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Abstract 

Background The potential for DNA methylation (DNAm) as an early marker for cardiovascular disease (CVD) 
and how such an association might differ by glycemic exposure has not been examined in type 1 diabetes, a popula‑
tion at increased CVD risk. We thus performed a prospective epigenome‑wide association study of blood leukocyte 
DNAm (EPIC array) and time to CVD incidence over 28 years in a childhood‑onset (< 17 years) type 1 diabetes cohort, 
the Pittsburgh Epidemiology of Diabetes Complications (EDC) study (n = 368 with DNA and no CVD at baseline), 
both overall and separately by glycemic exposure, as measured by HbA1c at baseline (split at the median: < 8.9% 
and ≥ 8.9%). We also assessed whether DNAm‑CVD associations were independent of established cardiometabolic 
risk factors, including body mass index, estimated glucose disposal rate, cholesterol, triglycerides, blood pressure, 
pulse rate, albumin excretion rate, and estimated glomerular filtration rate.

Results CVD (first instance of CVD death, myocardial infarction, coronary revascularization, ischemic ECG, angina, 
or stroke) developed in 172 participants (46.7%) over 28 years. Overall, in Cox regression models for time to CVD, 
none of the 683,597 CpGs examined reached significance at a false discovery rate (FDR) ≤ 0.05. In participants 
with HbA1c < 8.9% (n = 180), again none reached FDR ≤ 0.05, but three were associated at the a priori nominal 
significance level FDR ≤ 0.10: cg07147033 in MIB2, cg12324048 (intergenic, chromosome 3), and cg15883830 (inter‑
genic, chromosome 1). In participants with HbA1c ≥ 8.9% (n = 188), two CpGs in loci involved in calcium channel 
activity were significantly associated with CVD (FDR ≤ 0.05): cg21823999 in GPM6A and cg23621817 in CHRNA9; four 
additional CpGs were nominally associated (FDR ≤ 0.10). In participants with HbA1c ≥ 8.9%, DNAm‑CVD associations 
were only modestly attenuated after cardiometabolic risk factor adjustment, while attenuation was greater in those 
with HbA1c < 8.9%. No pathways were enriched in those with HbA1c < 8.9%, while pathways for calcium channel 
activity and integral component of synaptic membrane were significantly enriched in those with HbA1c ≥ 8.9%.

Conclusions These results provide novel evidence that DNAm at loci involved in calcium channel activity and devel‑
opment may contribute to long‑term CVD risk beyond known risk factors in type 1 diabetes, particularly in individuals 
with greater glycemic exposure, warranting further study.
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Background
Despite advances in treatment, people with type 1 diabe-
tes continue to be at dramatically increased risk of car-
diovascular disease (CVD) compared to people without 
diabetes [1]. Yet, no combination of genetic or clinical 
risk factors, including glycemic control and traditional 
cardiometabolic risk factors, fully explain the increased 
CVD risk associated with type 1 diabetes [2, 3]. Thus, it 
is likely that complex interactions between genetic fac-
tors and glycemic exposure, as well as other environmen-
tal and lifestyle exposures, influence earlier development 
of atherosclerosis in type 1 diabetes. DNA methylation 
(DNAm) provides a link between genetic susceptibility 
and risk factor exposure and its study has potential to 
uncover novel pathways to development of complex phe-
notypes, including CVD. Studies in the general popula-
tion have shown differential patterns of methylation are 
associated with atherosclerosis, hypertension, lipids, 
and inflammation and such differential methylation may 
modify risk of clinical CVD events through those mecha-
nisms [4]. Furthermore, a meta-analysis from the Cohorts 
for Heart and Aging Genetic Epidemiology (CHARGE) 
consortium identified 52 CpGs where DNAm was pro-
spectively associated with incidence of coronary heart 
disease over a mean follow-up of 11 years [5]. However, 
to date there have been no published studies on meth-
ylation and CVD in type 1 diabetes despite the increased 
CVD burden carried by this population.

