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The association between prenatal famine, 
DNA methylation and mental disorders: 
a systematic review and meta-analysis
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Abstract 

Background Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intra-
uterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the men-
tal health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders 
and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health 
of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present system-
atic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation, 
and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prena-
tal famine exposure is prospectively linked to mental disorders.

Methods We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records 
up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy, 
examining the impact of prenatal famine exposure on the offspring’s DNA methylation and/or mental disorders 
or symptoms.

Results The systematic review showed that adults who were prenatally exposed to famine had an increased 
risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure 
and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA meth-
ylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal 
famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia fol-
lowing prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/
data processing approaches and/or unavailable data.

Conclusion Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methyla-
tion changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine, 
and immune processes may be a mechanism that promotes the development of mental disorders such as schizo-
phrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide, 
increasing the risk of famine and thus also of negative effects on mental health.

Keywords DNA methylation, Mental disorders, Prenatal famine exposure, Epigenetic, Pregnancy

Background
Unfavorable environmental conditions during pregnancy 
have been shown to promote the onset of mental disor-
ders in the offspring [1–3] via epigenetic mechanisms 
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[4–6]. One epigenetic mechanism that can be changed by 
adverse intrauterine exposure and influences the develop-
ment of offspring health is deoxyribonucleic acid (DNA) 
methylation [5, 7–10]. DNA methylation is the addition of 
methyl groups to cytosine-guanine dinucleotides (CpG), 
with the potential to regulate gene expression [11–15]. 
For instance, Palma-Gudiel et al. [16] reported increased 
methylation of the glucocorticoid receptor gene (NR3C1), 
a gene involved in the regulation of the hypothalamic–
pituitary–adrenal (HPA) axis in the offspring, following 
exposure to prenatal stress. Increased NR3C1 methyla-
tion has, in turn, been associated with mental disorders 
[17–19] such as depression [20].

Undernutrition in pregnant women is an unfavorable 
environmental condition that can affect the intrauterine 
development and may thus have long-lasting detrimental 
consequences for the mental health of the offspring later 
in life [21]. The effect of prenatal undernutrition on men-
tal health can be analyzed through natural experiments 
(quasi-experimental studies), in which undernutrition 
(e.g. famine) occurs naturally in a specific population [22, 
23]. Meta-analytic results have already demonstrated an 
increased risk of suffering from psychotic, affective, and 
personality disorders in adults who were exposed to fam-
ine during prenatal development [24].

One important mechanism to explain how unfavorable 
maternal food consumption leads to an increased suscep-
tibility to mental disorders in the offspring in adulthood 
may be altered DNA methylation patterns [25–27]. Rij-
laarsdam et  al. [28] reported that an unhealthy high-fat 
and high-sugar prenatal diet was positively associated 
with changes in the insulin-like growth factor gene (IGF2) 
in the offspring, which was in turn related to increased 
attention deficit hyperactivity disorder (ADHD) symp-
toms in adolescence [28]. Moreover, hypomethylation 
of this IGF2 gene has been found in adult offspring who 
were prenatally exposed to famine [29]. Less is known, 
however, about whether altered DNA methylation medi-
ates the effects of prenatal famine exposure on mental dis-
orders in the offspring.

In summary, undernutrition during pregnancy appears 
to increase the susceptibility to mental disorders in the 
offspring. However, the aforementioned meta-analysis 
did not include a quality assessment [24]. To date, there-
fore, no quality assessment has been conducted on the 
myriad of published studies examining the effects of pre-
natal famine exposure on offspring mental health. More-
over, it remains to be elucidated whether changes in DNA 
methylation are the mechanism linking prenatal famine 
exposure to the development of mental disorders in adult 
offspring. The purpose of this study is thus to provide the 
first systematic review of the existing literature on the 
impact of prenatal famine exposure on offspring mental 

health and altered DNA methylation, and to integrate the 
findings by means of a meta-analysis.

