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Abstract 

Background Albuterol is the first‑line asthma medication used in diverse populations. Although DNA methyla‑
tion (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study 
has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to charac‑
terize albuterol‑induced DNAm changes in airway epithelial cells, and assess potential functional consequences 
and the influence of genetic variation and asthma‑related clinical variables.

Results We followed a discovery and validation study design to characterize albuterol‑induced DNAm changes 
in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome‑wide 
association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs 
genome‑wide associated with repeated‑use albuterol treatment (p < 9 ×  10–8). Albuterol predominantly induced 
a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 
76%, p value = 3.3 ×  10–5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), 
and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate 
[FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross‑tissue validated in bronchial epithelial cells 
at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent 
genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby 
genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 ×  10–14 ≤ p ≤ 6.60 ×  10–5). Additionally, hypo‑
methylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression 
of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independ‑
ent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG 
cg23032799 (CREB3L1) (p = 0.004). Gene‑set enrichment analyses revealed that epigenomic modifications of albuterol 
could participate in asthma‑relevant processes (e.g., IL‑2, TNF‑α, and NF‑κB signaling pathways). Finally, nine differen‑
tially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p 
value < 0.05).
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Background
Asthma is a leading worldwide biomedical concern, 
affecting up to 300 million people and related to one of 
each 250 deaths worldwide [1]. Treatment response to 
current therapies is heterogeneous, with 10% of patients 
not responding to available therapies in whom severe 
asthma remains unresolved [1]. It carries a high bur-
den for patients, families, and healthcare systems, since 
non-responders suffer frequently from asthma exacer-
bations, have a lower quality of life, and increased mor-
tality rates [1]. The impact of asthma across different 
regions and populations is not homogeneous [2], and 
low-income populations, such as Puerto Ricans, have 
reported the highest asthma prevalence, impaired lung 
function, and mortality [3]. Albuterol, a short-acting 
β2-agonist bronchodilator, is the most widely used drug 
to relieve asthma symptoms and the current first-line 
asthma drug in these populations. However, albuterol 
effectiveness, measured by the bronchodilator drug 
response (BDR), is the lowest in African Americans and 
Puerto Ricans in comparison with other populations 
such as Mexican Americans [4–6]. Despite this, these 
populations are prone to use albuterol exclusively in the 
management of their asthma, rather than more expen-
sive maintenance medications, including inhaled corti-
costeroids, leading to the overuse of these short-acting 
bronchodilators. The molecular effects of this overuse 
on the airway epithelium which lines the airway lumen 
are unknown.

Genetics and environmental factors contribute to 
asthma pathophysiology. Since 2007, genome-wide 
association studies (GWAS) have provided new insights 
into the genetics of asthma and BDR [4–8]. However, 
identified genetic variants are unable to explain the 
heritability of asthma susceptibility and treatment 
response, estimated at over 60–65% [7, 9]. Epigenetic 
modifications regulate gene expression without modi-
fying the underlying DNA sequence, being DNA meth-
ylation (DNAm) the most widely studied epigenetic 
marker [10]. Elucidating the role of epigenetic mecha-
nisms in asthma has been of great interest since they 
might mediate the contribution of genetics and the 
environment to the disease [7, 10]. In epigenetic stud-
ies, nasal samples are one of the most commonly used 
as non-invasive proxies of the lung environment [11], 

as the nasal airway transcriptome has been demon-
strated to reflect asthma status and is highly correlated 
with that of the bronchial airway cells [12].

Epigenome-wide association studies (EWAS) have 
sought epigenetic biomarkers to explain missing asthma 
heritability [7, 10, 11]. Epigenetics has also been impli-
cated in lung function and albuterol response in children 
[13–15]. Our group recently identified DNAm markers 
associated with BDR in African American and Latino 
children with asthma that interplay with genetic variation 
and gene expression, with potential applicability to BDR 
classification [14]. Although epigenetic changes are mod-
ifiable, there is a lack of studies evaluating the impact of 
asthma therapies on DNAm. To our best, few studies 
have assessed the potential epigenomic response of cor-
ticosteroids [16, 17], but none have focused on albuterol.

We hypothesized that albuterol induces genome-
wide DNAm changes in the airway epithelium and that 
repeated exposures to albuterol will durably reprogram 
the molecular response of these cells. This study aimed 
to characterize the effect of albuterol on DNAm on the 
mucociliary airway epithelium, and to assess the influ-
ence of genetic variation and asthma-related clinical 
characteristics (i.e., asthma severity, medication use, 
and BDR), and potential functional consequences on 
gene expression and biological pathways. Epigenomic 
modifications were evaluated in a discovery and valida-
tion study design using in vitro models of paired primary 
nasal mucociliary epithelial cultures exposed or not to 
repeated doses of albuterol.

Results
Airway epithelial model of albuterol treatment
To model human airway epithelial molecular responses 
to albuterol, we established an in vitro nasal airway epi-
thelial culture system. In particular, we generated air–
liquid interface (ALI), mucociliary airway epithelia from 
nasal brushing-derived basal stem cells (Fig. 1). To mimic 
chronic, repeated albuterol use, we stimulated paired 
donor cultures with either 100 μM albuterol or mock-
stimulus, twice daily, for five consecutive days (Fig.  1). 
This stimulation course was not associated with visible 
toxicity (by light microscopy) or loss of epithelial barrier 
function.

Conclusions This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary air‑
way epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affect‑
ing biological pathways relevant to asthma.

Keywords Airway cells, Albuterol, β2‑agonist, CREB3L1, DNA methylation, Epigenetics, EWAS, KSR1, MYLK4, Puerto 
Ricans
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We leveraged our repeated albuterol stimulation model 
to evaluate epigenomic modifications induced by this 
treatment in a large cohort of children from the Genes-
environments & Admixture in Latino Americans (GALA 
II) study with nasal airway epithelial brushings. After 48 
h post-last exposure to the stimulation course, cultures 
were harvested for DNA extraction. This timing was 
selected to allow acute methylation changes induced by 
stimulation to recover, allowing more persistent stimu-
lation-associated epigenetic changes to be monitored. 
Epigenetic changes were evaluated through genome-wide 
profiling of DNAm using the Infinium MethylationEPIC 
microarray  (Illumina, San Diego, CA). The DNAm data 
quality control (QC) of samples and CpGs is summarized 
in Additional file 1: Table S1, remaining 97 samples and 
689,483 probes after the QC. The characteristics of sam-
ples passing the QC are summarized in Table 1. Briefly, 
participants from GALA II were Puerto Rican children 
and young adults and included similar proportions of 
healthy individuals, patients with mild asthma, and mod-
erate-to-severe asthma.

