand-
ing of tumor heterogeneity. In recent years, numerous 
cutting-edge techniques have been developed to analyze 
epigenetic modifications at the single-cell resolution 
level. These techniques encompass the examination of 
chromatin accessibility, DNA/RNA methylation, histone 
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modifications, and nucleosome localization. They pro-
vide invaluable research methods for investigating the 
intricate relationship between tumor epigenetic modifi-
cations and tumor heterogeneity.

To comprehensively understand the complex epige-
netic regulatory mechanisms driving tumor cell develop-
ment, progression, and drug resistance within the tumor 
microenvironment, it is often insufficient to rely solely on 
single-cell epigenomic analysis. Rather, the integration of 
multiple omics data at a single-cell resolution is neces-
sary. This entails considering genomic, epigenomic, tran-
scriptomic information.

By employing single-cell multi-omics techniques and 
analyses, it becomes possible to simultaneously cap-
ture multiple layers of epigenetic information together 
with other omics data. For instance, a commonly used 
approach involves combining single-cell epigenomics and 
transcriptomics, allowing researchers to investigate the 
relationship between the epigenome and gene expression 
at the genomic level in individual cells [168]. Further-
more, multi-omics studies that incorporate DNA meth-
ylation patterns, open chromatin regions, nucleosome 
positioning, DNA–protein interactions, genomic altera-
tions (mutations and copy number variations), as well as 
mRNA or protein abundance at the single-cell level, have 
been employed in tumor heterogeneity research. These 
comprehensive analyses enable a more in-depth under-
standing of the epigenome and highlight the significance 
of epigenetic heterogeneity within tumors in cancer pro-
gression [168].

However, the application of single-cell multi-omics 
analysis to investigate tumor heterogeneity is still in its 
early stages and faces technical and computational chal-
lenges. These challenges include limitations in obtaining 
valid information, which can result in missing values, 
systematic noise, and issues with sample coverage. These 
factors can impact the final analysis of the data, thereby 
affecting our understanding of tumor heterogeneity.

For example, traditional bisulfite-based methods used 
to measure single-cell DNA methylation can introduce 
DNA damage and compromise the accuracy of DNA 
methylome sequencing. To overcome this limitation, 
the application of third-generation/real-time single mol-
ecule sequencing (TGS) can be employed [169]. TGS has 
the advantage of directly detecting epigenetic modifica-
tions, including DNA 5 mC and 6 mA, without the need 
for bisulfite conversion or PCR amplification. Addition-
ally, recent advancements in nanopore technology, such 
as SMAC-seq, Fiber-seq, and nanoNOMe, have enabled 
long-range detection of single-molecule chromatin states 
by combining nanopore sequencing with m6A methyl-
transferase or M. CviPI GpC methyltransferase enzyme 
accessibility [170–172]. These innovations reduce DNA 

damage and improve the accuracy of DNA methylome 
sequencing, providing researchers with a more precise 
tool for studying epigenetic modifications.

The integration of spatial omics with single-cell omics 
such as (spatial proteomics, spatial transcriptomics, spa-
tial epigenomics) has improved our understanding of the 
evolution of cancer in temporal and spatial dimensions. 
However, the study of tumors by spatial omics is still in 
its infancy, and the next step is to extend spatial mono-
omic to spatial multi-omics by converting spatial infor-
mation into DNA barcodes, or imaging-based methods 
to preserve spatial information of each cell [23]. The spa-
tial distribution of epigenome and transcriptome is a key 
determinant of the cellular characteristics, and the exten-
sion of spatial transcriptomic approaches to epigenomic 
analysis is a critical step forward in our efforts to unravel 
the epigenetic drivers underlying tumor heterogeneity.

A 3D tumor-like organ model with certain spatial 
structure constructed by culturing tumor stem cells 
in vitro has the ability to stably preserve the epigenomic, 
proteomic, transcriptomic, morphological and pharma-
cological features of the parent tumor [173]. Although a 
tumor-like organ is not a genuine human tumor, it has 
received widespread attention for its ability to simulate 
real organs structurally and functionally, which closely 
reflects the pathophysiological characteristics of tumo-
rigenesis and metastasis in humans. With the advent of 
the era of spatial multi-omics technology, biomarkers 
based on peripheral blood and bulk tissue biopsies will 
not be able to meet the demand of transferring labora-
tory results to medical and clinical research. Tumor-like 
organs can mimic the real environment of tumors in 
human body, with the advantages of closer physiologi-
cal cell composition and behavior, more stable genome, 
more suitable for biotransfection and high-throughput 
screening, providing a fast and effective way for tis-
sue spatial biomarker discovery and drug screening. It 
provides a rapid and effective platform for tissue spatial 
biomarker discovery and drug screening and offers a vali-
dation model for us to explore the key epigenetic mecha-
nisms behind the prognosis and therapeutic resistance of 
tumor patients.

Although single-cell sequencing has improved our 
understanding of the relationship between epigenetics and 
tumor heterogeneity, we have to face the following obsta-
cles. Firstly, due to the large amount of information in the 
epigenome (tens of fold larger than the transcriptome) 
which is distributed throughout the genome, the coverage 
of the epigenome of a single cell by current methods is still 
relatively thin, and research errors arise when distinguish-
ing technical noise from intercellular differences, and novel 
biochemistry or strategies may be needed to overcome this 
limitation in the future. In addition, multi-omics analysis of 
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a single cell at a time, although providing a comprehensive 
molecular profile, generates very complex data that needs 
to be analyzed both to match information between omics 
and to reduce errors and biases generated in data match-
ing, thus requiring simplified and targeted analysis of the 
data of interest. Finally, large-scale single-cell analysis of 
complex tumor samples can be expensive due to the low 
throughput and high single-cell cost of single-cell sequenc-
ing technologies. These characteristics determine that sin-
gle-cell technology still has a long way to go before it can 
be widely used in clinical cancer research, but it is certain 
that the future of single-cell epigenetics in clinical appli-
cations is bright, and perhaps in the near future, further 
understanding of single-cell epigenetics will undoubtedly 
improve our knowledge of tumor cell heterogeneity and 
the prognosis and drug resistance mechanisms of tumor 
patients, providing patients with more individualized clini-
cal applications.
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