Methods
Search strategy
We conducted a literature search of the databases Pub-
Med and PsycINFO to identify relevant records up to 
September 2022. The search strategies included the 
words (a) “famine” and related terms, (b) “pregnancy” 
and related terms, (c) “DNA methylation” and related 
terms, or (d) “mental disorders” and related terms. The 
search followed a systematic approach in accordance with 
the Preferred Reporting Items for Systematic review and 
Meta-Analysis Protocols (PRISMA-P) guidelines [30]. 
This systematic review and meta-analysis was registered 
on the Open Science Framework (OSF): osf.io/3hn5p.

Screening and selection procedure
First, duplicates of the identified records were removed. 
Titles and abstracts were screened, and records that 
did not meet the eligibility criteria, such as non-human 
studies and non-empirical research, were excluded. The 
articles yielded by the literature search were screened 
and selected using the following inclusion criteria: (1) 
offspring whose mothers experienced famine during 
pregnancy and including either (2) a measure of DNA 
methylation or (3) a measure of psychopathology. A full-
text reading of all remaining articles was performed. 
Studies were included in the meta-analyses if they (1) 
used the same questionnaire to measure symptoms of 
psychopathology, (2) included a categorical outcome 
(mental disorders) irrespective of which clinical inter-
view was used to establish the diagnosis, and (3) provided 
adequate data for statistical analysis.

Data extraction
Included articles were examined for information about 
the first author, year of publication, cohort, sample 
description, assessment of symptoms of psychopathol-
ogy, and main results. Articles on DNA methylation were 
examined for information about chromosome number 
and location, gene, number of CpGs, method for DNA 
methylation analysis, and main results. Data extraction 
was performed by one of the authors (HE) and a research 
assistant. Risk of bias was assessed using a modified ver-
sion of the Newcastle–Ottawa scale [31, 32], containing 
the following seven items: sampling representativeness, 
sample size, exposure definition, famine severity assess-
ment, confounding adjustment, outcome assessment, 
and statistical methods. Each item was scored as either 
good, fair, or poor [31]. The items outcome assessment 
and sample size were modified for studies on mental dis-
orders, epigenome-wide DNA methylation analyses, and 
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targeted candidate gene analyses (see Additional file  1: 
Tables S1–S3). Risk of bias assessment was performed by 
one of the authors (HE) and a senior researcher from our 
workgroup.

Data analysis
To assess the association between prenatal famine expo-
sure and symptoms of psychopathology or mental dis-
orders in adulthood, we calculated the effect size across 
studies as the overall pooled log10 odds ratio (logOR) of 
the number of individuals with and without symptoms 
or a mental disorder in the prenatal famine group and in 
the control group. The logOR was used for the depres-
sion and schizophrenia studies. The control group con-
sisted of offspring who were exposed to famine during 
childhood (non-prenatal famine exposure) and/or off-
spring who were not exposed to famine at all (non-expo-
sure). For two studies that used the Hospital Anxiety and 
Depression Scale (HADS), we used means and standard 
deviations to calculate Hedges’ g. One of these studies 
did not report the specific standard deviations for each 
of the two subscales of the HADS (anxiety and depres-
sion) and instead only provided overall standard devia-
tions, which were therefore used as a reference. Results 
were considered statistically significant if the p value was 
< 0.05. Meta-analyses were conducted if at least two stud-
ies used the same outcome measurement. Studies with 
insufficient data were only included in the systematic 
review, and not in the meta-analyses. Random-effects 
meta-analyses were conducted using the meta-analy-
sis function integrated in SPSS version 28.0.1.1, which 
also allowed us to create forest plots. The Q and  I2 sta-
tistics were calculated to assess the heterogeneity of the 
included studies. Subgroup analyses were performed to 
detect whether a more homogenous effect size could be 
calculated. Following the Cochrane Handbook for Sys-
tematic Reviews of Interventions [33], when 10 or more 
studies were included in our meta-analyses, we used the 
trim-and-fill procedure and visual inspection of funnel 
plots to detect publication bias [34].