Genome‑wide DNAm changes induced by albuterol 
treatment in nasal epithelia
Albuterol-induced DNAm changes in nasal samples were 
assessed through a paired linear regression model. Anal-
yses were corrected for cell-tissue heterogeneity, while all 
other potential confounders intrinsic to the sample were 

corrected by pairing (e.g., age, sex, asthma status, and 
ancestry). After bias and genomic inflation correction, 
the quantile–quantile (Q–Q) plots did not show evidence 
of genomic inflation (λ = 1.09; Additional file  1: Figure 
S1). A total of 66 CpG sites were associated with albuterol 
treatment with a false discovery rate (FDR) < 5%, and 22 
CpGs surpassed the genome-wide significance threshold 
established for the EPIC array (p < 9 ×  10–8) [18] (Fig.  2, 
Table 2, Additional file 1: Table S2). These included genes 
involved in inflammation (TNFRSF21, IFNGR1, CSF3, 
and LTA4H), interaction with the cytoskeleton (FLNC, 
MYLK4, KSR1, IPP, SPTAN1, MACF1, and HSD17B12), 
cell adhesion (TGFBI, PCDH12, EPCAM, FAT4, and 
SPTAN1), host defense against airway microbial infec-
tions (BPIFA1), and lipids metabolism and transportation 
(PPAP2B, PLA2G6, ATP8B1, GLTPD2, and GRAMD1B). 
Albuterol exerted predominantly a hypomethylation 
effect on CpG sites captured by the EPIC array across 
the genome (probability of hypomethylation: 0.76, 95% 
Confidence Interval [CI] 0.65–0.85, p value = 3.3 ×  10–5) 
(Additional file 1: Figure S2).

Validation in independent samples and bronchial epithelia
Genome-wide significant CpGs were attempted for vali-
dation in an independent subset of nasal epithelial cells 
exposed under the same treatment conditions. The 
hypomethylation effect on three CpG sites annotated 
to the CREB3L1 (cg23032799), MYLK4-LINC01600 

Fig. 1 Outline of the laboratory experiments design. A Air–liquid interface (ALI) mucociliary airway epithelia were generated from basal stem cells 
obtained from nasal brushing. Paired samples were stimulated with albuterol (Trx) and vehicle control (MeOH). B Experiment timeline. Basal airway 
epithelial cells were differentiated for 24 days (yellow), followed by 5 days of either control vehicle or albuterol stimulation (green). Cultures were 
harvested after 48 h of rest from the last stimulation (blue)
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(cg00483640), and KSR1 (cg05673431) genes was vali-
dated with an FDR < 5% (Table  2). In addition, these 
three CpGs from the nasal validation subset donors were 
cross-tissue evaluated in bronchial epithelial cells. The 
CpG cg23032799 (CREB3L1) showed a similar hypo-
methylation effect in bronchial epithelial cells exposed to 
repeated doses of albuterol (logFC = − 0.169, p = 0.030) 
(Additional file 1: Table S3).

Evaluation of asthma‑related conditions 
on albuterol‑induced DNAm changes
We examined whether the albuterol-induced DNAm 
changes on CpGs could be partially conditioned by 

asthma status, previous use of asthma medications, 
or BDR during sample collection. First, a meta-analy-
sis of stratified analysis based on asthma status (non-
asthma, mild asthma, and moderate-to-severe asthma) 
did not report significant evidence of heterogeneity 
among groups (0.058 ≤ Cochran’s Q p value ≤ 0.916 and 
0 ≤ I2 ≤ 64.94, Additional file  1: Table  S4 and Figure S3). 
Similarly, stratified analyses based on the previous use 
of (i) albuterol or (ii) any controller medication, showed 
only one and two CpGs, respectively, out of the 22 evalu-
ated with a significant heterogeneous effect according 
to previous medication use (Cochran’s Q p value < 0.05, 
Additional file 1: Tables S5, S6 and Figure S3).

Second, we applied a linear regression model to exam-
ine the effects of basal BDR on the albuterol-induced 
changes on DNAm in cell assays. Relative changes in 
DNAm induced by albuterol were estimated as follows: 
ΔDNAm =  (DNAmalbuterol−DNAmcontrol)/DNAmcon-

trol. Only asthma subjects had available BDR data. After 
adjusting for age, sex, ancestry, and tissue heterogene-
ity, DNAm changes on the CpG cg23032799 (CREB3L1) 
were associated with basal BDR. Specifically, lower basal 
BDR was associated with higher hypomethylation effect 
induced by albuterol (coefficient = 0.032, p = 0.004). How-
ever, this association did not remain significant after mul-
tiple comparisons adjustment (FDR = 0.09) (Additional 
file 1: Table S7).

Identification of SNPs regulating changes on DNAm 
and gene expression
Whole-genome sequencing (WGS) data were available 
for individuals from the GALA II study [19]. A cis-meth-
ylation quantitative trait locus (meQTL) analysis was 
conducted to identify single nucleotide polymorphisms 
(SNPs) involved in the genetic susceptibility of albuterol-
induced DNAm changes. Normalized ΔDNAm was 
included as the dependent variable and the genotypes of 
common SNPs as predictors. meQTL analyses were cor-
rected for age, sex, ancestry, tissue heterogeneity, and 
asthma status. Only the three genome-wide associated 
CpGs validated in independent samples were associ-
ated with multiple meQTLs after multiple comparisons 
correction (FDR < 0.05, Table  3, Fig.  3, Additional file  1: 
Table S8).

The functional consequences of independent meQTLs 
on gene expression in asthma-related tissues were evalu-
ated through an in silico expression quantitative trait 
locus (eQTL) analysis. The SNP rs11038897, which regu-
lates the DNAm changes on cg23032799 (CREB3L1), was 
found to regulate the gene expression of multiple genes 
in fibroblasts (ATG13, MADD, and C11orf49) and lung 
tissue (ATG13, MDK, and C11orf49). Additionally, the 
SNPs rs11038897 and rs6505279, which are meQTLs of 

Table 1 Characteristics of the airway cell donors

Descriptives are represented by the median (interquartile range) for continuous 
variables and the count (proportion) for categorical variables.