In type 1 diabetes, DNAm has been associated with 
glycemic exposure, as measured by HbA1c, in both the 
Diabetes Control and Complications Trial (DCCT)/ Epi-
demiology of Diabetes Interventions and Complications 
(EDIC) [6] and the Pittsburgh Epidemiology of Diabetes 
Complications (EDC) study [7]. In DCCT/EDIC, methyla-
tion at HbA1c-associated CpG sites explained much of the 
statistical association between HbA1c and risk of future 
microvascular disease, including proliferative retinopa-
thy and diabetic kidney disease (DKD) [6]. Those results 
provide the strongest evidence thus far that past glycemic 
exposure is related to differential methylation, which may 
in turn influence future diabetes complication risk. A few 
other studies in type 1 diabetes have found associations 
between DNAm and proliferative retinopathy [8] and DKD 
[9–12] but those studies have been almost exclusively cross 
sectional and have not addressed differences in associa-
tions by glycemic control. Thus, given the limited prospec-
tive data on DNAm and diabetes complications in general 
and the lack of data on DNAm and CVD in type 1 diabetes 

specifically, our objective was to perform a prospective epi-
genome-wide association study (EWAS) of the association 
between whole blood-derived leukocyte DNAm and sub-
sequent incidence of CVD over 28 years in type 1 diabe-
tes. We hypothesized there are loci with DNAm associated 
with time-to-first CVD event in the Pittsburgh EDC study, 
a childhood-onset type 1 diabetes cohort. Additionally, as 
we have recently demonstrated risk factors for CVD dif-
fer by level of glycemic exposure [13], we further hypothe-
sized that CVD-associated DNAm would differ by baseline 
HbA1c.

Results
Of the 368 individuals eligible for the primary analysis 
(Fig. 1), 172 (46.7%) developed CVD by 28 years. For the 
secondary outcomes, 28.0% (111 of 396 individuals) devel-
oped major adverse cardiovascular events (MACE) and 
25.5% (102 of 400 individuals) major coronary artery dis-
ease (CAD). Kaplan Meier curves for time to total CVD, 
MACE, and major CAD over the 28-year follow-up are 
shown in Additional file 1: Fig. S2. Baseline characteristics 
overall and by total CVD incidence status are in Table 1.

Total CVD, MACE, and major CAD EWAS: overall cohort
There were no significant associations (false discovery rate, 
FDR ≤ 0.05) in the overall cohort (Additional file 1: Fig. S3); 
three CpGs had FDR ≤ 0.20 and were included in post hoc 
functional analyses: cg02768721, PTPRN2 (p = 4.10 ×  10–7), 
cg14524754, B3GNTL1 (p = 6.21 ×  10–7), and cg06648759, 
intergenic CpG, Chr 13 (p = 8.27 ×  10–7). The ten most 
significant CpGs for total CVD are shown in Table  2. A 
QQ plot is shown in Additional file 1: Fig. S4 (traditional 
genomic inflation λ = 0.91). For the secondary outcomes, 
MACE and major CAD, again, no CpGs were significantly 
associated with either outcome (Additional file 1: Table S1). 
Three CpGs with FDR ≤ 0.20 for MACE and 21 CpGs with 
FDR ≤ 0.20 for major CAD were included in post hoc anal-
yses. Using the traditional genomic inflation factor, EWAS 
for MACE (λ = 1.44) and major CAD (λ = 1.51) both had 
evidence of significant inflation. After bacon correction, 
inflation was reduced for both outcomes (λ.bacon = 1.13 
and 0.87, respectively).