Results
Search results
The literature search yielded 2697 articles, of which 
239 were duplicates and removed. Of the remaining 
2458 articles, a further 2382 were excluded due to pub-
lication in a language other than English, non-empirical 
research, or irrelevant title/abstract. Of the final 76 arti-
cles assessed for eligibility, 39 were excluded for as they 
did not assess the outcome, only examined exposure 
to nutrient deficiency, were exclusively polymorphism 
analyses, or assessed different exposure periods. Thus, 
in total, 37 studies were eligible for data extraction and 

were included in this systematic review. Of these stud-
ies, 22 reported effects of prenatal famine exposure on 
symptoms of psychopathology or mental disorders, and 
14 studies reported effects of famine during pregnancy 
on DNA methylation. The remaining study analyzed the 
mediating effect of DNA methylation on mental disor-
ders in adults prenatally exposed to famine. Eleven of the 
37 studies reported sufficient data to be included in meta-
analyses. The study selection is summarized in Fig. 1.

Study characteristics
Characteristics of the included studies are shown in 
Tables  1, 2, 3 and 4. Articles were published between 
1992 and 2022. All participants were adults. The sample 
size ranged from 13 to 494,684. All studies focused either 
on the Dutch Famine (1944–1945) or the Chinese Famine 
(1959–1961), with one exception, the Bangladesh Famine 
(1974–1975). Individuals without prenatal famine expo-
sure were either born after the famine (non-exposure: 
had not experienced famine in their life) or before the 
famine (non-prenatal exposure: experienced famine dur-
ing infancy, childhood, adolescence, or adulthood). Most 
DNA methylation studies (67%) used either sibling or 
time controls. Sibling controls were siblings of prena-
tally exposed adults and were mostly younger than their 
exposed siblings. Time controls were adults who were 
born either before or after the famine. As the respective 
authors did not specify how many control adults were 
in each group, it was not possible to assign them to the 
non-prenatal exposure or non-exposure group. Pericon-
ceptional exposure referred to exposure to famine during 
conception and the 1st trimester.  

Risk of bias assessment
The risk of bias assessment is presented in Additional file 2: 
Table S4. Quality ratings ranged from poor to good, with 
only two studies rated good on all study items [35, 36].

Of the studies examining symptoms of psychopathol-
ogy and mental disorders, most scored highest on the 
statistical methods item. Most studies (86%) used proper 
statistical analyses and conducted sensitivity analyses. 
The sample size item was generally rated as good for the 
mental disorders or symptoms studies (77%). Of the 22 
studies, 14 studies (64%) defined famine exposure both 
quantitatively and qualitatively. Half of the studies (50%) 
used a good outcome assessment by a psychiatrist or clini-
cal psychologist according to International Classification 
of Diseases (ICD) or Diagnostic and Statistical Manual of 
Mental Disorders (DSM) criteria. Only 36% of the studies 
adjusted for confounders and explained why they did so. 
32% of the studies had good sampling representativeness. 
Sampling representativeness was rated as fair if the sample 
was drawn from only one hospital registry or survey. The 
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lowest ratings were achieved for the item famine sever-
ity assessment, with 55% of the studies failing to include 
excess death rates (EDR), cohort size shrinkage index 
(CSSI) or global hunger index (GHI) to measure the sever-
ity of famine (for more information, see [37]).

Of the DNA methylation studies, most (73%) used 
proper statistical analyses and conducted sensitivity analy-
ses. Adjustment for confounding factors was good in 53% 

of these studies. Only 27% defined famine exposure both 
quantitatively and qualitatively, and only 27% used a good 
description of the DNA methylation assay. A small propor-
tion of the studies (13%) had good sampling representative-
ness and sample size. None of the DNA methylation studies 
were rated as showing a good famine severity assessment 
(0%).

Fig. 1 Screening and selection process of studies displayed by a PRISMA flowchart
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Effects of prenatal famine exposure on offspring 
symptoms/mental disorders
Twenty-two studies investigated the effect of prenatal 
famine exposure on offspring symptoms of psychopathol-
ogy and/or mental disorders.