GALA II Genes‑environments & Admixture in Latino Americans Study; NEC 
Nasal epithelial cells; BEC bronchial epithelial cells; BMI body mass index; FEV1 
forced expiratory volume in the first second; FVC forced vital capacity; BDR 
bronchodilator response; IgE immunoglobulin E; FeNO fractional exhaled nitric 
oxide; SABA short‑acting beta‑agonists. NA Not available

*In GALA II, BMI and lung function measurements were missing for 3 individuals, 
and IgE and eosinophils for 2 individuals.
† Only referred to asthma patients

Variable Discovery Validation
GALA II ( n = 97) Obese asthma 

study (n = 10)

Age (years) 13.9 (11.9–15.6) 28.0 (24.5–33.5)

Sex (female) 46 (47.4) 8 (80.0)

Population

Hispanic 97 (100) 1 (10.0)

White 0 (0) 6 (60.0)

Asian 0 (0) 2 (20.0)

Asthma 67 (69.1) 5 (50.0)

Asthma severity

Mild Asthma 31 (46.3) NA

Moderate‑to‑severe Asthma 36 (53.7) NA

BMI Categories*

Underweight 4 (4.3) 0 (0.0)

Normal 51 (54.2) 4 (40.0)

Overweight 13 (13.8) 3 (30.0)

Obese 26 (27.7) 3 (30.0)

pre‑FEV1 (liters)* 3.0 (2.4–3.5) NA

pre‑FVC (liters)* 3.4 (2.7–4) NA

FEV1/FVC* 0.9 (0.9–0.9) NA

BDR (%)* 9.2 (7.2–13.3) NA

Total IgE* 455.1 (174.9–955.7) NA

FeNO (ppb) 28.0 (13.0–50.2) NA

Eosinophils (%)* 0.0 (0.0–0.1) NA

Medication use†

SABA 52 (77.6) NA

Any controller medication 32 (47.8) NA
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Fig. 2 Manhattan plot of the EWAS of DNAm changes induced by albuterol treatment in nasal epithelial cells. The blue and red lines represent 
the false discovery rate (FDR) < 5% and the genome‑wide (p < 9 ×  10–8) significance thresholds, respectively. Gene annotation is represented 
for genome‑wide significant CpGs, highlighting in boldface those CpGs that were validated

Table 2 Summary results of genome‑wide CpGs associated with albuterol exposure in nasal cells

Chr chromosome; logFC  log2(fold‑change); SE standard error; FDR false discovery rate

*Genomic positions are indicated in hg38/GRCh38 Genome Assembly.

Significant CpGs in the validation stage are in boldface

CpG Chr Position* Gene Discovery Validation

ΔDNAm (%) logFC p‑value logFC p‑value FDR

cg10290200 7 128841241 FLNC − 3.4 − 0.397 2.76 ×  10–18 − 0.131 0.328 0.620

cg00483640 6 2623249 MYLK4-LINC01600 − 4.9 − 0.358 2.06 ×  10–17 − 0.321 0.003 0.021
cg15833511 20 36628395 SLA2 − 15.3 − 0.318 2.92 ×  10–16 − − 0.169 0.102 0.348

cg24254891 22 39999311 FAM83F − 15.6 − 0.290 4.16 ×  10–13 − 0.015 0.906 0.963

cg12510044 22 21761184 MAPK1 − 9.1 − 0.277 9.56 ×  10–13 − 0.151 0.152 0.368

cg02424494 2 238291487 PER2 − 2.3 − 0.219 1.49 ×  10–11 − 0.202 0.031 0.133

cg03629778 7 130051485 ZC3HC1 − 10.1 − 0.203 2.43 ×  10–11 0.039 0.701 0.851

cg05673431 17 27544478 KSR1 − 2.4 − 0.175 4.46 ×  10–11 − 0.240 0.004 0.021
cg11023970 10 6295886 PFKFB3 4.4 0.181 1.55 ×  10–10 0.052 0.619 0.809

cg03956296 2 39724059 THUMPD2 − 17.7 − 0.475 1.66 ×  10–9 NA NA NA

cg23032799 11 46274563 CREB3L1 − 6.5 − 0.177 3.48 ×  10–9 − 0.264 1.53 × 10–4 0.003
cg08161666 11 13013350 ARNTL − 16.8 − 0.361 4.20 ×  10–9 − 0.318 0.125 0.353

cg10310427 6 30749208 IER3 − 8.2 − 0.169 7.50 ×  10–9 − 0.004 0.964 0.964

cg16769649 6 47358617 TNFRSF21 − 8.4 − 0.267 9.55 ×  10–9 NA NA NA

cg26162522 1 56571443 PPAP2B − 3.5 − 0.202 1.52 ×  10–8 NA NA NA

cg16032470 20 33230393 BPIFA1 − 8.8 − 0.175 1.78 ×  10–8 NA NA NA

cg03068616 6 6678265 LY86 − 12.6 − 0.271 1.97 ×  10–8 − 0.174 0.202 0.429

cg16519100 15 83200514 HDGFRP3 23.5 0.271 2.66 ×  10–8 − 0.121 0.478 0.734

cg22208174 9 106880861 ZNF462 − 7.6 − 0.239 2.81 ×  10–8 NA NA NA

cg12845391 6 137224161 IFNGR1 − 4.4 − 0.129 3.38 ×  10–8 − 0.043 0.518 0.734

cg12845808 5 141959039 PCDH12 − 7.3 − 0.109 4.54 ×  10–8 − 0.012 0.866 0.963

cg03946667 5 136058672 TGFBI − 5.2 − 0.147 4.63 ×  10–8 − 0.052 0.505 0.734
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the CpGs cg00483640 and cg05673431, respectively, reg-
ulate the expression of the genes where they are located 
in fibroblasts (LINC01600) and lung tissue (KSR1) (Addi-
tional file 1: Table S9).

Functional consequences of DNAm changes on gene 
expression
Bulk RNA-seq data were generated in all paired sam-
ples from the discovery phase. An expression quantita-
tive trait methylation (eQTM) analysis was carried out 
to test for the association between changes in DNAm 
and gene expression of nearby genes to each CpG. Rela-
tive changes in gene expression data were estimated as 
ΔRNA-seq = (RNA-seqalbuterol−RNA-seqcontrol)/RNA-
seqcontrol. The association between normalized ΔRNA-
seq and ΔDNAm was tested through linear regression 
models adjusted for age, sex, asthma, ancestry, tissue het-
erogeneity, and batch effect from gene expression data. 
After multiple comparisons adjustment, we identified 
that hypomethylation at two CpGs was associated with 
increased gene expression patterns in the genes where 
they are located (Additional file 1: Table S10). Specifically, 
the CpGs cg10290200 and cg05673431 were associated 
with FLNC (coefficient: − 0.42, p = 0.001, FDR = 0.009) 

and KSR1 (coefficient: -0.30, p = 0.010, FDR = 0.029) gene 
expression, respectively. The CpG cg05673431 was also 
associated with increased expression of LGALS9 (coeffi-
cient: 0.27, p = 0.026, FDR = 0.039).

