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HYPOTHESIS

A quantum physics layer of epigenetics: 
a hypothesis deduced from charge transfer 
and chirality‑induced spin selectivity of DNA
Reiner Siebert1,2*, Ole Ammerpohl1, Mirko Rossini2,3, Dennis Herb3, Sven Rau4, Martin B. Plenio2,5, 
Fedor Jelezko2,6 and Joachim Ankerhold2,3 

Abstract 

Background  Epigenetic mechanisms are informational cellular processes instructing normal and diseased pheno-
types. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA 
methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence 
of an additional quantum physics layer of epigenetics.

Results  We base our hypothesis on theoretical and experimental studies showing quantum phenomena to be 
active in double-stranded DNA, even under ambient conditions. These phenomena include coherent charge trans-
fer along overlapping pi-orbitals of DNA bases and chirality-induced spin selectivity. Charge transfer via quantum 
tunneling mediated by overlapping orbitals results in charge delocalization along several neighboring bases, which 
can even be extended by classical (non-quantum) electron hopping. Such charge transfer is interrupted by flip-
ping base(s) out of the double-strand e.g., by DNA modifying enzymes. Charge delocalization can directly alter DNA 
recognition by proteins or indirectly by DNA structural changes e.g., kinking. Regarding sequence dependency, 
charge localization, shown to favor guanines, could influence or even direct epigenetic changes, e.g., modification 
of cytosines in CpG dinucleotides. Chirality-induced spin selectivity filters electrons for their spin along DNA and, thus, 
is not only an indicator for quantum coherence but can potentially affect DNA binding properties.

Conclusions  Quantum effects in DNA are prone to triggering and manipulation by external means. By the hypoth-
esis put forward here, we would like to foster research on “Quantum Epigenetics” at the interface of medicine, biology, 
biochemistry, and physics to investigate the potential epigenetic impact of quantum physical principles on (human) 
life.
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Introduction
Physiologic and disease development in humans, like in 
other living creatures, is strongly associated with epi-
genetic modifications, which link the DNA sequence 
with responses to external stimuli [1, 2]. Common to 
all epigenetic mechanisms is that they are informa-
tional processes associated with DNA, which, e.g., can 
regulate gene activity but, by definition, do not alter 
the DNA sequence itself. The hitherto widely acknowl-
edged epigenetic mechanisms typically rely on chemi-
cal processes, including DNA methylation, various 
modifications of histones, or chromatin remodeling [1].

Nevertheless, besides chemical processes, also physi-
cal principles apply to DNA, and quantum physical 
processes, particularly proton tunneling (for a glossary 
of quantum physics terms, see Table 1), have long been 
linked to the generation of DNA mutations. Already 
Watson and Crick assumed in their landmark paper on 

the structure of DNA “that the bases only occur in the 
structure [i.e., the double-helix] in the most plausible tau-
tomeric forms” [3]. Löwdin put forward a hypothesis in 
1963 that tunneling of protons might contribute to the 
occurrence of mutations in DNA [4]. The concept of pro-
ton tunneling in mutation induction has been meanwhile 
further underpinned by a series of theoretical and experi-
mental modeling studies providing evidence that quan-
tum mechanisms can contribute to mutation induction at 
ambient conditions [5–8]. Nonetheless, due to energetic 
reasons, the tautomeric forms induced by quantum tun-
neling are transient with a short lifespan and, in order not 
to tunnel back to the original form, need fixation during 
DNA replication to end up in a bona-fide mutation on a 
cellular level [5–8]. Thus, though the tautomeric occupa-
tion probability has been recently reported as consider-
ably large, the overall quantitative biological impact of 
proton tunneling in introducing sequence alterations 
warrants further discussion [8].