As shown in Table 1, one study found higher psychopa-
thology, as measured with the Mental Health Inventory 
(MHI-5) in individuals who experienced famine during 
prenatal development compared to individuals who did 
not [38]. Five studies reported increased depressive symp-
toms [39–43] in individuals with prenatal famine expo-
sure compared to individuals with non-prenatal exposure 
and/or non-exposure. One study reported an associa-
tion between prenatal exposure to famine and increased 
anxiety and depressive symptoms, as measured with the 
HADS [44]. In contrast, another study found no signifi-
cant association between prenatal famine exposure and 
anxiety and depressive symptoms (HADS) as compared to 
non-prenatal exposure and non-exposure [45].

With regard to mental disorders, one study found a 
generally increased risk of mental disorders [46] after 
prenatal exposure compared to non-exposure. Six studies 
consistently reported an increased risk of schizophrenia 
after prenatal exposure compared to non-prenatal and/or 
non-exposure to famine [35, 36, 47–50]. In contrast, one 
study found a higher risk of developing schizophrenia in 
adults with non-exposure to famine than in adults with 
prenatal exposure [51]. An increased risk of major affec-
tive disorders was found to be linked to in utero exposure 
to famine as compared to non-exposure in two studies 
[52, 53]. One study reported an increased risk of antiso-
cial personality disorder [54] and another an increased 
risk of schizoid personality disorder [55] in men after 
prenatal exposure compared to non-exposure to famine. 
Addictive disorders [56] and addictive behaviors [57] in 

adults were related to prenatal famine exposure but not 
to non-prenatal famine exposure.

In terms of depressive symptoms, two studies [39, 
42] provided sufficient data for meta-analysis based on 
OR, with results varying by exposure period. On the 
one hand, adults prenatally exposed to famine showed 
a decreased risk of depressive symptoms compared 
to adults with no exposure to famine and adults who 
were exposed to famine after gestation (logOR = 0.96, 
95% CI [0.79, 1.14]; Z = 10.75, p < 0.001; Q = 8.56, 
 I2 = 88%). On the other hand, adults prenatally exposed 
to famine showed an increased risk of depressive symp-
toms compared to adults with no exposure to famine 
(logOR = 1.14, 95% CI [0.94, 1.34]; Z = 11.31, p < 0.001; 
Q = 6.87,  I2 = 86%). In terms of anxiety and depressive 
symptoms as measured by the HADS, meta-analysis 
confirmed the null-findings (HADS-A: g = 0.08, 95% CI 
[− 0.05, 0.21]; Z = 1.17, p = 0.241; Q = 0,  I2 = 0%; HADS-
D: g = 0.06, 95% CI [− 0.08, 0.19]; Z = 0.84, p = 0.403; 
Q = 0.23,  I2 = 0%). Meta-analysis confirmed the increased 
risk of suffering from schizophrenia in adulthood after 
prenatal famine exposure compared to non-prenatal 
exposure and non-exposure together (logOR = 1.13, 95% 
CI [0.97, 1.29]; Z = 13.97, p < 0.001). Heterogeneity was 
high (Q = 9.02,  I2 = 89%), see Fig. 2. The results remained 
unchanged when subgroup analyses were conducted 
for the Dutch and the Chinese famine (two Dutch fam-
ine studies: logOR = 1.21, 95% CI [0.85, 1.57]; Z = 6.57, 
p < 0.001; Q = 1.13,  I2 = 11% and five Chinese famine stud-
ies: logOR = 1.12, 95% CI [0.92, 1.33]; Z = 10.74, p < 0.001; 
Q = 18.25,  I2 = 95%). Insufficient data were available for 
meta-analyses on major affective disorders, antisocial 
and schizoid personality disorder, as well as addictive 
disorders.