Gene‑set enrichment analysis
We performed a gene-set enrichment analysis (GSEA) to 
identify biological pathways, molecular mechanisms, and 
drug signatures related to the epigenetic changes induced 
by albuterol and its functional consequences. Those 
CpGs that surpassed a p < 5 ×  10–4 threshold in the main 
EWAS were selected to be annotated to genes, which 
were analyzed in the GSEA. As described in the Methods 
section, we only retained the results that remained signif-
icant after multiple comparison corrections (FDR < 0.05) 
and showed to be robust to varying the input p value 
thresholds for selecting the CpGs. We observed enrich-
ment in multiple biological pathways and gene ontolo-
gies potentially related to asthma and the mechanism 
of action of albuterol. These included the tumor necro-
sis factor-alpha (TNF-α) signaling pathway mediated by 
the nuclear factor kappa B (NF-kB) transcription factor, 
interleukin-2 (IL-2) signaling pathway, regulation of cell 
proliferation, and components of the actin cytoskeleton. 

Table 3 Summary results of independent meQTLs

rsID reference SNP cluster ID; Chr chromosome; A1 effect allele; A2 non‑effect allele; MAF minor allele frequency (effect allele); SE standard error; FDR false discovery 
rate

*Genomic positions are indicated in hg38/GRCh38 Genome Assembly.
† Distance between the CpG site and the SNP. 

CpG Gene rsID Chr Position* Distance† (bp) A1 A2 MAF Coefficient SE p‑value FDR

cg23032799 CREB3L1 rs11038897 11 46449277 174,714 T C 0.281 0.491 0.134 4.24 ×  10–4 0.047

cg00483640 MYLK4-LINC01600 rs6901966 6 2623299 50 C G 0.245 − 0.757 0.128 6.83 ×  10–8 1.20 ×  10–4

cg05673431 KSR1 rs6505279 17 27454868 89,610 T C 0.339 − 0.553 0.131 5.95 ×  10–5 0.026

Fig. 3 Violin plots of independent meQTLs in nasal samples identified for the genome‑wide associated CpGs that were validated: A cg23032799 
(CREB3L1), B cg00483640 (MYLK4-LINC01600), and C cg05673431 (KSR1). The normalized ΔDNAm values (y‑axis) are plotted against the genotypes 
for each independent SNP
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Additionally, we reported that genes affected by albuterol 
through DNAm changes are more likely to be regulated 
by numerous compounds and drugs than chance, includ-
ing estradiol and trichostatin A (TSA) (Fig. 4, Additional 
file 1: Table S11).

Regional DNAm changes induced by albuterol
We examined whether repeated stimulations with 
albuterol induce changes in DNAm on genomic regions. 
Differentially methylated regions (DMRs) were esti-
mated using two independent software to minimize 
false positive results. Regional DNAm changes induced 
by albuterol were identified in nine DMRs (adjusted p 
value < 0.05, Table  4, Additional file  1: Tables S12, S13). 
The top hit was a genomic region of 103 bp annotated 

to the GLTPD2 gene (adjusted p value = 3.75 ×  10–12). 
We also identified DMRs annotated to CREB3L1 
(adjusted p value = 9.81 ×  10–10), MYLK4 (adjusted p 
value = 2.04 ×  10–7), and KSR1 (adjusted p value = 0.007).

Discussion
In this study, we identified for the first time epigenomic 
changes induced by albuterol in mucociliary airway epi-
thelia. Repeated stimulations with albuterol induced an 
overall genome-wide hypomethylation on CpGs captured 
by the EPIC array in nasal epithelia. Among 22 genome-
wide significant CpGs, the effects on three CpGs anno-
tated to CREB3L1, MYLK4-LINC01600, and KSR1 genes 
were validated in independent nasal samples. Albuterol 
induced regional DNAm changes in at least nine DMRs, 

Fig. 4 Bar plots of the significant results identified in the enrichment analyses using the Enrichr tool. The −log10(q‑value) for each term 
is represented in the x‑axis. Only the top‑three significant terms of the drug signature enrichment analyses are reported.

Table 4 DMRs associated with albuterol treatment in nasal samples

*Genomic positions are indicated in hg38/GRCh38 Genome Assembly

DMR differentially methylated region; Chr chromosome

Gene Chr Start* End* Width No of CpGs Adjusted p value

GLTPD2 17 4788081 4788183 103 3 3.75 ×  10–12

CREB3L1 11 46274469 46274643 175 4 9.81 ×  10–10

MYLK4 6 2623249 2623545 297 2 2.04 ×  10–7

CABYR 18 23992402 23992785 384 5 7.86 ×  10–5

NDRG1 8 133298310 133298476 167 3 1.33 ×  10–4

PER2 2 238300705 238300990 286 3 5.98 ×  10–4

FOXQ1 6 1228715 1228752 38 2 0.001

KSR1 17 27544478 27544765 288 2 0.007

DAZL 3 16605476 16605619 144 4 0.013



Page 8 of 16Perez‑Garcia et al. Clinical Epigenetics          (2023) 15:156 

including CREB3L1, MYLK4-LINC01600, and KSR1. The 
hypomethylation effect of the CpG near CREB3L1 was 
cross-tissue validated in bronchial epithelia and sugges-
tively associated with BDR. Specifically, we observed that 
the hypomethylation effect on CREB3L1 was inversely 
associated with BDR, suggesting that albuterol might 
have further functional consequences in the gene regu-
latory landscape in poor responders to bronchodilators. 
We also reported meQTLs associated with the genetic 
susceptibility to these albuterol-induced DNAm changes, 
which regulate gene expression of nearby genes in lungs 
and/or fibroblasts. Additionally, hypomethylation on the 
CpGs cg10290200 and cg05673431 was associated with 
higher expression of FLNC and KSR1, respectively. More-
over, epigenetic loci modified by albuterol were located 
in genes enriched in asthma-associated processes (i.e., 
TNF-α, NF-kB, and IL-2 signaling pathways) and likely 
regulated by a potential asthma drug (i.e., TSA).

Albuterol triggers a rapid-onset bronchodilator effect 
in the airway smooth muscle and regulates airway inflam-
mation by diverse pathways that have not been com-
pletely uncovered. The main known mechanism of action 
is mediated by its agonism on the β2-adrenergic receptor 
(ADRB2) [20]. Briefly, the activation of ADRB2 initiates a 
cascade of intracellular signals characterized by increas-
ing cyclic adenosine monophosphate (cAMP) intracel-
lular levels and resulting in the inhibition of intracellular 
 Ca2+ via protein kinase A. The bronchodilator effect is 
a consequence of the inhibition of the  Ca2+-dependent 
myosin light chain phosphorylation [20]. The main epi-
genetic markers reported in this study are annotated to 
genes potentially involved in this pathway. Our findings 
are relevant by providing new insights into potential 
mechanisms and epigenomic cell responses induced by 
albuterol that have not been described yet.