Table 1  Key physical phenomena discussed in this hypothesis paper

Charge hole: Is a concept used to describe the movement of positively charged "absence" in a certain material. A hole can 
be thought of as a missing electron, or a vacancy in the valence band (or HOMO in a molecule) of a material, 
that behaves as a mobile positive charge carrier. This hole can move through the material as if it were a particle 
carrying a positive charge

Chirality-induced spin selectivity (CISS): Phenomenon in which the spin of an electron passing through a chiral molecule (a molecule that is not 
superimposable on its mirror image) is preferentially oriented in a certain direction. In other words, CISS refers 
to a dependence of the spin of an electron on the chirality of a molecule through which it passes. This effect 
has been observed in a variety of organic molecules, including amino acids, DNA, and proteins

Coherence/decoherence: Quantum coherence is a property of quantum systems that refers to the ability of different quantum states 
to interfere with each other, resulting in a pattern of constructive and destructive interferences. In contrast, 
decoherence refers to the loss of coherence in a quantum system due to its interaction with its environment. 
As a quantum system interacts with its surroundings, the coherence of the system can be disrupted, causing 
the quantum system to behave more like a classical system

Coupled harmonic oscillators: A harmonic oscillator is a system that exhibits simple harmonic motion, such as the motion of a mass 
on a spring. When two or more harmonic oscillators are coupled, meaning they interact with each other 
in some way, the resulting system is known as a harmonic chain. The interaction between oscillators can 
lead to the formation of collective excitations (known as phonons), energy transfer between oscillators, and, 
for quantum oscillators, the creation of entangled states

Exciton: In physics, an exciton is a bound state of an electron and a positively charged "electron hole" that are attracted 
to each other by the Coulomb force. When an atom or molecule is illuminated by an external source, such 
as light, an electron can be excited to an energetically higher lying state. This creates an electron–hole pair, 
where the vacancy (hole) is the lower energy state. This pair of charges then interacts to form a so-called 
exciton

Proton tunneling: Also known as “proton transfer,” is a quantum mechanical phenomenon where a proton (H +) moves 
through an energy barrier that it would not be able to overcome according to classical physics. In the case 
of proton tunneling, a proton can move through a barrier, such as a hydrogen bond, to form a new (covalent) 
bond with another atom or molecule. In DNA replication, proton tunneling has been proposed as a mecha-
nism for ensuring that the correct nucleotide bases are paired together, helping to prevent mutations

Quantum delocalization/localization: Quantum delocalization refers to the spread-out nature of a quantum particle’s wave function over a larger 
region of space. This phenomenon can also be related to wave-like superposition. Quantum localization, 
on the other hand, refers to the confinement or localization of a quantum particle within a small region 
of space

Superexchange: Transfer of electrons via quantum tunneling from a donor to an acceptor through an intermediate and ener-
getically higher lying ‘bridge’. The concept of superexchange can be applied to biological systems, particularly 
in the context of electron transfer reactions in proteins and enzymes

Tautomer: Is a type of isomer, a molecule with the same chemical formula as another molecule, with a different arrange-
ment of atoms, specifically isomers that differ in the placement of a proton (H +) and the double bond 
within the molecule
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Hypothesis
In contrast to the impact of quantum effects on muta-
tional mechanisms, the role of quantum physical 
principles in epigenetics has not yet been deeply inter-
rogated [9, 10]. Nevertheless, as discussed in detail 
below, theoretical modeling and experimental studies 
provide compelling evidence for a range of physical 
phenomena leading to altered properties of DNA mol-
ecules beyond mutation and chemical modification. 
External factors can trigger these physical phenomena 
and potentially influence gene expression. Thus, we 
here hypothesize (I) that a layer of epigenetics driven 
by quantum physical processes in DNA exists; (II) that 
two (potentially interacting) quantum physical pro-
cesses (not exclusively) contributing to this layer of epi-
genetics are (a) coherent charge/exciton transfer along 
DNA and (b) chirality-induced spin selectivity by DNA 
(see Table  1); (III) that the quantum physical layer of 
epigenetics can interfere with and is not erased by well-
recognized chemical epigenetic layers like DNA and 
histone modification or chromatin structure; and (IV) 
that the quantum physical layer acts under ambient cel-
lular conditions.