Fig. 2 Forest plot of studies comparing adults prenatally exposed to famine with adults non-prenatally and non-exposed to famine regarding risk 
of developing schizophrenia. Conducting subgroup analyses for the Dutch and the Chinese famine did not alter the results
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Effects of prenatal famine exposure on offspring DNA 
methylation (epigenome-wide analysis)
Nine studies, which are listed in Table  2, investigated 
DNA methylation by conducting (epi)genome-wide anal-
ysis in adults prenatally exposed to famine [58–66]. All of 
these used whole blood as tissue.

Four studies determined DNA methylation using the 
HumanMethylation450 BeadChip microarray, which 
has a coverage of over 450,000 sites [67, 68]. The first of 
these four studies did not find significantly differentially 
methylated regions (DMRs) in adult offspring following 
prenatal famine exposure as compared to non-prenatal 
exposure and non-exposure [59]. The second study iden-
tified that prenatal exposure to famine during early ges-
tation was significantly associated with 613 DMRs as 
compared to non-exposure [58]. The authors specifically 
reported hypomethylated regions in four genes, namely 
CCDC51, TMA7, ENO2 and ZNF226 [58]. The third 
study found a variety of hyper- (FAM150B/TMEM18, 
PPAP2C, SLC38A2) and hypomethylated (OSBPL5/MRG-
PRG) genes in adult offspring exposed to famine during 
early gestation as compared to time and sibling controls. 
In addition, exposure during conception was associated 
with decreased methylation of TMEM105/SLC38A10, 
and exposure during any week of gestation was associ-
ated with increased methylation of the genes TACC1 and 
ZNF385A compared to time and sibling controls [60].

Lastly, an association was found between prenatal 
famine exposure and hypo-methylation of the genes 
CRELD2, LRRC8D, LOC100132354, OSBPL5/MRGPRG, 
TXNIP, PFKFB3 as well as hypermethylation of the 
genes ABCG1, CCDC155, FAM150B, METTL8, PNPO, 
PPAP2C, SLC38A2, SYNGR1, TACC1 and ZNF385A 
compared to controls [64].

Two studies used methylation analyses, which cover 
over 850,000 sites [69]. One study reported evidence of 
601 hypermethylated and 360 hypomethylated sites after 
prenatal famine exposure as compared to time controls 
[63]. The other study reported no significant differentially 
methylated sites after controlling for multiple testing 
[65].

The two studies measuring global DNA methylation 
via pyrosequencing did not find a link between prenatal 
famine exposure and altered methylation patterns as com-
pared to sibling controls and time controls [62, 66]. One 
of these studies also analyzed global DNA methylation 
via MethyLight and LUminometric Methylation Assay 
(LUMA), yielding no significant findings [62].

One study used reduced representation bisulfite 
sequencing (RRBS) to assess DMRs and found hyper-
methylation in 60.8% out of 181 identified sites and 
hypomethylation in 39.2% following periconceptional 
exposure to famine compared to sibling controls [61]. 

In the present analysis, we solely reported on genes 
for which there was a significant association between 
DNA methylation and prenatal famine exposure. Using 
the data published in the included papers, we verified 
whether genes that were significant in some studies were 
also significant in others, and mostly found no concord-
ance. For instance, only six genes identified by Tobi et al. 
[60] were replicated in another study by Tobi et al. [64], 
even though methylation analysis was performed on the 
same sample. Meta-analysis was not suitable due to dif-
ferent DNA methylation microarrays/data processing 
approaches and partially unavailable data.

Effects of prenatal famine exposure on offspring DNA 
methylation (candidate gene analysis)
As can be seen in Table 3, candidate gene DNA methyl-
ation analyses revealed significant associations between 
prenatal famine exposure and a variety of hyper- and 
hypomethylated genes as compared to the different 
control groups.