First, we reported albuterol-induced DNAm changes 
on CREB3L1 in nasal and bronchial epithelial cells, which 
are associated with genetic variation and the BDR of 
the donors. CREB3L1 encodes the cAMP response ele-
ment binding protein 3-like 1, a member of the CREB/
ATF transcription factor family. CREB3L1 is activated 
in response to increased cAMP levels and is involved 
in stress response, regulation of cell secretory capac-
ity, extracellular matrix production, cell migration, 
and virus infection response [21–24]. Interestingly, we 
recently found CREB3L1 to be a transcription factor 
expressed in human mucus secretory cells [25]. Our find-
ing of albuterol-induced downregulation in CREB3L1 
methylation locus, suggests that airway secretory cell 
differentiation could be modulated by albuterol usage. 
DNAm on CREB3L1 participates in the toxic effects of 
inhaled silica nanoparticles on bronchial epithelial cells 
[26]. Although genetic variants in the intergenic region 

of PHF21A-CREB3L1 have been associated with post-
bronchodilator lung function measurements [27], the 
potential role of DNAm has not been described. None-
theless, the family-related CREB1 protein has been 
widely studied in the context of asthma. CREB1 par-
ticipates in promoting epigenetic changes to switch on 
pro-inflammatory genes and is involved in persistent 
bronchial inflammation in asthma and the anti-inflam-
matory effect of inhaled corticosteroids [28]. Addition-
ally, it participates in the regulation of ADRB2 expression 
and downregulates lung receptors after chronic exposure 
to β2-agonists [29]. CREB1 is one of the proteins involved 
in airway smooth muscle contraction mediated by cAMP 
and diacylglycerol kinase (DGK) [30]. Although the 
effects in vivo are uncertain, in vitro models have shown 
that β2-agonists increase CREB1 binding to the DNA in 
murine lung cells, while corticosteroids reduce it [31, 
32]. Similarly, CREB3L1 expression is diminished in the 
rat hypothalamus after dexamethasone exposure, while 
increased levels of cAMP enhance its expression [33].

Second, we reported DNAm changes, influenced by 
genetic variation, on epigenetic markers annotated to 
MYLK4 and KSR1. Additionally, we also identified that 
albuterol induced hypomethylation on two CpGs associ-
ated with increased gene expression of FLNC and KSR1. 
MYLK4 encodes a member of the myosin light chain 
kinase (MYLK) family. MYLKs are involved in the phos-
phorylation of the myosin light chain and promote the 
contraction of smooth muscle cells leading to bronchoc-
onstriction [34]. Although studies on MYLK4 are limited, 
MYLKs are known to participate in cell migration, inva-
sion, and proliferation [34]. Genetic variation in MYLK1, 
the best-studied gene in the MYLK family, is associated 
with asthma risk and exacerbations and is a common 
genetic factor in diseases involving smooth muscle con-
traction and inflammation [35, 36]. The kinase activity 
of MYLK is activated by calmodulin when is bound to 
 Ca2+ [37]. The kinase suppressor of ras 1 (KSR1) is a scaf-
fold protein required for the association between  Ca2+ 
and calmodulin, with a known regulatory effect on the 
mitogen-activated protein kinase (MAPK) cascade [38]. 
On the other hand, the filamin C (FLNC) is a protein that 
participates in the interaction between actin filaments 
and binding partners in muscle cells [39]. Although 
its role in the ADRB2 pathway has not been described, 
FLNC interacts with β-arrestin-2 [39], which is one of the 
main mediators involved in the side effects of bronchodi-
lators via ADRB2 [20].

Third, enrichment analyses revealed that epigenomic 
modifications of albuterol could participate in IL-2, TNF-
α, and NF-κB pathways, and that gene expression levels 
of affected genetic loci were more likely to be regulated 
by TSA and estradiol than expected by chance. IL-2 is 
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a pro-inflammatory cytokine involved in the develop-
ment of Treg cells and associated with eosinophil pro-
liferation, airway inflammation and hyperreactivity, and 
impaired lung function in asthma patients [40–42]. IL-2 
is involved in airway smooth muscle contraction by regu-
lating the airway sensitization to leukotrienes [42], and 
IL-2-based therapies induce severe bronchoconstriction 
that can be reversible with albuterol under certain con-
ditions [43]. Additionally, the effects of albuterol on air-
way inflammation might be mediated by IL-2 through 
the inhibition of TNF-α and NF-κB, and the activation of 
type 2 inflammation via STAT5 [44, 45]. NF-κB is a pro-
inflammatory transcription factor widely involved in the 
pathogenesis of asthma [44] whose activation is inhibited 
by β2-agonists [46]. TNF-α is a cytokine with a regula-
tory role in inflammatory responses and the development 
of allergic diseases, particularly asthma [40]. TNF-α can 
activate NF-κB-mediated pathways and its expression is 
increased in patients with severe and steroid-refractory 
asthma, being considered a potential therapeutic target 
[47, 48]. Similarly, albuterol inhibits TNF-α expression, 
a mechanism involved in the agonism of the anti-inflam-
matory effect of corticosteroids and theophylline [49, 50]. 
Finally, TSA is an inhibitor of histone deacetylases that 
regulates inflammatory genes via NF-κB and has demon-
strated in  vivo anti-inflammatory properties in murine 
asthma models [51]. It has also been shown to reduce 
airway constriction by decreasing  Ca2+ mobilization 
[52]. Additionally, previous studies have reinforced its 
potential therapeutic interest in asthma exacerbations by 
regulating genes implicated in ICS response and micro-
biome composition [53, 54]. On the other hand, estradiol 
is one of the main sex hormones in females, which has 
been suggested to be implicated in the sex differences in 
asthma throughout the lifespan [55]. Although this find-
ing may suggest a differential in vitro effect of albuterol 
between cells derived from females and males, except for 
probe cg15833511, we did not observe evidence of sig-
nificant heterogeneity in stratified analyses based on bio-
logical sex (Additional file 1: Table S14).

