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Abstract 

Background  Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation 
of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic 
driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interac-
tions between epigenetic regulation and hypoxia signalling will have important implications for AML development 
and treatment.

Main body  This review summarises the importance of DNA methylation and the hypoxic bone marrow micro-
environment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays 
on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation 
through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzy-
matic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, 
demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we 
consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone 
marrow may decrease the efficacy of hypomethylating agents.

Conclusion  Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, 
where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To 
achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote 
cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.

Keywords  DNA methylation, Hypoxia, Acute myeloid leukaemia, Epigenetics, Reactive oxygen species, Treatment 
outcomes

Background
Characterised by the uncontrolled proliferation and 
diminished differentiation of immature myeloid cells in 
the bone marrow (BM), acute myeloid leukaemia (AML) 
is among the deadliest blood cancers [1]. Affecting ~ 5 in 
100,000 individuals and carrying a dismal 5-year survival 
rate of ~ 25%, AML predominantly occurs in adults over 
the age of 60 [2, 3]. AML patients are typically treated 
with a standard combination of chemotherapies, such 
as daunorubicin and cytarabine [4]. While most patients 
respond well to these treatments and achieve remis-
sion, relapse often occurs within 3 years of diagnosis [5]. 
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Unfortunately, many relapsed patients are typically non-
responsive to further treatment, causing overall survival 
to be as low as 6 months from recurrence [6].

In comparison with most solid cancers, AML car-
ries a relatively low mutational burden with an average 
of 13 mutations per patient [7, 8]. Among the most fre-
quently mutated genes are several regulators of DNA 
methylation (DNMT3A, TET2, IDH1/2), showing that 
epigenetic dysregulation is an important driver of AML 
pathogenesis [9]. The BM microenvironment (BMME), in 
which AML develops, also influences disease progression 
through altered cell–cell interactions and extracellular 
factors [10, 11]. Since epigenetic mechanisms are known 
to respond to environmental stimuli [12], the crosstalk 
between the BMME and regulators of DNA methylation 
has clear relevance for AML. In this review, we consider 
how the low oxygen availability in the BMME may influ-
ence DNA methylation in AML. First, the importance of 
DNA methylation in AML development and treatment is 
described. Second, the effects of hypoxia on AML cells 
are summarised. Finally, we discuss likely modes of cross-
talk between DNA methylation and hypoxia signalling, as 
well as implications for AML treatment.

DNA methylation and AML
Regulation of DNA methylation
DNA methylation is a critical component of the epi-
genome, with indispensable roles in regulating gene 
expression during development [13]. Methylation of the 
5’ carbon in cytosine residues (5’-methylcytosine, 5mC) 
occurs in CpG dinucleotides in mammalian genomes. 
While majority of CpGs in the genome are methylated, 
short CpG-rich sequences termed CpG islands (CGIs) 
are generally hypomethylated. Most CGIs are located in 
gene promoters, and methylation of these loci can lead to 
transcriptional repression [14].

Regulation of DNA methylation is achieved through the 
combined actions of several enzyme families. De novo 
DNA methyltransferase (DNMT) enzymes, DNMT3A 
and DNMT3B, establish new DNA methylation marks 
within the genome [15, 16], while DNMT1 ensures that 
methylation profiles are stably inherited during cell divi-
sion. In contrast, ten–eleven translocase (TET) enzymes 
initiate active DNA demethylation by oxidising 5mC to 
5’-hydroxymethylcytosine (5hmC), and other modified 
bases that are then excised and replaced by DNA repair 
enzymes [17, 18]. Importantly, TET activity depends on 
several co-factors including oxygen and α-ketoglutarate 
(α-KG), which is produced by isocitrate dehydrogenase 
(IDH) enzymes [19, 20]. In AML, mutations have been 
detected in genes encoding DNMT3A, TET2, and IDH 
enzymes. These mutations disrupt DNA methylation 

patterns leading to dysregulated gene expression and 
altered differentiation (as outlined below).

Dysregulation of DNA methylation in AML
DNMT3A, TET2, and IDH enzymes are all required 
for appropriate haematopoiesis [20–24], with loss of 
enzyme activity causing proliferation of immature cells, 
impaired differentiation, and lineage skewing [25–29]. 
Mutations in these epigenetic regulators are insufficient 
to trigger overt leukaemia, and are detected in healthy 
individuals [30, 31], clonal haematopoiesis [32], and pre-
leukaemic myelodysplasias [33–36], with the frequency 
of mutations increasing with age [37]. Upon acquisi-
tion of an AML driver mutation (e.g. FLT3, NPM1), the 
expanded progenitor population transforms to leukae-
mia [9, 38]. Thus, mutations in epigenetic regulators 
reshape the genetic landscape that is permissive for AML 
development.