HbA1c‑stratified EWAS and cardiometabolic risk factor 
analysis
To assess our hypothesis that CVD-associated DNAm 
differs by HbA1c, we performed full EWAS stratified 
by median HbA1c at baseline (8.9%, 74 mmol/mol). 
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Manhattan plots and gene track plots for CpGs with 
FDR ≤ 0.05 are in Fig. 2. In the n = 180 participants with 
HbA1c < 8.9%, 77 developed CVD (42.8%). No CpGs 

reached significance for CVD at FDR ≤ 0.05, but three 
were associated at the a priori nominal significance level 
(FDR ≤ 0.10) (Table  3). In the n = 188 participants with 

Fig. 1 Flowchart and timeline for the EDC DNA methylation sub‑study. A Flowchart summarizing the determination of the analytic sample 
for DNA methylation and time to cardiovascular disease event in the EDC type 1 diabetes cohort. CVD = cardiovascular disease, MACE = major 
adverse cardiovascular event, CAD = coronary artery disease. B Study timeline. “Baseline” for the current analysis is the participant‑specific time point 
at which the DNA specimen was collected
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HbA1c ≥ 8.9%, 95 developed CVD (50.5%) and two CpGs 
were significantly associated with time to CVD (Table 3): 
cg21823999 in GPM6A (p = 7.03 ×  10–8, FDR = 0.05) and 
cg23621817 in CHRNA9 (p = 1.40 ×  10–7, FDR = 0.05) 
(Table  3). As shown in Fig.  2, panel C, cg21823999 is 
in the promotor/enhancer region GH04J176000 (chr4: 
176000933–176002800) and interacts with WDR17. Four 
additional CpGs had nominally suggestive associations 
(FDR ≤ 0.10) in those with HbA1c ≥ 8.9% (Table 3).

We next examined cross sectional associations between 
CVD-associated CpGs and established cardiometa-
bolic risk factors separately by HbA1c at study baseline, 
when all participants were free of CVD, to gain insight 
into pathophysiologic pathways by lower or higher gly-
cemic exposure. Heat maps of cardiometabolic risk 

factor associations with suggestive CVD-associated 
CpGs (FDR ≤ 0.10) by HbA1c are in Fig.  3 (Panel A: 
HbA1c < 8.9%, Panel B: HbA1c ≥ 8.9%). Regression coef-
ficients for the same associations are in Additional file 1: 
Table  S3 (HbA1c < 8.9%) and Additional file  1: Table  S4 
(HbA1c ≥ 8.9%). In those with HbA1c < 8.9%, greater 
DNAm at cg07147033 in MIB2 was associated with a 
generally worse cardiometabolic risk factor pattern and 
there were significant (p < 0.0005) associations with BMI, 
eGDR, non-HDLc, triglycerides, AER, and eGFR. Also in 
those with HbA1c < 8.9%, greater DNAm at cg12323048 
was significantly associated with higher non-HDLc 
and greater DNAm at cg15883830 was associated with 
higher non-HDLc and lower eGFR. In participants with 
HbA1c ≥ 8.9%, greater DNAm at cg01028223 (GET4) 

Table 1 Baseline characteristics of members of the Epidemiology of Diabetes Complications (EDC) Study DNA methylation sub‑
cohort who were free of any CVD at baseline

Values are mean (SD) unless specified. *median (p25, p75), †Multiple Daily Injections (≥ 3 insulin injections per day), ‡p value for the unadjusted association between 
each risk factor and CVD incidence from Cox regression

Characteristic Overall (n = 368) Incident CVD (n = 172) No CVD (n = 196) p value‡

Age, years 29.2 (7.7) 32.2 (7.4) 26.5 (7.0) < 0.001

Type 1 diabetes duration, years 20.9 (7.6) 24.0 (7.8) 18.1 (6.3) < 0.001

Age at type 1 diabetes Onset, years 8.3 (4.1) 8.2 (3.8) 8.3 (4.3) 0.927

Female sex, % (n) 46.3% (176) 50.0% (86) 45.9% (90) 0.581

≥ Bachelor’s degree, % (n) 35.3% (130) 29.7% (51) 40.3% (79) 0.003

HbA1c, % 9.0 (1.5) 9.3 (1.5) 8.9 (1.5) 0.007

HbA1c, mmol/mol 75.3 (16.4) 77.7 (16.6) 73.2 (16.0)

Smoking status, % (n)

 Never 63.9% (235) 58.1% (100) 68.9% (135) 0.001

 Past 15.5% (57) 15.7% (27) 15.3% (30)