This study has several strengths. First, our experimen-
tal design allowed us to identify the causality between 
albuterol exposure and airway methylome alterations. 
The sample size in the discovery stage provided an 80% 
statistical power to identify modest DNAm changes 
(≥ 10%) with a p value < 1 ×  10–6 (which approximately 
corresponds to a genome-wide significance at an 
FDR < 5%) [56]. Second, we applied a discovery, valida-
tion, and cross-tissue evaluation design that supported 
the robustness of our associations and their potential 
effects in different asthma-relevant tissues. Third, poten-
tial spurious results were minimized by correcting for 
bias and genomic inflation using a Bayesian method 

designed for EWAS and controlling for potential cell 
heterogeneity and unknown confounders. Fourth, we 
integrated epigenomic, transcriptomic, and WGS data 
mainly focusing on a diverse and underrepresented 
population (i.e., Puerto Ricans). Nevertheless, some limi-
tations must be acknowledged. First, the sample size in 
the validation stage is limited, restricting the statistical 
power for the validation of markers identified in the dis-
covery phase. Since independent donors were balanced 
for diverse relevant characteristics (i.e., age, sex, asthma 
status, body mass index, and ethnicity), we were unable 
to assess phenotype-specific effects with evidence of vali-
dation. Second, although it is recognized that the nasal 
airway reflects the lower airways, the effects on bronchial 
epithelial cells remained partially understudied in our 
study due to a limited sample size. Third, despite examin-
ing the potential influence of the prescription of asthma 
medications, the frequency of use and medication adher-
ence were not available. Fourth, our study design did 
not allow us to identify potential clinical implications 
of epigenetic changes on treatment response, adverse 
reactions, and/or drug tolerance. Fifth, identified epige-
netic markers in  vitro may not reflect in  vivo effects of 
albuterol when administered at a therapeutical dosage 
in asthma patients. Human organoids and in vivo animal 
models should allow further investigation of potential 
effects taking place in a therapeutic context. Sixth, the 
effect of albuterol on sex chromosomes DNAm remained 
unaddressed in this study.

Conclusions
We characterized for the first time the epigenomic 
response induced by albuterol treatment in airway epi-
thelia. DNAm in 22 genome-wide significant CpGs and 
nine genomic regions were modified by albuterol in 
nasal epithelia from Puerto Rican children with different 
asthma statuses. Affected genes were enriched in asthma-
relevant processes, including IL-2, TNF-α, and NF-κB 
signaling pathways, and were more likely to be regulated 
by Trichostatin A than chance. We observed evidence of 
genetic susceptibility to albuterol-induced changes and 
functional consequences on FLNC and KSR1 expression. 
Our findings provide novel insights into the potential role 
of CREB3L1, MYLK4, KSR1, and FLNC on epigenetic-
mediated biological effects induced by albuterol.

Methods
Human subjects information
Basal airway epithelial cultures and then subsequently 
derived ALI cultures, used for the 100 donors’ repeated-
use albuterol stimulation model, were derived from 
nasal airway epithelial brushings collected from sub-
jects recruited as part of the Genes-environments and 
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Admixture in Latino Americans II (GALA II) childhood 
asthma study, which was approved by local institutional 
review boards (UCSF, IRB number 10–00889, Reference 
number 153543, NJH HS-2627). All subjects and their 
parents provided written informed assent and written 
informed consent, respectively [57]. Paired nasal and 
bronchial airway brushings used in generating the ALI 
albuterol validation study cultures were derived from 
subjects recruited as part of the Obese Asthma: Unveil-
ing Metabolic and Behavioral Pathways study at CU-Ans-
chutz and approved by local institutional review boards 
(University of Colorado, IRB Number 19-0510, 21-3959, 
and 16-2522, NJH HS-3110).

Albuterol treatment of mucociliary airway epithelial 
cultures
To model the in  vivo airway epithelium, we generated 
ALI mucociliary epithelial cultures. For primary human 
nasal and bronchial epithelial samples, basal cells were 
cultured for expansion using a modified Schlegel method 
as previously described [58, 59]. Primary basal cells 
were seeded onto 6.5 mm, 0.4 μm pore transmembrane 
inserts (4 ×  104 cells/insert) in PneumaCult Expansion 
Plus medium (StemCell Technologies) supplemented 
with Y-27632. Cultures were air-lifted upon confluence 
and basolateral media was then switched to PneumaCult 
ALI (PC-ALI; StemCell Technologies) media to stimulate 
mucociliary differentiation over the next 24 days.

Albuterol stimulations were completed on cultures 
from nasal samples from the GALA II study (n = 100 
total; 30 and healthy controls, 33 with mild asthma, and 
37 with moderate-to-severe asthma) and paired nasal and 
bronchial samples from the Obese Asthma study (n = 10 
total; five healthy controls and five asthma patients). 
Exposures were performed starting at ALI D24 for epi-
thelial cultures and stimulations were performed twice 
daily, once in the morning, and once in the evening for 
five consecutive days. For epithelial cultures, each morn-
ing fresh basolateral media was added to all ALI inserts, 
apical chambers were washed with warm PBS, and 20μl 
of ALI media supplemented with MeOH as vehicle con-
trol or ALI media supplemented with 100μM albuterol 
was added to the apical chamber of each ALI culture. 
For evening stimulations, apical chambers were washed 
once with warm PBS, and stimulations were performed 
as described above. PBS washes were performed prior to 
re-stimulations to prevent to accumulation of albuterol 
over time. Following 5 days of albuterol stimulations, ALI 
received fresh culture media without vehicle or albuterol 
and were allowed to rest for 48 h to allow for interroga-
tion of epigenetic changes resulting from albuterol expo-
sure. Samples were lysed using Zymo DNA/RNA Lysis 
Buffer (Zymo Research, Irvine, USA) supplemented with 

40 mM DTT, and triplicates were pooled for DNA and 
RNA isolations as per manufacturer instructions.

Genome‑wide DNAm profiling and quality control
Whole-genome DNAm data from 856,553 CpGs was 
generated using the Infinium MethylationEPIC microar-
ray (Illumina) following the manufacturer’s recommen-
dations. QC of DNAm data was performed using the 
ENmix and ewastools R packages, as previously described 
[14, 60–62]. Briefly, samples with (1) a high proportion of 
bad-quality methylation data (> 5% of CpGs), (2) discord-
ance between the reported sex and the epigenetic pre-
dicted sex, (3) a high missingness rate (> 5% of CpGs), and 
(4) potential cross-sample contaminated (based on the 
genotype distribution of control probes) were removed. 
Considering the paired approach of this study, samples 
were also removed if their paired sample was discarded. 
After QC, a total of 97 nasal cells were retained for the 
discovery stage, and all 10 nasal and bronchial epithelial 
cells were kept for the validation analyses. A QC of CpG 
sites was also conducted using the ENmix package [62]. 
Briefly, we corrected bisulfite intensities for background 
noise, dye and probe-type biases (oob and RELIC meth-
ods), and inter-array heterogeneity (quantile normaliza-
tion) [63, 64]. Then, we excluded probes (1) with a high 
proportion of bad-quality methylation data (> 5% of sam-
ples), (2) located in sex chromosomes, (3) that non-spe-
cifically bind to a genomic position (cross-reactive) [65, 
66], (4) with a multimodal distribution, and (5) poten-
tially polymorphic probes. Probes with a multimodal 
distribution of beta values, which could capture other 
artifacts different than DNAm, were identified using the 
nmode function from ENmix [62]. Polymorphic probes 
were defined as probes containing a common SNP with a 
minor allele frequency (MAF) ≥ 5% at the CpG site (either 
at cytosine or guanine nucleotides) and, in the case of 
Type I probes, also those with a common SNP at the 
position where single base extension takes place during 
the methylation assay. We used available WGS data from 
GALA II to identify SNPs and estimate MAFs specifically 
in the analyzed individuals. In samples from independent 
donors (validation stage), we used the data from the Illu-
mina manifest file v1.0 B4 [67]. DNAm was computed as 
beta values and transformed into M-values for better sta-
tistical performance. QC was conducted separately in the 
discovery and validation sets. Probes with a multimodal 
distribution were independently assessed for each cell 
type.