DNMT3A mutations are observed in 12–22% of AML 
patients and are associated with reduced survival [39–
42]. Missense mutations of arginine 882 (R882) are the 
most common abnormality [43, 44], causing reduced 
enzyme activity [45, 46] and altered patterns of DNA 
methylation [47]. While the global level of DNA methyla-
tion is not markedly affected [42], hypomethylation has 
been observed at many loci and in many genomic con-
texts [45, 48] (Fig.  1). The transcriptional consequences 
of these changes have been challenging to discern, since 
hypomethylated genes are not always upregulated in 
DNMT3A-mutant AML [42, 45, 47, 48]. Recently, sin-
gle-cell analysis has been applied to resolve this issue. In 
clonal haematopoiesis patients with mosaic DNMT3A 
mutations, loss of DNA methylation at MYC binding 
sites in DNMT3A-mutant cells was accompanied by 
increased expression of MYC target genes [49]. Thus, 
changes in DNA methylation caused by DNMT3A muta-
tions perturb key transcriptional programmes critical for 
myeloid differentiation.

TET2 is mutated in ~ 20% of AML patients [38, 48, 
50, 51] and is associated with unfavourable outcomes 
[38, 50, 52, 53]. Frameshift and nonsense mutations are 
spread across the whole TET2 coding sequence, and 
missense mutations occur in two conserved domains 
that are important for enzyme function [38, 50]. Muta-
tions in TET2 prevent the conversion of 5mC to 5hmC 
[53, 54] and result in a hypermethylated phenotype that 
can encourage myeloid proliferation [55, 56] (Fig.  1). 
For example, in patients with clonal haematopoiesis and 
clonal cytopenia, TET2 mutations were associated with 
increased methylation of enhancers linked to myeloid 
differentiation [57].

Mutations in IDH1 or IDH2 are found in ~ 10% of 
AML patients, with missense mutations common at 
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IDH1 R132 and IDH2 R140 or R172 residues [58, 59]. 
IDH enzymes support the catalytic activity of TET and 
other oxoglutarate enzymes by producing their essential 
co-factor, α-KG [60]. However, mutant IDH enzymes 
produce an oncometabolite, 2-hydroxyglutarate (2-HG), 
which competes with α-KG [61–63]. In turn, TET activ-
ity is reduced by 2-HG, leading to a global reduction 
in 5hmC levels and subsequent increases in 5mC [53] 
(Fig. 1). Given that IDH mutations result in loss of TET 
function, they seldom co-occur with TET2 mutations 
and are associated with hypermethylation of MYC tar-
get sites, as seen in TET2-mutant cells [20, 64]. While 
there are many similarities between TET2 and IDH-
mutant AMLs, it is important to note that TETs are not 
the only enzymes dependent on α-KG. Other members 
of the α-KG-dependent dioxygenase family include: an 
N6-methyladenosine RNA demethylase (e.g. FTO) [65], 
histone demethylases (e.g. KDM7A/2B/5C) [60], and 
prolyl hydroxylase domain (PHD) enzymes, which are 
negative regulators of hypoxia-inducible factors (HIFs) 
[66]. Thus, IDH mutations may impact multiple aspects 
of epigenetic regulation, as well as responses to hypoxia.

Intriguingly, common mutations in AML have con-
trary effects on DNA methylation: DNMT3A mutations 
are associated with hypomethylation, while TET2 and 
IDH1/2 mutations lead to increases in DNA methylation 
(Fig. 1). These mutations can also co-occur, with around 

40% of DNMT3A-mutant cases carrying a mutation in 
either TET2, IDH1 or IDH2 [48]. This suggests that AML 
is not driven by specific patterns of DNA methylation, 
but rather by disruption of the epigenetic equilibrium 
within blast cells. As such, DNA methylation can be dys-
regulated and clinically relevant in AML, even when the 
mutations described above are absent.