Compared to sibling controls, periconceptional fam-
ine exposure was associated with hypomethylation of 
KLF13 [61], IGF2 [29, 66], and INSIGF [66, 70]. Besides 
periconceptional exposure, prenatal exposure during 
late gestation was associated with hypomethylation of 
the GNASAS gene [70]. Compared to sibling and time 
controls, prenatal exposure to famine was related to 
hypermethylation in several genes (CDH23, CPT1A, 
INSR, SMAD7 [61]; ABCA1, IL-10, LEP, GNASAS and 
MEG [70]). Compared to time controls only, prenatal 
famine exposure was related to hypomethylation of the 
AGTR1 and PRKCA genes [63] and hypermethylation of 
the IGF2 and INSR genes [72].

As compared to non-prenatal exposure and non-
exposure, adults prenatally exposed to famine showed 
decreased methylation of the ZFP57 and PRDM9 genes 
and increased methylation of the PAX8 gene [59]. 
Moreover, prenatal exposure to famine was related to 
hypomethylation of VTRNA2-1 and EXD3 compared 
to non-prenatal exposure only [59]. One study reported 
no association of GR 1-C, LPL, PI3kinase, and PPARy 
with in utero exposure to famine compared to non-pre-
natal exposure and non-exposure [73].

In sum, the candidate genes most affected by prenatal 
famine exposure are IGF2 and INSR. In addition, pre-
natal famine exposure was not associated with several 
other candidate genes, which are reported in Table  3 
[59, 61, 70, 73, 74].

Although a few significant candidate genes were rep-
licated in other studies, it is possible that methylation 
analyses were performed on the same sample. Candi-
date-gene studies were not eligible for meta-analysis 
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due to the heterogeneity of affected genes and partially 
unavailable data.

DNA methylation as a mediator between famine exposure 
during pregnancy and mental disorders
Table 4 presents a more recent study by Boks et al. [75], 
who analyzed changes in DNA methylation in individuals 
exposed to famine during the first 3 months of prenatal 
development and their susceptibility to schizophrenia in 
adulthood. The authors reported that prenatally exposed 
adults with schizophrenia showed hypermethylation of 
the DUSP22 gene compared to non-exposed patients and 
healthy controls [75].

Discussion
In the present systematic review and meta-analysis, 
we investigated the association between prenatal fam-
ine exposure, DNA methylation and mental disorders 
in adult offspring. We report three main findings: First, 
meta-analysis confirmed that exposure to famine dur-
ing prenatal development increases the offspring’s risk of 
suffering from schizophrenia. With regard to depression, 
meta-analyses yielded contradictory findings, showing 
either increased or decreased risk of depressive symptoms 
depending on exposure periods. Anxiety and depressive 
symptoms, as measured with the HADS, were not asso-
ciated with prenatal famine exposure. Prenatal famine 
exposure was further associated with addictive disorders 
and behaviors as well as antisocial and schizoid personal-
ity disorder. Second, we found that prenatal famine expo-
sure is associated with hypo- and hypermethylation of a 
variety of genes. The largest number of studies reported 
differences in DNA methylation of the IGF2 gene. Third, 
only one mediation study has been conducted to date, 
which described altered DNA methylation of the DUSP22 
gene as a potential mechanism underlying the association 
between prenatal famine exposure and schizophrenia in 
adult offspring.

With regard to the first finding, additional studies con-
firm the increased risk for the development of schizo-
phrenia in offspring prenatally exposed to a (natural) 
disaster such as an earthquake [76, 77], a terrorist attack 
[78], infections, and lead exposure [79]. There are sev-
eral potential reasons for this effect of unfavorable envi-
ronmental circumstances on an increased susceptibility 
to schizophrenia. According to the neurodevelopmental 
hypothesis proposed by Weinberger [80] and Murray 
and Lewis [81], such conditions impair the neurodevel-
opment of the fetus by adversely altering gene expression 
[81–87]. In particular, shortly after fertilization, a com-
plete demethylation of the genome occurs, which is then 
re-established during embryogenesis [88]. Adverse envi-
ronmental circumstances during this periconceptional 