We used the ReFACTor algorithm as a free-reference 
method to control for unknown variation, mainly driven 
by cell heterogeneity [68]. The appropriate number of 
ReFACTor components to include in subsequent analy-
ses (n = 3) was estimated for each dataset based on scree 
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plots following the software developers’ recommen-
dations. ReFACTor components were estimated with 
adjustment for cell condition (albuterol vs. control) and 
controlling for pairing. The sva R package was used to 
estimate surrogate variables for batch effect correction, 
but no significant variables in our dataset were detected 
[69].

Epigenome‑wide association study
The discovery phase included the largest dataset consist-
ing of 97 paired nasal epithelial cells from Puerto Rican 
children included in the GALA II study. We assessed the 
effect of albuterol treatment on whole-genome DNAm 
through paired robust linear regression models using 
the limma R package [70]. Models were corrected for 
ReFACTor principal components, while all other poten-
tial confounders intrinsic to the sample were corrected 
by pairing (e.g., age, sex, asthma status, ancestry). Con-
sidering that methylation levels were log-transformed 
into M-values, the  log2(Fold-change) or logFC parameter 
from limma corresponds to the difference in the average 
M-value between control and treated samples. Negative 
and positive logFC values indicate the hypomethylation 
and hypermethylation effects of albuterol, respectively, 
and their values are correlated with the magnitude 
change in methylation values. We used the bacon R pack-
age to correct the effect sizes, standard errors, and p 
values controlling for bias and genomic inflation in epi-
genomic studies [71]. After correction, genomic infla-
tion was further inspected by examining the Q–Q plots 
and the genomic inflation factor (λ). An FDR < 5% was 
used to declare significance and minimize false positive 
results, and the genome-wide significant threshold was 
established in p < 9 ×  10–8, as previously estimated for the 
EPIC array [18]. Those significant CpGs with changes 
on DNAm (expressed as beta-values) < 2% were flagged 
as being potentially related to technical variations [72]. 
CpGs were annotated based on the Illumina manifest file 
v1.0 B4 and using the Genomic Regions Enrichment of 
Annotations Tool (GREAT) v4.0.4 [67, 73]. A one-sided 
binomial test was applied to assess whether albuterol 
showed predominantly a hypomethylation or hyper-
methylation effect. Genome-wide significant CpGs were 
followed-up in all subsequent analyses.

Validation in an independent subset of nasal and bronchial 
epithelial cells
DNAm changes induced by albuterol were attempted 
for validation in a subset of independent nasal epithelial 
cells from 10 donors treated under the same albuterol 
exposure conditions. An FDR < 5% was used to declare a 
significant association in this validation stage. Genome-
wide CpGs that were validated were followed up in a 

cross-tissue evaluation analysis using bronchial epithelial 
cells. In these samples, we tested for the association of 
changes in DNAm and albuterol exposure following the 
same procedure as in nasal samples. A nominal p < 0.05 
was used to declare a significant association.

Evaluation of asthma‑related conditions 
on albuterol‑induced DNAm changes
We examined whether albuterol-induced DNAm changes 
were conditioned by asthma status, biological sex, pre-
vious use of asthma medications, or BDR status during 
sample collection. Asthma status was classified according 
to the diagnosis and severity of the disease in non-asthma 
subjects, mild asthma patients, and moderate-to-severe 
asthma patients. Asthma severity was derived from 
the control of asthma symptoms (assessed using the 
Asthma Control Test and the Asthma Control Question-
naire) and the therapeutic step of each patient accord-
ing to the Expert Panel Report-3 guidelines for diagnosis 
and management of asthma [74]. Mild intermittent and 
mild persistent asthma categories were classified as mild 
asthma, while moderate persistent and severe persistent 
asthma categories were grouped into moderate-to-severe 
asthma. Regarding asthma medications, we evaluated 
having a prescription of (1) short-acting beta-agonists 
or (2) any controller medication (i.e., inhaled corticos-
teroids, long-acting beta-agonists, combo medication, 
leukotriene receptor antagonists, oral corticosteroids, 
and/or theophylline). BDR was clinically characterized 
in asthma patients during sample collection as the maxi-
mum relative improvement in lung function (i.e., forced 
expiratory volume in the first second or  FEV1) after 
albuterol inhalation [8].

We conducted stratified analyses according to asthma 
status, use of asthma medication, and biological sex and 
meta-analyzed them using METASOFT [75]. The het-
erogeneity among groups was examined using Cochran’s 
Q p value and I2. A Cochran’s Q p value < 0.05 or > 0.05 
indicates the presence or absence of heterogeneity, 
respectively. The I2, which ranges between 0 and 100%, 
measures the proportion of variance as a consequence of 
the observed heterogeneity. The higher the I2 value, the 
greater the presence of heterogeneity.

On the other hand, linear regression models were 
applied to examine the effects of basal BDR on albuterol-
induced DNAm changes in the cell assays. The relative 
change in DNAm induced by albuterol was estimated 
for each subject and CpG site as follows: ΔDNAm =  (D
NAmalbuterol-DNAmcontrol)/DNAmcontrol. The ΔDNAm 
was normalized by applying an inverse normal trans-
formation to ensure a normal distribution. Considering 
the inter-individual comparison of this approach, mod-
els were corrected for age, sex, ancestry (the first three 
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principal components), and cell heterogeneity (the first 
three ReFACTor components). ReFACTor components 
were re-estimated using the DNAm values from control 
samples adjusting for BDR, age, sex, and ancestry. Multi-
ple comparisons were adjusted using an FDR < 0.05.