One interesting source of dysregulated DNA methyla-
tion in AML is the high levels of reactive oxygen species 
(ROS) observed in patients [67–69]. While ROS and oxi-
dative stress can deplete the DNMT co-factor S-adenosyl 
methionine (SAM) resulting in reduced enzyme activity 
[70, 71], ROS can also act directly on DNA to convert 
5mC to 5hmC [71]. If production remains unregulated, 
ROS can convert guanine bases to 8-hydroxydeoxy-
guanosine (8-OHdG), inhibiting the maintenance of 
methylation at nearby cytosines [72, 73]. Oxidative DNA 
damage also influences the formation of epigenetic com-
plexes including DNMT1, DNMT3B, and polycomb 
repressive complex 4, as well as promote tighter binding 
of DNMT1 to chromatin, trapping the enzyme and caus-
ing transcriptional repression [74].

Several studies have profiled DNA methylation in large 
patient cohorts revealing epigenetic differences between 
AML subtypes [75, 76]. New molecular subtypes with 
differences in patient survival were identified on the 
basis of DNA methylation alone [76]. High levels of 

Fig. 1  Common mutations in epigenetic regulators and their influence on DNA methylation in AML. In wild-type cells (black; top, left), 
the equilibrium between methylated (5mC) and unmodified (C) cytosines is governed by balanced DNMT3A and TET2 activity. IDH1/2 activity 
produces α-KG (orange), which is required for TET function. Loss of function DNMT3A mutations (green; bottom, left) lead to impaired DNMT3A 
activity and hypomethylation (purple). Conversely, loss of function TET2 (pink; top, right) or IDH1/2 (blue; bottom right) mutations result 
in hypermethylation (red). Mutations in IDH1/2 lead to the production of the oncometabolite 2-HG, which acts as a competitive inhibitor for TET2, 
resulting in decreased TET2 activity and hypermethylation (blue; bottom, right)
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5hmC can also predict inferior survival [53], suggesting 
that active remodelling of the methylome may promote 
AML growth. More recent work has used computational 
approaches to estimate intra-tumoural DNA methylation 
heterogeneity in patient samples [77, 78]. These analyses 
have demonstrated that high DNA methylation hetero-
geneity is associated with specific genetic abnormalities 
(e.g. IDH1/2 and CEBPA mutations) and reduced time to 
relapse. Information from 26 loci was sufficient to divide 
patients into low- and high-risk groups with significantly 
different relapse-free survival [77]. Dysregulated DNA 
methylation was associated with variable expression 
of neighbouring genes, suggesting that epigenetic het-
erogeneity allows diversification of transcriptional states 
within a tumour [77]. This may in turn promote AML 
progression by increasing the collective fitness of a popu-
lation of cancer cells.

AML therapies targeting DNA methylation
Given the important role of DNA methylation in the ini-
tiation and progression of AML, it is not surprising that 
therapeutics targeting DNA methylation are being used 
to treat AML patients.

Hypomethylating agents (HMAs)
DNA hypomethylating agents (HMAs) are used as alter-
natives to standard chemotherapies for older AML 
patients, due to their low toxicity. Decitabine (DAC, 
2’-deoxy-5-azacytidine) and azacytidine (AZA, 5-azacyt-
idine) are two HMAs approved for the treatment of AML 
and a pre-leukaemic dysplasia known as myelodysplastic 
syndrome (MDS). Early clinical trials showed that higher-
risk MDS patients treated with AZA had significantly 
increased overall survival (OS) compared to the con-
ventional care group (24.5 vs. 15  months) [79]. Similar 
results have been observed for DAC, and in various other 
patient groups [80–85].

Despite these benefits, the use of HMAs is limited by 
variable patient responses, with only 20–30% of patients 
benefitting from therapy [86]. Many studies have inves-
tigated genetic, epigenetic, and other determinants of 
patient response. Some have noted improved responses 
in patients with DNMT3A [87], TET2 [88] or IDH1/2 
[89] mutations, while others have yielded contrary 
results [90]. Studies have also suggested that DNA meth-
ylation levels before treatment may be a better predic-
tor of HMA response rather than changes induced by 
therapy [91]. Changes to the BMME may also influence 
HMA response, as indicated in a study of AZA treat-
ment in MDS patients. Non-responding patients were 
found to have higher proportions of quiescent progeni-
tor cells in the BM. These cells expressed high levels of 
integrin alpha 5, a cell-surface protein important for 

cell–extracellular matrix adhesion within the BMME 
[92]. Thus, interactions between malignant blasts and the 
BMME may influence HMA efficacy.