General considerations for the hypothesis
We are building our hypotheses on the fact that DNA is a 
chiral molecule with a vibrating and, in general, dynami-
cal structure (rather than a rigid structure as might be 
suggested by the classical Watson–Crick model) (Fig. 1A) 
[3, 11–16]. Moreover, it is known that in a double-helical 
structure of a B-DNA with proper base pairing, the pi-
orbitals of neighboring bases of a strand tend to overlap. 
Thus, electron clouds (i.e., delocalized negative charges) 
shared by neighboring DNA bases can be formed 
(Fig.  1B) [17–23]. This tendency is counterbalanced by 
the vibrating dynamics of DNA and its backbone which 
typically suppresses delocalization. Between these clouds, 
charge transfer and charge separation can be induced by 
a tunneling mechanism or classical hopping, which leaves 
a (positively) charged hole on the donor base [17–22]. 
The quantum tunneling, including superexchange phe-
nomena, between spatially separated areas differs from 
thermally-induced (i.e., non-quantum) hopping in that 
the latter relies on overcoming classical energy barriers 
for electron (charge) movement (Fig. 1B) [17–22, 24–26]. 
Finally, it must be recognized that at physiological tem-
peratures, DNA is embedded in an environmental "bath" 

Fig. 1  A Schematic visualization DNA as harmonic oscillator in a cell. Far from being a rigid, isolated stairwise structure of subsequent nucleobases, 
DNA is considered as an elastic complex, in constant interaction with surrounding molecules (indicated by water molecules in the example) 
and the thermal excitations (indicated by grey temperature gradient) coming from its background. B DNA with stacking pi-orbitals allowing 
electron tunneling. Schematic representation of DNA double strand. Each sphere represents a nucleotide along the strands, surrounded 
by its Lowest Unoccupied Molecular Orbital (LUMO) populated by an excited electron. The overlap of close by orbitals (blue arrows) allows 
the electron to move from a base to the other through quantum tunneling phenomena. Eventual lack of orbital overlap (domain walls) prevents 
this phenomenon to happen, resulting in the electron only managing to populate the neighboring base through classical hopping processes, 
thermally enhanced. In this representation, we use pi-orbitals as example of LUMO as in the literature there are many references to these 
orbitals as being the most suitable for our modeling. C Chirality-induced spin selectivity by DNA. The chiral structure of the DNA helix is such 
that electrons with opposite spin are pushed in different directions along the chain, resulting in an effective quantum spin selectivity phenomenon 
within the DNA structure. D Guanine as charge trap in DNA. The dynamics of an excited electron along the chain (decided by the energy landscape 
characterizing the strand) is usually dragged toward sites containing guanine bases. The cytosine on the opposite strand of the guanine is prone 
to epigenetic modification (e.g., methylation) in a CpG context. Whereas cytosine methylation itself does not discontinue charge transfer (but might 
change its dynamics), flipping out the base for modification in the enzymatic process can perturb charge transfer
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consisting of ionic and dipolar molecules (e.g., water) 
that can interact with DNA at a quantum level by alter-
ing the geometrical and electrical properties of the DNA 
structure [27, 28], thereby also suppressing quantum 
coherence (Fig. 1A, Table 1) [29–33].