Methylation quantitative trait loci analyses
WGS data were generated for Puerto Ricans from GALA 
II within the Trans-Omics for Precision Medicine 
(TOPMed) Consortia at the New York Genome Center 
and Northwest Genomics Center. Briefly, paired-end 
reads (150 bp × 2) were generated on the HiSeq XTM Ten 
platform (Illumina) reaching a minimum mean genome 
coverage of 30x. All technical details are described on 
the TOPMed website [19]. The genetic susceptibility 
of albuterol-induced DNAm changes was investigated 
through a meQTL analysis. A total of 96 individuals with 
available epigenomic and WGS data were included in 
the analysis. For each CpG site, all SNPs located within a 
window of 500 kb (± 250 kb upstream and downstream) 
with a MAF ≥ 5% were evaluated in the cis-meQTL 
analysis. The association between normalized ΔDNAm 
and genotypes of these SNPs was tested through linear 
regression models using fastQTL that were adjusted for 
age, sex, ancestry, asthma status, and tissue heterogeneity 
[76]. An FDR < 0.05 at the probe level was used to cor-
rect for multiple comparisons considering that each CpG 
maps to multiple SNPs. Independent meQTL signals 
were identified by conditional regression models condi-
tioned on the most significant meQTL using PLINK 1.9, 
as previously described [14]. Briefly, meQTL analyses 
were repeated adding the corresponding top-hit meQTL 
for each CpG as a covariate. All non-significant (p > 0.05) 
meQTLs were filtered out since they are dependent on 
the top-hit signal. If any meQTL remained significant, 
the new top-hit was considered as another independent 
meQTL and the process was repeated until no significant 
meQTLs were identified.

In silico expression quantitative trait loci analyses
The effects on gene expression of independent meQTL 
were inspected through in silico eQTL analyses using 
the public database Genotype-Tissue Expression (GTEx) 
portal. We examined whether these SNPs associate with 
the expression levels of nearby genes in different tissues 
related to the respiratory system. Summary statistics 
were extracted from the GTEx portal.

Expression quantitative trait methylation analyses
RNA normalization and library construction were 
performed using the KAPA mRNA Hyper Prep Kit 
(Roche, Basel, Switzerland), using the Beckman Coulter 

FXp automation system. Briefly, 200 ng of RNA was 
used as input, and Illumina Dual-Index adaptors from 
Integrated DNA Technologies were used to barcode 
libraries using 12 cycles of amplification. Paired-end 
sequences from pooled libraries were obtained using 
the NovaSeq 6000 platform (Illumina). Regarding 
the pre-processing of bulk RNA-seq data, raw reads 
were trimmed with bbduk.sh from the BBMap pack-
age v38.79 with parameters “trimq = 10 qtrim = r min-
length = 70 ref = adapters ktrim = r k = 23 mink = 11 
hdist = 1 tpe tbo” [77]. Transcript counts were quanti-
fied with Salmon v1.5.2 with parameters “—seqBias 
—gcBias” [78] using human genome reference Gen-
code [https:// doi. org/ 10. 1093/ nar/ gkaa1 087] release 38 
(GRCh38.p13). The Salmon output was imported into 
R and transcript-level counts aggregated to gene-level 
with tximport [79]. A total of 198 RNA-seq samples 
were used for analysis. One donor was removed due to 
the control and treatment labels being swapped. Genes 
were included if they were protein-coding and had an 
inferred count of at least 6 in at least 10% of the sam-
ples. Expression counts were transformed with the var-
iance stabilizing transformation (VST) using DESeq2 
v1.34.0 [80].

The association between albuterol-induced DNAm 
and gene expression changes was examined in a cis-
eQTM analysis. Individuals with available DNAm and 
RNA-seq data (n = 95 paired samples) were included in 
the analysis. Changes in gene expression (ΔRNA-seq) 
were estimated and normalized following the same 
procedures as with DNAm data. We estimated surro-
gate variables of unknown sources of variation to cor-
rect for batch effect in RNA-seq data using the sva R 
package [69]. The significant number of surrogate vari-
ables was estimated using the svaseq function while 
adjusting for age, sex, ancestry, and tissue heteroge-
neity. To minimize overfitting in the eQTM analysis, 
only those surrogate variables not significantly corre-
lated with any ReFACTor principal component were 
retained for the analyses (p > 0.05) (Additional file  1: 
Figure S4). Similar to ReFACTOr, surrogate variables 
were estimated using the gene expression data from 
the control samples. Then, we tested for the associa-
tion between the normalized ΔDNAm of each CpG site 
and the normalized ΔRNA-seq of all genes whose tran-
scription start site is located ± 250 kb upstream and 
downstream of each CpGs using MatrixEQTL [81]. 
Models were corrected for age, sex, asthma, ancestry, 
tissue heterogeneity, and RNA-seq batch effect. An 
FDR < 0.05 at the probe level was used to correct for 
multiple comparisons considering that each CpG maps 
to multiple genes.

https://doi.org/10.1093/nar/gkaa1087
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Enrichment analyses
A GSEA was conducted to investigate whether the asso-
ciated CpGs from the discovery EWAS were annotated 
to genes significantly involved in biological pathways, 
gene ontologies, traits, and drug signatures. Based on the 
EWAS summary statistics, a p < 5 ×  10–4 threshold was 
used to select CpGs to include in the enrichment analy-
ses. The GSEA was performed using the Enrichr data-
base and an FDR < 0.05 was used to correct for multiple 
comparisons [82]. The GSEA was re-assessed by varying 
the p value thresholds for CpGs selection (i.e., p < 5 ×  10–5 
and p < 5 ×  10–3). Only the terms that remained signifi-
cant (p < 0.05) using these two alternative thresholds were 
retained to ensure the robustness of the findings. Analy-
ses were carried out in January 2023, with the available 
version of the following gene-set libraries in Enrichr: Bio-
Planet 2019, Molecular Signatures Database (MSigDB), 
Gene Ontologies (GO) Biological Process 2019, GO Cel-
lular Components 2019, Protein–Protein Interactions 
(PPI) Hub dataset, Transcription Factor PPIs, PheWeb 
2019, and Drug Signature Database (DSigDB).

Differentially methylated regions
Regional DNAm analyses were conducted to identify 
DMRs associated with albuterol-induced changes in 
DNAm. We identified DMRs using two independent soft-
ware: comb-p and DMRcate [83, 84]. DMRs were started 
at CpGs individually associated with p < 0.05 (comb-p) or 
FDR < 0.05 (DMRcate) and significant CpGs subsequently 
located in sliced windows of 1000 bp were included in 
the same region. All regions were restricted to contain 
at least two CpGs. In DMRcate the scaling factor for 
bandwidth was used as recommended by the develop-
ers (C = 2). Multiple comparisons were corrected intrin-
sically by each software using a Šidák-corrected p < 0.05 
in comb-p and FDR < 0.05 in DMRcate. To minimize false 
positive results, only DMRs identified using the two soft-
ware were retained. DMRs were annotated to the single 
nearest gene using GREAT v4.0.4 [73].
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