DAC and AZA are cytidine analogues that are incorpo-
rated into DNA during replication [93–96]. This leads to 
degradation of DNMT enzymes, loss of DNA methyla-
tion, decreased growth, and increased immunogenicity 
in AML cells [96–102]. HMA-induced promoter demeth-
ylation has been associated with re-expression of tumour 
suppressor genes; however, many studies also show wide-
spread increases in gene expression that are independ-
ent of promoter demethylation [96, 99, 102, 103]. This 
suggests that not all transcriptional changes induced by 
HMA treatment are dependent on methylation changes 
at cis-regulatory elements. DAC and AZA can also trig-
ger a ‘viral mimicry’ response by upregulating the expres-
sion of endogenous retroviral (ERV) elements scattered 
across the genome. These transcripts are then recognised 
by the viral defence pathway, promoting apoptosis via an 
interferon response [104–106]. AZA-responsive patients 
have also shown a greater upregulation of many trans-
posable elements compared to non-responding patients, 
demonstrating the clinical relevance of viral mimicry 
[107].

IDH1/2 therapies
Therapies have recently been developed to target mutant 
IDH enzymes. Ivosidenib (AG-120) and enasidenib 
(AG-221) are now approved for treatment of IDH1- and 
IDH2-mutant cancers, respectively. By reducing 2-HG 
production, IDH inhibitors can trigger epigenetic repro-
gramming and restoration of myeloid differentiation in 
AML [108, 109]. However, these agents are currently only 
used in relapsed or refractory (r/r) AML cases, where 
standard treatments are no longer beneficial.

In patients with advanced IDH1-mutant AML, 
ivosidenib induced remission in 30.4% of patients, with 
an associated median OS of 14.5 months [110]. Similar 
benefits were observed in newly diagnosed IDH1-mutant 
AML patients ineligible for standard chemotherapy [111], 
and in clinical trials of enasidenib treatment in IDH2-
mutant AML [112, 113]. Despite these promising results, 
patient responses remain variable, and relapse is com-
mon. As such, further studies are required to improve the 
clinical utility of IDH inhibitors.

Combination therapies
To sustain long-term treatment responses and improve 
patient survival, combinatorial treatment strategies are 
being designed to enhance the efficacy of epigenetic 
therapies.

IDH inhibitors are currently being tested in combina-
tion with HMAs to treat IDH-mutant AML patients. By 
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reducing DNA methylation through DNMT inhibition, 
and simultaneously blocking 2-HG production to restore 
TET2 activity, this combination strategy may improve 
efficacy in patients. In a phase IB trial, newly diagnosed 
IDH1-mutant AML patients treated with ivosidenib and 
AZA showed deep and durable treatment responses 
(overall response rate (ORR) 78.3%; complete remis-
sion (CR) 60.9%; and 12-month survival estimate 82%) 
[114]. Promising results have also been obtained from 
a recent phase III clinical trial [115], studies combining 
enasidenib with AZA [116, 117], and pre-clinical studies 
of newly developed IDH inhibitors [118].

Venetoclax is a selective BCL-2 inhibitor that is widely 
used to promote apoptosis in haematological malignan-
cies [119]. The benefits of combining venetoclax and 
HMA treatment have been shown in several studies of 
AML, including treatment-naïve and r/r cases [120–123]. 
For example, one study reported superior responses in 
r/r patients (64% ORR vs. 19% AZA alone), as well as 
patients with IDH1/2 or TP53 mutations (67% ORR) 
[120]. Combined HMA and venetoclax therapy has 
also enhanced survival in elderly treatment-naïve AML 
patients [123, 124], and improved outcomes in patients 
with MDS [125, 126], as well as those undergoing stem 
cell transplantation [127, 128].

E-selectin is an endothelial cell adhesion molecule typi-
cally found in the BM, which regulates haematopoietic 
stem cell (HSC) self-renewal, homing and engraftment 
potential [129]. In AML, leukaemic blasts can bind to 
E-selectin on endothelial cells, holding them within the 
BM to avoid the effects of certain chemotherapies. Cur-
rently, an E-selectin inhibitor known as uproleselan 
(GMI-1271) is in phase III clinical trials in combination 
with chemotherapy for r/r AML [130]. Uproleselan has 
been shown to release quiescent AML blasts into the 
cell cycle, blocking pro-survival pathways, and reducing 
the retention of blasts in the BM [129]. In turn, upro-
leselan may also enhance the efficacy of other therapies, 
like HMAs, that are particularly dependent on replica-
tion. Encouragingly, the combination of uproleselan with 
venetoclax and HMAs has demonstrated improved sur-
vival in pre-clinical models of AML [131], and in AML 
patients [132]. In a phase I clinical trial of elderly or 
treatment-naïve AML patients, 75% of patients achieved 
remission [132]. Overall, E-selectin inhibition is a prom-
ising therapeutic avenue that highlights the need to tar-
get AML cells in the context of the BM.