Supporting evidence for the hypothesis
Charge and exciton transfer in DNA
On a theoretical level, we and others investigated the 
quantum diffusion of single charges, excitons, and 
the relation to spin selectivity along and across both 
strands of DNA under ambient (physiologic) condi-
tions using tight-binding lattice models representing 
the two-strands of DNA embedded in thermal envi-
ronments mimicking solvent and/or residual molecu-
lar degrees of freedom (backbone) (Fig.  1C) [34, 35 
Rossini et al., in preparation]. Such models predict that 
even at moderate temperatures coherence (tunneling) 
of charges over a few nucleobases may play an impor-
tant role depending on the energetic profile deter-
mined by the sequences and on proper conformations 
of neighboring bases. Strong evidence exists that the 
intra-strand quantum features may survive on relatively 
long-time scales compared to bases-intrinsic electronic 
processes. In addition, a series of investigations using 
a broad range of experimental designs has documented 
relatively large charge mobility over rather long molec-
ular distances (up to 34 nm, i.e., over up to 100 bases, 
corresponding to a picoseconds time scale for charge 
dynamics) in DNA [17–22]. An efficient charge transfer 
prerequisite is proper stacking of the bases and double-
stranded DNA ensuring proper stacking of pi-orbitals 
[17–22, 36, 37]. Perturbation of the DNA stack by e.g., 
mismatches, some DNA binding proteins, or conforma-
tional changes hampers charge transfer, thus, creating 
“sections” in the DNA defined through their differen-
tial charge transfer potential [38–40]. In line with the 
transfer along the pi-orbitals of the nucleobases in the 
long axis of the DNA, perturbation of its sugar DNA 
backbone seems not to affect charge transfer, arguing 
for a sequence-related charge transfer pattern in DNA 
[37]. Current data suggest the coexistence of two mech-
anisms of charge transfer along DNA: coherent tun-
neling over short distances of 3 to 4 bases fostered by 
vibrating movements of nucleobases with overlapping 
pi-orbitals and incoherent (thermal) classical hopping 
between domains of such well-coupled stacked bases 
[17–22]. Charge transfer over even longer distances 
(4  nm) is facilitated by the interaction of these base 
stacks triggered by external light. Further, light-induced 
electron transfer events between redox active metal 
complexes bound to DNA suggest strong participation 

of the extended pi-orbital network of DNA [40]. In 
sum, these charge dynamics lead to shorter (coher-
ent) and longer distance (incoherent) charge transfer, 
which change the electrostatic properties of regions in 
the DNA [17–22, 41]. Besides altering the structure of 
the DNA (e.g., kinks, bends), such local charge imbal-
ances can potentially affect proper sequence and/or 
conformation-dependent binding of proteins and, thus, 
the regulation of transcriptional processes [38, 41, 42]. 
This may be particularly true in a cell environment 
under oxidative stress [21]. In reverse, protein bind-
ing has been shown to affect charge transfer, which 
can be exploited for diagnostic purposes [43]. Moreo-
ver, recent reports indicate that human DNA primase 
utilizes electron transfer through dsDNA to determine 
the DNA replication activity [44]. Notably, there seem 
to exist different probabilities for certain genomic 
domains to be involved in charge transfer processes, 
thus more likely displaying local charge imbalances [11, 
17–22, 45]. Whether such physically “cold” and “hot” 
DNA areas transfer into special biological properties 
warrants further investigation.