 Current 20.7% (76) 26.2% (45) 15.8% (31)

Smoking, pack‑years* 0 (0, 3) 0 (0, 10) 0 (0, 0.2) < 0.001

Body Mass Index, kg/m2 24.2 (3.3) 24.8 (3.3) 23.7 (3.2) < 0.001

Insulin dose, insulin units/kg body weight 0.78 (0.25) 0.77 (0.25) 0.79 (0.24) 0.122

MDI† or insulin pump use, % (n) 13.8% (50) 13.0% (22) 14.5% (28) 0.437

Self‑monitoring of blood glucose, % (n) 72.6% (267) 72.0% (124) 73.0% (143) 0.925

Estimated glucose disposal rate, mg/kg/min 7.55 (2.01) 6.95 (2.14) 8.08 (1.74) < 0.001

Total cholesterol (mg/dl) 186.8 (40.5) 202.4 (38.6) 173.1 (37.1) < .0001

HDLc (mg/dl) 53.4 (12.4) 53.5 (12.7) 53.4 (12.3) 0.774

Non‑HDLc (mg/dl) 133.4 (39.1) 148.9 (38.3) 119.7 (34.8) < 0.001

Triglycerides (mg/dl)* 80.0 (57.0, 118.0) 95.5 (67.8, 137.3) 67.0 (53.0, 118.0) < 0.001

Lipid medication, % (n) 1.1% (4) 2.3% (4) 0% (0) 0.008

Systolic blood pressure (mmHg) 113.8 (15.8) 118.1 (17.6) 110.0 (12.9) < 0.001

Diastolic blood pressure (mmHg) 72.5 (11.0) 74.5 (12.1) 70.7 (9.5) < 0.001

Hypertension, % (n) 17.4% (64) 26.7% (46) 9.2% (18) < 0.001

Blood pressure medication, % (n) 11.0% (40) 18.0% (31) 4.6% (9) < 0.001

Pulse rate, bpm 75.7 (10.8) 77.4 (10.5) 74.2 (10.8) 0.005

Albumin excretion rate, µg/min* 11.4 (5.5, 22.9) 19.6 (8.1, 288.5) 8.9 (5.5, 73.9) < 0.001

Estimated glomerular filtration rate, ml/min/1.73  m2 112.7 (31.1) 106.7 (32.4) 117.9 (28.9) < 0.001

White blood cell count, ×  109 cells/l 6.9 (2.1) 7.3 (2.0) 6.7 (7.3) < 0.001
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Fig. 2 Manhattan plots for the HbA1c‑stratified epigenome‑wide associations of DNA methylation with time‑to‑CVD event (A, B) and gene track 
plots for CpGs with FDR ≤ 0.05 in those with HbA1c ≥ 8.9% (cg21823999, C; cg23621817 D). On Manhattan plots, red line indicates the significance 
level FDR ≤ 0.05; blue line indicates nominal significance level FDR ≤ 0.10
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Fig. 3 Heat maps of cardiometabolic phenotype associations with CVD‑associated CpGs (FDR ≤ 0.10) by median baseline HbA1c
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was significantly associated with lower non-HDLc only. 
After adjusting for cardiometabolic risk factors, associa-
tions between DNAm and time-to-CVD were attenuated 
to varying degrees (Fig.  4, Additional file  1: Table  S5). 
Attenuation was greater in those with HbA1c < 8.9%, with 
16–51% reduction in effect size after risk factor adjust-
ment, compared to 7.5–26% reduction in those with 
HbA1c ≥ 8.9%.