Hypoxia and AML
Hypoxia signalling
While we know that AML develops within the BM, the 
direct role of the microenvironment on leukemogenesis 
is only beginning to be elucidated. The BM contains two 

distinct hypoxic niches with differing capillary types: 
the endosteal region with thick-walled, low-permeable 
vessels that enforce low oxygen tensions (1% O2), and 
the more oxygen tense sinusoidal-vascular region (5% 
O2) that contains more fenestrated, permeable capillar-
ies [133, 134].

For cells to sense, coordinate, and adapt to these low 
oxygen conditions, oxygen-sensing transcription fac-
tors known as hypoxia-inducible factors (HIFs) are 
required to activate hypoxia-responsive genes. In low 
oxygen conditions, oxygen-sensitive alpha (α) subunits 
(HIF1α, HIF2α, HIF3α) and constitutively expressed 
beta (β) subunits (HIF1β, HIF-2β) dimerise to form 
a HIF complex. These HIF complexes can then trans-
locate into the nucleus, where they bind to hypoxia-
responsive elements (HREs) in promoter or enhancer 
regions of hypoxia-responsive genes [135, 136]. HIF-
induced transcription of these genes can modulate 
oxygen consumption (e.g. pyruvate dehydrogenase 
kinase 1—PDK1) [137], erythrocyte production (e.g. 
erythropoietin—EPO) [138], angiogenesis (e.g. vascular 
endothelial growth factor—VEGF) [139], mitochondrial 
metabolism (e.g. IDH1, cytochrome c oxidase subu-
nit 4—COX4) [140, 141], and cellular quiescence (e.g. 
early growth response 1—EGR1, signal transducer and 
activator of transcription 5—STAT5) [142, 143]. Con-
versely, in regions with higher oxygen tension, HIFα 
subunits are modified by prolyl hydroxylase domains, 
von Hippel–Lindau proteins, or factor inhibiting HIF1 
enzymes to trigger degradation or inhibition of HIFα 
complexes [144–146].

Hypoxia also triggers metabolic reprogramming. While 
oxidative phosphorylation (OXPHOS) is the predomi-
nant source of energy for cells in oxygen-rich tissues, 
anaerobic glycolysis is used in hypoxic regions. HIF1α 
transcription factors upregulate the expression of glucose 
transporter 1 (GLUT1 encoded by SLC2A1) [147] and 
lactate dehydrogenase A (LDHA) [148] to increase glu-
cose intake and the downstream conversion of pyruvate 
to lactate, respectively. HIF1α further supports anaerobic 
glycolysis by upregulating PDK1 expression, which pre-
vents mitochondrial respiration and OXPHOS by inhib-
iting pyruvate dehydrogenase (PDH) [149]. Compared to 
OXPHOS, the energy generated by anaerobic glycolysis is 
very low (~ 2 ATP molecules vs. ~ 32 molecules, respec-
tively) [150], meaning that suppressed cell growth is cru-
cial for homeostasis in hypoxic conditions. OXPHOS 
also has the ability to generate ROS in the form of super-
oxide radicals (O2

−) whereby the reduction of oxygen 
produces electrons that can leak from complexes in the 
electron transport chain. Superoxides are then converted 
to hydrogen peroxide (and O2) by mitochondrial super-
oxide dismutase’s (SODs) [151, 152].
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Interestingly, ROS production within HPSCs is related 
to their proliferative state. Quiescent HSCs with low-
cycling rates are associated with low levels of ROS pro-
duction, while HSPCs with short-term repopulating 
capacity and increased cycling have higher ROS produc-
tion [153, 154]. Thus, HSCs can use the endosteal niche 
to enter a quiescent state that protects them from oxida-
tive DNA damage [154].

Effects of hypoxia in AML
The effects of hypoxia on AML cells and patients are 
complex, with in vitro and in vivo analyses yielding con-
tradictory results [155–163]. Some evidence suggests 
that AML cells are capable of proliferating rapidly within 
the hypoxic BM, while other data suggest that they can 
avoid the effects of chemotherapy by entering quiescence 
within hypoxic microenvironments.