Chirality‑induced spin selectivity by DNA
Chirality is a geometric property of certain biological 
molecules, including DNA, describing that such mole-
cules and their mirror images are non-superimposable. A 
physical property of chiral molecules is that the transfer 
of electrons also depends on their spin degree of freedom, 
e.g., by filtering electrons with different spin orientations 
when passing through those molecules such that an accu-
mulation of electrons with the same spin orientation 
appears in certain areas (Fig. 1C) [46]. The in-depth phys-
ical principles underlying this so-called chirality-induced 
spin selectivity have yet to be wholly understood [47–49]. 
Remarkably, spin dependent charge transfer leading to 
spin polarization and charge transfer through double-
stranded DNA have been experimentally documented 
indicating that charge transfer and chirality-induced spin 
selectivity are interconnected physical principles in DNA. 
The impact of this connection on chemical or structural 
DNA properties, however, requires further investigation. 
Findings describing that spin-dependent charge transfer 
is enhanced through oxidatively damaged DNA, which, 
as discussed above, is less conductive in charge trans-
fer, might indicate that the spin-selectivity could also be 
linked to the otherwise more insulating sugar backbone 
or even the water spine of DNA [50]. CISS might also 
reduce the coherent backscattering of electrons resulting 
in enhanced charge transfer through DNA. Whatever the 
mechanisms are, spin selectivity can e.g., affect spin-sen-
sitive interactions of DNA [51, 52].
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Interaction of the quantum physical with chemical 
epigenetics layers
At least for charge transfer in DNA, it has been experi-
mentally shown that it is not prevented or grossly hin-
dered by DNA methylation or binding to histones [39, 
50]. Moreover, if protein binding to DNA does not affect 
proper base stacking, it preserves coherent charge trans-
fer [38]. Thus, classical chemical mechanisms do not 
principally prevent quantum physical epigenetic effects. 
On the other hand, some chemical epigenetic processes 
might interfere with physical phenomena: binding of 
proteins, like TBP, transcription factors, CTCF, or cohes-
ins, which kink, bend, or otherwise affect the pi-orbital 
stacking disrupt charge transfer [38, 53, 54]. Remark-
ably, prominent examples of proteins disrupting proper 
pi-stacking are many writers, readers, and erasers of the 
modified DNA bases (e.g., a series of DNA methylases 
and demethylases), which flip a target nucleobase within 
the DNA for their recognition and/or modification [55]. 
Hence, charge transfer is attenuated by such epigenetic 
modifiers [38, 56]. In turn, it has not escaped our atten-
tion that the guanine base has been identified in our and 
also in other models as a charge trap (holes) as guanine is 
the most easily oxidized DNA base (Fig. 1D) [17, 20–22, 
57, Rossini et  al. in preparation]. Consequently, charge 
holes (i.e., a positive charge) are more stable on a G:C 
base pair, an effect even enhanced in guanine doublets 
and triplets named “charge sinks”. Considering that the 
cytosine paired with the guanine in both strands of the 
CpG dinucleotide is the preferred base of DNA modifi-
cation, it is intriguing to speculate that charge transfer, 
charge delocalization, and charge separation are involved 
in directing or facilitating this epigenetic change. Besides 
altering the DNA structure or spin-selective binding of 
proteins, many other effects of quantum physical changes 
in the DNA can be envisioned to change the transcrip-
tional activity of the genome. Nevertheless, these yet lack 
experimental evidence.

Action of a quantum physical layer under ambient cellular 
conditions
For decades, it has been postulated that time scales for 
decoherence are too short for quantum mechanics to 
apply to macromolecules under ambient conditions, like 
DNA. Nevertheless, as outlined above, current mod-
els taking into account physiological temperatures and 
charge decoherence by the environment as well as experi-
mental findings at corresponding conditions and using 
DNA in solution (and even embedded in histones), sug-
gest quantum effects to be active in DNA in living cells. 
Vice versa, DNA in living cells is exposed to a wealth of 
environmental intracellular and extracellular physical 

stimuli, which can trigger and modify the processes out-
lined above, ranging from the radiation of various wave-
lengths and magnetic fields up to reactions providing 
electrically charged radicals. A quantum physics layer of 
epigenetics may help to explain the physiologic responses 
to such threads.

Conclusion and outlook
In summary, we think there is sufficient evidence for pos-
tulating a quantum physics layer of epigenetics, which we 
propose to name “Quantum Epigenetics". Our hypoth-
esis on this layer’s existence, along with some features, 
is built on theoretical and experimental data from many 
groups. Remarkably, whereas physics principles in DNA 
have been extensively explored until the early years of 
this millennium, research on quantum effects in cellular 
DNA seems thereafter to have mainly focused on muta-
tional mechanisms. It seems intuitive to us that the more 
volatile epigenetic landscape is much more susceptible 
to the transient and partly stochastic quantum effects. 
These, in turn, might be susceptible to induction or influ-
ence by external stimuli, as proposed for irradiation 
[58]. The principles outlined herein offer, on one hand, 
the opportunity to further understand how information 
in DNA is bringing the phenotype (including diseases) 
into being and how this can be influenced by external 
factors. As an additional part, charge transfer in DNA–
RNA hybrids and quantum features of RNA molecules 
might extend the present hypothesis toward more epi-
transcriptomic aspects [59, 60]. On the other hand, the 
charge transfer and spin properties can be explored for 
(epi)genetic and functional diagnostics, as it has already 
been documented for charge transfer and DNMT1 activ-
ity [43]. Finally, the physical principles outlined above 
are, in principle, prone to external manipulation, e.g., in 
the context of treatment.
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