Methylation quantitative trait loci (meQTLs)
To avoid overlooking potentially important functional 
relationships, we applied a more liberal significance cut-
off of FDR ≤ 0.20 to select CpGs for inclusion in post 
hoc functional analyses. We performed GWAS using 
genotyping with imputation to identify variants associ-
ated with methylation of the CVD-associated CpGs with 
FDR ≤ 0.20. We identified 59 cis variants in the TBCD–
B3GNTL1 region of chromosome 17 associated with 
cg14524754 methylation (Additional file  1: Table  S6, 
Fig. S5) at genome-wide significance (p < 5 ×  10–8); all 59 
variants were confirmed to be significant meQTLs for 
cg14524754 in GoDMC (p < 5 ×  10–8) and 29 were anno-
tated as whole blood eQTLs (p < 0.0005) in GTEx. There 
were 31 cis variants in the FNDC10–MIB2–CDK11B–
SLC35E2B region of chromosome 1 associated with 

cg07147033 methylation (Fig.  5); 20 were confirmed to 
be meQTLs for cg07147033 in GoDMC (p < 5 ×  10–8) 
and 11 were whole blood eQTLs (p < 0.0005) in GTEx. 
Finally, there were 3 cis meQTLs for cg10296867 in GAS7 
(Fig. 5); all 3 were meQTLs in GoDMC (p < 5 ×  10–8), but 
none were eQTLs in GTEx. No significant meQTLs were 
detected for any of the other CpGs with FDR ≤ 0.20 for 
total CVD in EDC.

For each of the three CpGs with significant meQTLs, 
we selected the variant with the strongest statistical 
association as the representative meQTL to estimate its 
association with CVD risk. The representative variants 
were rs9909026 (B3GNTL1) for cg14524754, rs9442431 
(MIB2) for cg07147033, and rs78106531 (GAS7) for 
cg10296867. None were associated with CVD risk over-
all or in those with HbA1c ≥ 8.9% at baseline; however, 
rs9442431 (T > C) in MIB2 was associated with CVD 
incidence in participants with HbA1c < 8.9% (HR = 2.20, 
95% confidence interval: 1.44, 3.40, p = 0.00025).

Network and gene set enrichment analysis (GSEA)
To gain insight into potential pathways underlying 
DNAm-CVD associations, we performed GSEA of gene 
ontology (GO) terms [14] and KEGG pathways [15] 
and identified a Reactome Functional Interaction (FI) 

Fig. 4 Log hazard ratio (β) per 5% methylation at each CpG associated with total CVD, unadjusted (blue x) and adjusted (red circles) for traditional 
cardiometabolic risk factors (error bars are 95% confidence limits) by baseline HbA1c
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network [16]. In GSEA, in both the overall cohort and 
in the subset with HbA1c < 8.9%, there were no signifi-
cantly enriched GO terms or KEGG pathways including 
≥ 2 loci. For the subset with HbA1c ≥ 8.9%, GO terms 
calcium channel activity (GO: 0005262, p = 0.0015) and 
integral component of synaptic membrane (GO: 0099699, 
p = 0.0015), which both include GPM6A and CHRNA9, 
were enriched (Additional file 1: Table S7). There were no 
enriched KEGG pathways including ≥ 2 loci.

The candidate loci included in Reactome FI network 
analysis are listed in Additional file 1: Table S8. A FI net-
work comprising seven modules was identified, three of 
which had significant pathway enrichment (Fig.  6). Sig-
nificantly enriched top-level pathways (Additional file 1: 
Table  S9) included DNA repair, DNA replication, Cell 
cycle, and Metabolism of proteins in Module 1 (FANCC, 
POLE, TBCD); Neuronal system and Protein localization 

in Module 2 (CHRNA9, GET4); and Signal transduc-
tion, Smooth muscle contraction, Developmental biology, 
and Vesicle-mediated transport in Module 5 (LINGO1, 
FCHO2, MYL9).