Several studies have demonstrated that increased 
HIF1A expression in AML is associated with upregula-
tion of genes such as VEGF, GLUT1, and heme oxyge-
nase-1 (HO-1); encouraging disease progression through 
increased angiogenic, metabolic, and apoptotic pro-
cesses, respectively [164–167]. These effects are reversed 
with HIF1α inhibition, suppressing the growth of AML 
cell lines, and encouraging various apoptotic pathways 
[166]. The glycolytic switch induced by hypoxia can also 
promote AML cell growth, viability, and survival [160, 
168–172]. A distinct glycolytic profile is observed in 
AML patients, with high levels of glycolytic metabolites 
predicting poor survival [173]. Furthermore, markers of 
anaerobic glycolysis are increased in patients who do not 
achieve remission [165]. These studies suggest that AML 
cell growth is encouraged within the hypoxic BM, and 
accordingly, pre-clinical studies show that AML blasts 
can outcompete healthy myeloid cells [158]. Importantly, 
this over-proliferation of AML cells generates an increas-
ingly hypoxic environment that forces healthy HSCs to 
enter quiescence [159].

In contrast to the studies described above, hypoxia can 
also suppress AML cell growth in certain circumstances. 
Most in  vitro studies of AML cell lines have reported 
increased HIF1A expression, together with reduced 
cell growth, in the context of low oxygen environments 
[155–157]. HIF1α can encourage entry of AML blasts 
into the G0/G1 phase of the cell cycle, while upregulating 
an S-phase inhibitory protein, known as p27 [157], which 
can enhance resistance to replication-dependent drugs 
such as cytarabine (Ara-C) [174, 175]. Similarly, HIF1α-
induced GLUT1 activity has been associated with poor 
therapeutic response in AML [165, 176]. Together, these 
studies suggest that leukaemic stem cells (LSCs) may 
localise to the hypoxic BM environment following chem-
otherapy [177], where a glycolytic shift and resulting 

quiescence can protect them from treatment. To circum-
vent this possibility, pre-clinical studies are exploring the 
benefits of therapeutically targeting hypoxia-induced sig-
nalling and metabolic reprogramming in haematological 
tumours [69, 178, 179].

A role for HIF2α in AML is also becoming more evi-
dent, where blast cells in the BM of leukaemic mice 
exhibit higher HIF2A expression compared to healthy 
mice. AML cell lines support this, demonstrating that 
HIF2A deletion can decrease cell proliferation and pro-
long survival in xenograft experiments [180]. Knock-out 
in primary AML cells also lowered the engraftment and 
survival capacity of those cells [181].

In summary, the capacity of AML cells to survive and 
thrive in hypoxic environments is a contributor to poor 
prognosis [159, 182]. Within the BM, AML blasts can 
proliferate rapidly during disease progression, while LSCs 
lie quiescent to avoid chemotherapy. Optimised AML 
treatments will depend on a thorough understanding of 
hypoxia signalling in AML cells, as well as strategies to 
prevent the rapid adaptation of AML cells to changes in 
their environment.

Crosstalk between hypoxia and DNA methylation
As described above, both epigenetic regulation and 
the hypoxic BM play important roles in AML develop-
ment and progression. Here, we explore the interactions 
between hypoxia and DNA methylation in AML, as well 
as any implications for therapeutic efficacy.

Hypoxia and TETs
During active demethylation, TET enzymes require oxy-
gen to convert 5mC to 5hmC (Fig.  2a), implying that 
hypoxia may limit TET activity to create a hypermeth-
ylated state. In a study conducted by Thienpont et  al., 
5hmC levels were significantly decreased across 11 can-
cer cell lines in hypoxia (0.5% O2), with TET expres-
sion showing a positive correlation with 5hmC levels 
[54]. Further investigations using MCF7 breast cancer 
cells revealed that reductions of 5hmC in hypoxia were 
accompanied by increases in 5mC levels, with changes 
especially pronounced at gene enhancers, promoters, and 
actively transcribed regions.

HIF signalling can also influence TET expression and 
activity depending on the cancer type (Fig.  2b). For 
example, in the hypoxic microenvironment of metastatic 
melanoma and glioblastoma, knockdown of HIF1α was 
associated with increased TET2 expression and 5hmC 
levels [183], while in neuroblastoma [184, 185] and hepa-
tocellular carcinoma [186] studies, TET expression and 
5hmC levels were increased in hypoxia. The above study 
by Thienpont also performed ChIP-seq to demonstrate 
HIF binding within TET promoter regions [54].
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Until recently, the relationship between hypoxia and 
TET activity in AML had not been explored. In 2021, an 
analysis of KG-1 AML cells exposed to hypoxia (1–3% 
O2) demonstrated a positive correlation between HIF1A 
and TET2 expression [170]. Enhanced TET2 transcrip-
tion was also associated with increased binding of HIF1α 
to the TET2 promoter, which subsequently increased 
5hmC and decreased 5mC. As such, HIF1α-induced TET 
expression may override any reduction in TET activity 
caused by low oxygen availability in the context of AML.