period can thus permanently alter the DNA methylation 
of genes involved in neural pathways, impair brain devel-
opment, and predispose the offspring to an increased risk 
of schizophrenia [84]. Moreover, researchers have found 
that schizophrenia shares common features with other 
mental disorders such as schizoaffective disorders and 
depression [89, 90], suggesting that the same epigenetic 
mechanisms are involved in its pathogenesis. However, 
the inconclusive findings of the meta-analyses on depres-
sive symptoms may also be explained by the fact that 
environmental conditions influence DNA methylation 
at other life stages, in addition to early prenatal develop-
ment [91]. Indeed, offspring exposed to famine in infancy 
or childhood exhibit more depressive symptoms than 
offspring exposed to famine prenatally. Nevertheless, 
prenatal exposure to famine increases the risk of depres-
sive symptoms in adult offspring compared to offspring 
who have never been exposed to famine. Furthermore, 
the inconclusive findings regarding depressive symptoms 
and the null findings regarding anxiety may be attribut-
able to the fact that only two studies could be included in 
the meta-analyses due to the heterogeneity of the exam-
ined exposure periods and different methods of statistical 
analysis.

With respect to the finding that IGF2 appears to be the 
gene that is most affected by prenatal famine exposure, 
the studies in this review revealed both hyper- and hypo-
methylation of the IGF2 gene in offspring. The reason 
for this finding of both increased and decreased meth-
ylation, despite the fact that all offspring were prenatally 
exposed to famine, might lie in a dose–response relation-
ship in terms of duration and severity of prenatal famine 
exposure and IGF2 DNA methylation. Specifically, the 
Chinese famine was more severe and lasted for longer 
(3 years) compared to the Dutch famine, which was less 
severe and lasted for only 6 months [92]. More severe and 
longer exposure may have led to increased DNA meth-
ylation [72], whereas shorter and less severe exposure 
may have resulted mainly in decreased methylation of 
the IGF2 gene [29, 66]. This assumption is in line with the 
study by Shen et al. [92], who reported increased meth-
ylation of the IGF2 gene in offspring exposed to severe 
famine compared to offspring exposed to moderate fam-
ine. Moreover, different genomic positions annotated to 
the IGF2 gene were examined [29, 66], which could be 
another reason for differences in the direction of DNA 
methylation.

As for the third finding, there is evidence that DUSP 
family genes are involved in neural functions and play a 
role in the pathophysiology of mental disorders such as 
depression, bipolar disorder, and schizophrenia [93]. This 
supports the involvement of the DUSP22 gene in the eti-
ology of schizophrenia in adults prenatally exposed to 
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famine [75]. In addition, we suggest that altered DNA 
methylation of the aforementioned IGF2 gene may con-
tribute to an increased risk of mental disorders, as this 
gene is also involved in neuronal functions. Specifically, 
it is an important contributor to fetal growth and devel-
opment of the central nervous system [94–96], with 
increased methylation of the IGF2 gene in the placenta, 
for example, showing an association with higher birth 
weight [94]. However, another study found that increased 
methylation of this gene (in maternal blood) was associ-
ated with lower birth weight [97], and others found no 
significant association [98]. In terms of the central nerv-
ous system, dysregulations of this gene are associated 
with various mental disorders such as depression and 
schizophrenia [99].

The phenotype of adults prenatally exposed to famine 
may additionally be caused by altered DNA methylation 
of candidate genes in the neuroendocrine and immune 
systems [17, 100, 101]. Specifically, the LEP gene affects 
the HPA axis activity by inhibiting the release of corti-
cotropin-releasing hormone (CRH), thereby suppress-
ing its activity and reducing glucocorticoid production 
[102–104]. Hypermethylation of the LEP gene can lead 
to decreased gene expression [105] and possibly inhib-
its its role in suppressing HPA axis activity. In addition, 
hypermethylation of this gene has been associated with 
schizophrenia [106], and hyperactivity of the HPA axis is 
an underlying biological mechanism of depression [107, 
108]. The findings of our review demonstrate that prena-
tal famine exposure is associated with hypermethylation 
of the LEP gene in adult offspring [70]. Furthermore, the 
function of the neuroendocrine system is closely linked to 
the function of the immune system, and the HPA axis acts 
as a mediator between the two systems [109–112]. The 
IL-10 gene, an anti-inflammatory cytokine of the immune 
system, influences the HPA axis activity [112–114] by 
increasing the production of CRH and adrenocortico-
tropic hormone (ACTH) in the pituitary [109, 110]. Dif-
ferences in its gene expression have been found in adults 
suffering from a major affective disorder or schizophre-
nia [115–117]. Evidence indicates that prenatal exposure 
to famine is related to increased methylation of the IL-10 
gene in adult offspring [70].