Discussion
In this EWAS examining DNAm and 28-year CVD risk 
in type 1 diabetes, we identified several CVD-associ-
ated CpGs in loci across the genome, including sites in 
GPM6A, CHRNA9, GAS7, GET4, MAD1L1, and MIB2. 
To our knowledge, this is the first report of a prospective 
EWAS of CVD in a type 1 diabetes cohort. Our results 
support our hypothesis that DNAm-CVD associations 
differ by glycemic exposure. Furthermore, adjustment for 
established cardiometabolic risk factors led to less atten-
uation of DNAm-CVD associations in participants with 
higher HbA1c compared to lower HbA1c, suggesting 

Fig. 5 Locus Zoom plots for significant meQTLs for CpGs with DNAm associated with total CVD at FDR ≤ 0.20 in the EDC study. Each dot on the plot 
corresponds to a significant meQTL for DNAm at the corresponding CpG. The representative meQTLs are indicated on each plot
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epigenetic regulation may make a greater independent 
contribution to CVD pathogenesis under conditions of 
higher glycemic exposure.

Hypermethylation of cg21823999 in GPM6A and 
hypomethylation of cg23621817 in CHRNA9, both 
loci involved in calcium channel activity, were associ-
ated with increased CVD risk only in participants with 
higher HbA1c at baseline. Calcium channel activity is 
responsible for vascular smooth muscle tone and reac-
tivity via control of vasoconstriction and vasorelaxation 
[17]. While diabetes has been linked to aberrant calcium 
signaling [18], GPM6A and CHRNA9 have not previ-
ously been specifically implicated in contributing to CVD 
risk in diabetes. However, there is evidence GPM6A and 
CHRNA9 may be involved in myocardial development 
and repair [19, 20] and GPM6A is differentially expressed 
with respect to acute myocardial infarction [21]. Thus, it 
is plausible that glycemic exposure modifies epigenetic 
regulation of GPM6A and CHRNA9 expression to affect 
downstream CVD risk. Experimental studies on the 
impact of altered glucose state on GPM6A and CHRNA9 
expression are needed to test that hypothesis.

We identified cis-meQTLs significantly associated with 
DNAm at three of the CVD-associated CpGs and vali-
dated those meQTLs using the GoDMC database. There 
were significant meQTLs for cg14524754 in B3GNTL1 
which, while not well-characterized, has been linked 
to immunological changes related to lung and colorec-
tal cancers [22], and in TBCD, which encodes tubulin-
folding cofactor D, a chaperone protein necessary for 
β-tubulin folding [23]. In a heterodimer with α-tubulin, 
β-tubulin forms microtubules which not only play a key 
role in vascular remodeling under pathological condi-
tions but also regulate inflammation [24]. Our findings 
support further investigation into the role of B3GNTL1 
and TBCD in CVD pathogenesis in type 1 diabetes. We 
also identified significant meQTLs for cg07147033 in 
MIB2 and FNDC10. MIB2 is involved in Notch signaling, 
promoting cell proliferation and activation, protection 
against cytokine-induced cell death [25], and is in the 
lipid and atherosclerosis KEGG pathway [15]. In the cur-
rent study, in participants with HbA1c < 8.9%, DNAm at 
cg07147033 in MIB2 was strongly associated with worse 
levels of several cardiometabolic risk factors, including 

Fig. 6 Reactome functional interaction network derived from the list of loci with DNA methylation associated with 28‑year CVD incidence 
at FDR ≤ 0.20 in the EDC cohort. Candidate loci are indicated in black font (red font indicates linker genes used only to construct the network). Solid 
line = involved in same reaction as inputs or are components of a shared complex, →=activator or catalyst, –|= inhibitor, dashed line = predicted 
interaction. Only modules with ≥ 2 candidate loci were analyzed for pathway enrichment
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BMI, eGDR, non-HDL cholesterol, triglycerides, AER, 
and eGFR. Additionally, much of the association between 
cg07147033 methylation and CVD risk was explained by 
adjustment for those risk factors, particularly non-HDL 
cholesterol.