TET3 may also be regulated by hypoxia in haematologi-
cal malignancies. In a chronic myeloid leukaemia cell line 
(K562), the enhancer for TET3 was identified as a strong 
target for HIF1α binding, with TET3 expressed at higher 
levels than TET1 and TET2 in hypoxia [187]. Deletion 
of HIF1α binding sites in the TET3 enhancer resulted in 
decreased TET3 expression that reduced cell viability and 
impaired erythroid differentiation.

Overall, these studies demonstrate that the effects of 
hypoxia on TET expression and activity may be tissue 
dependent. In some cases, like leukaemia, hypoxia can 
enhance TET2 or TET3 expression to induce hypometh-
ylation, while in others like breast cancer, it can reduce 
TET activity and promote hypermethylation across the 
genome.

Hypoxia and IDH1/2
Hypoxia can also influence the availability of the TET co-
factor, α-KG. IDH enzymes, particularly IDH2, function 
in the mitochondria to convert isocitrate metabolites of 
the tricarboxylic acid (TCA) cycle into α-KG. However, 
when cells are deprived of oxygen, IDH metabolism and 
α-KG production are altered, influencing downstream 
TET activity and hence epigenetic regulation.

While hypoxia is well known to induce a glycolytic 
switch, some studies have found that hypoxia can also 

Fig. 2  Complex interactions between hypoxia and DNA methylation. Hypoxia may influence DNA methylation via direct effects on TET activity, 
altered transcription, or metabolic reprogramming. DNA methylation may also influence hypoxia responses. A Oxygen is an essential co-factor 
for TET enzymes, and hypoxia reduces TET-mediated DNA hydroxymethylation in some cancers. B In certain cell types, hypoxia-inducible factors 
(HIFα, HIFβ) bind to hypoxia-responsive elements (HREs) in TET and DNMT promoters to induce their expression. C In hypoxia, cancer cells can 
induce a metabolic switch from oxidative phosphorylation to glutamine metabolism. In IDH wild-type cells, upregulated glutamine metabolism 
has been associated with production of 2-HG which can inhibit TET enzymes. D DNA methylation can prevent the binding of HIF complexes 
to HREs, altering transcriptional responses induced by hypoxia
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prompt a shift from OXPHOS to the glutamine-derived 
metabolic cycle (Fig. 2c). In IDH wild-type glioblastomas, 
hypoxia not only decreased TCA cycle activity, but also 
concomitantly increased glutamine-derived α-KG and 
the oncometabolite, 2-HG [188–190]. While α-KG can 
be produced by catabolism of glutamine, a non-reductive 
form of carboxylation can generate 2-HG without any 
IDH mutation [191]. Thus, hypoxia can mimic the effects 
of mutant IDH enzymes by generating 2-HG through 
alternate metabolic pathways.

In IDH-mutant cancers, the production of 2-HG can 
indirectly mimic a hypoxic state by promoting HIF1α 
activity [192]. PHDs are α-KG-dependent enzymes that 
typically ubiquitinate HIF1α in normoxic conditions. As 
a result, the production of 2-HG can reduce PHD activ-
ity, stabilising HIF1α to transcribe hypoxia-responsive 
genes. Thus, mutations in IDH have the potential to 
increase hypoxia signalling via loss of negative regulation 
[192, 193].

The production of 2-HG in primary IDH-mutant AML 
cells also inhibits the activity of cytochrome C oxidase 
(COX; Complex IV) enzymes that break down oxygen in 
the mitochondria for aerobic energy generation [194]. By 
decreasing the activity of Complex IV, oxygen consump-
tion is reduced, such that the cell’s metabolic processes 
mimic a hypoxic state. This can create a glycolytic or glu-
taminergic metabolic shift that increases the anti-apop-
totic effects of BCL-2 [195, 196], encouraging disease 
survival.

While studies in leukaemia are limited, a relation-
ship between hypoxia and IDH enzymes is beginning to 
emerge. On the one side, hypoxia itself can cause a met-
abolic switch in IDH wild-type cells that indirectly pro-
duces 2-HG and inhibits α-KG-dependent enzymes, like 
TETs. On the other hand, production of 2-HG in cells 
with IDH mutations can promote a hypoxic-like state by 
either: promoting HIF signalling through PHD inhibition 
or decreasing OXPHOS via inhibition of Complex IV 
enzymes in the mitochondria.