The present review is the first to systematically and 
quantitatively present the effects of prenatal famine 
exposure on both mental disorders or symptoms of 
psychopathology and DNA methylation. Its strengths 
include the comprehensive literature search and rig-
orous quality assessment (risk of bias). However, the 
results of the meta-analyses, particularly the omission 
of a meta-analysis for the whole-genome DNA methyla-
tion results, should be interpreted with caution because 
the authors did not to obtain all affected genes from all 

whole-genome DNA methylation analysis studies. In 
addition, we are unable to rule out publication bias due to 
the very small number of studies suitable for meta-analy-
ses. All methylation studies presented in this review used 
whole blood as a tissue. One might consider whether 
DNA methylation in peripheral specimens serves as a 
marker for DNA methylation in brain tissue as there is 
evidence that epigenetic differences in peripheral speci-
mens do not always correlate with differences in brain 
tissue [118, 119]. For example, Walton et al. [120] found 
that only 7.9% of CpGs were broadly correlated between 
blood and living brain tissue from the same individuals. 
However, they were able to identify CpG markers from 
blood tissue that significantly correlated with brain tis-
sue and were involved in biological pathways affected 
in individuals with schizophrenia [120]. As a further 
limitation, the heterogeneity of genes affected by prena-
tal famine exposure might result from the lack of power 
of small sample sizes and different DNA methylation 
techniques across the included studies. However, it is 
noteworthy that most of the associations found were sta-
tistically significant at the p < 0.001 level (Tables 2, 3 and 
4), even after Bonferroni correction [65, 70, 72, 74] and 
Benjamin-Hochberg adjustment [60, 66] for multiple 
testing. Candidate gene analyses have the distinct advan-
tage of enabling a more thorough investigation of specific 
regions of interest by assessing the overall methylation of 
a target region and allowing researchers to identify spe-
cific CpG sites involved in disease pathogenesis [121]. 
Epigenome-wide DNA methylation analyses enable the 
analysis of the entire genome, as generally speaking, 
more than one gene is involved in the pathogenesis of 
diseases [122], but cover only small numbers of CpG sites 
per gene [123, 124]. Moreover, as the examined famine 
cohorts were geographically diverse, the different methyl-
ated genes may be attributable to ethnicity. For instance, 
Elliott et al. [125] found large differences in DNA meth-
ylation between European and South Asian individuals 
due to ethnically different cell composition. Additionally, 
the cause of the famines also differed, with the Dutch 
famine being the result of a food embargo during World 
War II [23] and the Chinese famine being due to political 
and economic mismanagement combined with drought 
[126]. This may further have exposed the two cohorts to 
distinct psychosocial stressors, which might have influ-
enced their DNA methylation differently.

Conclusion
Prenatal famine exposure has been associated with altered 
DNA methylation of genes involved in neuronal, neu-
roendocrine, and immune processes, which may causally 
promote the development of mental disorders, specifi-
cally schizophrenia and depression in adult offspring. 
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Further genome-wide and hypothesis-driven candidate 
gene mediation analyses, preferably with a longitudinal 
design and large sample sizes, are warranted to obtain a 
complete picture of the role of DNA methylation in the 
association between prenatal exposure to famine and the 
development of mental disorders. A better understanding 
may improve the diagnosis and treatment of schizophre-
nia and depression, as DNA methylation can be reversed 
by pharmacological drugs [127–129], and may inform 
the development of nutritional intervention programs for 
pregnant women affected by famine.
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