In contrast, our results suggest DNAm may make a 
greater independent contribution to CVD risk under 
conditions of higher glycemic exposure. In those with 
HbA1c ≥ 8.9%, in addition to DNAm of GPM6A and 
CHRNA9 already described above, there were also asso-
ciations between DNAm and CVD in loci involved in 
cellular response to stress (GAS7), protein localization 
(GET4), and cell cycle (MAD1L1) [16]. The direction of 
DNAm-CVD associations also differed by HbA1c. In 
those with lower HbA1c, for all top CpGs, hypermeth-
ylation was associated with increased CVD risk, while in 
those with higher HbA1c, we observed both hypo- and 
hypermethylation of CpGs associated with increased 
CVD risk. Prior studies have suggested that hypermeth-
ylation may be more characteristic of atherosclerosis, 
while hypomethylation may be more closely related to 
aging processes [26]. While more research is needed to 
support those hypotheses, our results could mean that 
epigenetically regulated accelerated aging pathways con-
tribute to CVD risk under conditions of higher glycemic 
exposure. Indeed, accelerated aging related to hypergly-
cemia has previously been proposed as a potential expla-
nation for the increased risk of vascular disease in type 1 
diabetes [27].

We [7] and others [6] have previously shown DNAm 
is associated with glycemic control in type 1 diabetes. In 
DCCT/EDIC, prior mean HbA1c was associated with 
DNAm at several CpGs and methylation at those sites 
was also prospectively associated with microvascular 
complications [6]. Given the differences in study designs 
between EDC and DCCT/EDIC, we are not able to per-
form similar analyses using prior mean HbA1c but have 
instead adjusted for concurrent HbA1c. Nonetheless, the 
results of the current analyses are consistent with our 
prior data showing differences in clinical risk factors for 
CVD by level of glycemic exposure [13] and suggest that 
epigenetic regulation of factors related to CVD patho-
genesis may differ by glycemic exposure as well. A more 
comprehensive examination of the role of glycemia in the 
association between methylation and CVD is warranted 
and will be the subject of future analyses in the EDC 
cohort.

Our results overlap somewhat with prior large EWAS 
in general population studies. The Cohorts for Heart 
and Aging Genetic Epidemiology (CHARGE) Consor-
tium has performed the largest prospective EWAS of 
coronary heart disease to date and reported associations 
with DNAm in PTPRN2 and MAD1L1 [8]. Multi-Ethnic 

Study of Atherosclerosis (MESA) similarly demonstrated 
PTPRN2 expression is associated with coronary artery 
calcification and carotid plaque score [28]. Our obser-
vation that methylation of cg02768721 in PTPRN2 has 
a suggestive association with CVD only in EDC partici-
pants with lower HbA1c corresponds to those associa-
tions between methylation of PTPRN2 and CVD in the 
general population, which has low glycemic exposure on 
average.

In addition to findings discussed above, we identified 
associations between DNAm and CVD at several CpGs 
that were driven by a small number of participants with 
extreme methylation probe β values (data shown in the 
Additional file  1). Upon examination of their clinical 
characteristics, all had either HbA1c > 9% or advanced 
kidney disease at baseline and three of the eight individu-
als had a greater proportion of extreme probe β values 
than the overall cohort. It has been shown that meth-
ylation outlier burden likely reflects biological age and is 
unlikely to be a result of technical artifacts [29]. Thus, the 
biological plausibility of the corresponding loci, includ-
ing FBXO27, which is involved in autophagy [30] and 
highly expressed in cardiomyocytes [31]; CARD9, which 
encodes a protein that regulates cell apoptosis and NF-
kappaB activation [32]; and NLN, which is involved in the 
renin–angiotensin–aldosterone system [33], suggest they 
may warrant further study in external cohorts.

Strengths and limitations
Our study has several strengths, including the use of data 
from a well-characterized, exclusively type 1 diabetes 
cohort with long-term follow-up to ascertain CVD inci-
dence. The EDC cohort is epidemiologically representa-
tive of the childhood-onset type 1 diabetes population 
of Allegheny County, Pennsylvania [34]. The prospec-
tive study design avoids the possibility of reverse causa-
tion. Another strength is that CVD events were verified 
using death certificates and medical records by physician 
reviewers masked to risk factor status. A further strength 
is the availability of traditional cardiometabolic risk fac-
tor data, facilitating examination of cardiometabolic 
phenotypes for the CVD-associated DNAm. We also 
assessed DNAm-CVD associations separately by level of 
glycemic exposure, an important potential effect modifier 
in type 1 diabetes.