Hypoxia and DNMTs
Hypoxia also influences the expression of DNMT 
enzymes in cancers such as liver, prostate, and breast 
cancer. Increased activity of HIF1α in hypoxia is asso-
ciated with enhanced binding to the DNMT1 and 
DNMT3B promoters (Fig.  2b), promoting methylation 
and repression of tumour suppressor gene expression, 
such as protein sprouty homolog 2 (SPRY2) [197, 198]. 
Furthermore, DNMTs can act in a negative feedback 
loop to suppress HIF expression. In foetal lung fibro-
blasts, HIF2α-induced DNMT1 expression was followed 
by methylation of the HIF2A promoter, which in turn 
dampened the hypoxic response (Fig.  2d) [199]. Renal 

cell carcinomas and glioblastoma cell lines support this 
finding, where reduced DNMT3A expression was asso-
ciated with decreased HIF2A promoter methylation and 
increased HIF2A expression [200]. The ectopic expres-
sion of DNMT3A in hypoxia (1% O2) was also shown to 
impair cell proliferation and viability by reducing HIF2A 
mRNA expression and protein activity.

DNA methylation may also impact hypoxia responses 
by modulating HIF binding across the genome (Fig. 2d). 
In one study, DNMT-triple knockout MCF7 breast can-
cer cells demonstrated preferential binding of HIF1β to 
promoter and enhancer regions containing unmethyl-
ated HREs [201]. HIF1β ChIP-seq also demonstrated that 
methylation of these HRE sites reduced HIF1β binding 
12.4-fold.

Overall, evidence suggests that there are complex 
relationships between DNMTs, DNA methylation, and 
hypoxia in cancer. HIF heterodimers have a higher affin-
ity for unmethylated HRE motifs, implying that DNA 
methylation can limit hypoxia responses. Further, tran-
scriptional changes induced by DNMT and HIF enzymes 
can be modulated through negative feedback. Therefore, 
a greater understanding of these interactions will be criti-
cal for optimal use of epigenetic therapies in AML.

Effect of hypoxia on DNA methylation therapies in AML
Since hypoxia and DNA methylation both play impor-
tant roles in AML, the bidirectional crosstalk described 
above is likely to have important clinical implications. For 
example, the hypoxic BMME could influence the efficacy 
of AML therapies targeting DNA methylation.

Given that HMAs are incorporated into DNA during 
replication, quiescent or low-cycling LSCs in the hypoxic 
BM niche may not respond to treatment. Consistent with 
this idea, MDS and AML patients who did not respond 
to AZA had a higher proportion of quiescent progeni-
tor cells in the BM [87–92, 202, 203]. These LSCs could 
later resume cycling and promote relapse, suggesting that 
the long-term efficacy of HMAs depends upon uptake 
in cycling AML cells [127, 204–206]. One interesting 
pre-clinical study altered administration schedules to 
increase the proportion of cells exposed to HMA treat-
ment during S-phase [206]. Continuous, twice-weekly 
administration of DAC was found to be more effective 
than 5 consecutive days of treatment followed by 3 weeks 
off therapy, suggesting that the treatment schedule used 
in current clinical practice may be sub-optimal.

HMA co-treatment schedules that increase AML cell 
cycling are also being considered. For example, E-selec-
tin inhibitors may enhance HMA efficacy by forcing 
AML cells to move out of the hypoxic BM and resume 
cycling [207], encouraging the uptake of HMAs and a 
better treatment response. IDH1 inhibitors combined 
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with AZA have also shown promise in treating AML by 
increasing the cycling of LSCs, allowing AZA to more 
effectively target these cells [208].

The key to improving treatment efficacy and long-term 
survival for AML patients may lie in combination thera-
pies that target not only cancer cell proliferation, survival, 
or DNA methylation changes, but also their interactions 
with the hypoxic BM microenvironment. Such a treat-
ment regime may aid in preventing or at least delaying 
relapse in AML.

Conclusion
Hypoxia signalling within the BMME, and dysregulation 
of DNA methylation, both contribute to the development 
of AML. As outlined above, complex bidirectional inter-
actions between hypoxia and DNA methylation are likely 
to influence AML cell proliferation, with important clini-
cal implications. Specifically, epigenetic therapies such as 
HMAs may have limited efficacy in the hypoxic BM due 
to reduced cell cycling in this microenvironment. Con-
sideration of the interactions between the epigenome 
and the microenvironment in AML will lead to improved 
outcomes for patients.
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