Limitations of our study include use of whole blood 
for methylation measurement and a lack of tissue-spe-
cific data. However, DNAm in whole blood is commonly 
examined in epidemiologic studies such as ours, due to 
ease of specimen collection and because it facilitates 
detection of multiple physiologic pathways that lead 
to complex phenotypes like CVD. We used a standard 
method to account for blood cell type composition in our 
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analyses. Another limitation is the lack of long-term gly-
cemic exposure data prior to DNA collection, so we are 
unable to assess the temporal association between gly-
cemic exposure and differential methylation. The sample 
size of our study is relatively small with limited power 
for the secondary outcomes MACE and major CAD in 
particular, restricting our ability to identify strong asso-
ciations. Thus the results should be validated in other 
cohorts as data become available. Additionally, due to 
the small sample size, we applied a more liberal cut-off of 
FDR ≤ 0.20 for including CpGs in the post hoc functional 
analyses to facilitate our goal of identifying potentially 
important pathways. This approach is similar to other 
prior epidemiological studies of DNAm which have used 
the approach of applying a more liberal FDR cut point 
for inclusion of CpGs in enrichment analyses [35, 36]. 
Finally, the EDC cohort is 98% white/European ancestry, 
primarily due to the demographics of Allegheny County, 
Pennsylvania, USA (< 15% black/African American) and 
historically lower incidence of type 1 diabetes among 
black individuals [37], so our results may not apply to 
more diverse populations.

Conclusions
We present novel evidence that DNAm at several CpGs 
may be associated with future CVD risk in type 1 dia-
betes and contribute to risk independently of traditional 
cardiometabolic risk factors. Importantly, our find-
ings suggest epigenetic modification of GPM6A and 
CHRNA9, both involved in calcium channel activity and 
development, may play a role in the pathophysiology of 
CVD under conditions of higher glycemic exposure in 
type 1 diabetes. While experimental data and validation 
in external populations are needed, our observation of 
such glycemia-dependent associations supports the exist-
ence of heterogeneous pathways to CVD development in 
type 1 diabetes and may provide insight into new targets 
for intervention to prevent or delay CVD in this high-risk 
population.

Methods
Study population
The Pittsburgh Epidemiology of Diabetes Complications 
(EDC) study is a prospective cohort study of childhood-
onset (< 17 years old) T1D. All participants in the par-
ent cohort (n = 658) were diagnosed with T1D, or seen 
within one year of diagnosis, at Children’s Hospital of 
Pittsburgh between 1950 and 1980. The cohort has been 
described in detail [38] and a study timeline is shown in 
Fig. 1. Participants have been followed since 1986–1988, 
with biennial examinations and questionnaires for the 
first ten years and thereafter with biennial questionnaires 
and further examinations in 2004–2006, 2011–2013, and 

2016–2018. DNA was collected at study visits between 
1988 and 1998: 86% of the DNA specimens were col-
lected at the 1988–1990 visit, 9% at the 1990–1992 visit, 
and the remaining 5% between 1992 and 1998. The date 
of each participant’s DNA specimen defines their base-
line for these analyses.

A diagram detailing derivation of the final analytic 
sample is in Fig.  1. Of 496 participants consenting to 
blood leukocyte DNA collection, 436 European ancestry 
participants had suitable quality DNA available for meth-
ylation arrays remaining in 2020. After excluding par-
ticipants not passing methylation quality control (n = 11), 
one randomly selected individual from each of 10 first-
degree relative pairs, two outliers from genetic principal 
components analysis, and one randomly selected individ-
ual from each of 2 technical duplicate specimen pairs the 
final sample comprised 411 participants.

DNA methylation arrays, quality control, and data 
processing
High molecular weight DNA was isolated from whole 
blood-derived leukocytes. DNAm was assayed using 
Illumina Infinium MethylationEPIC BeadChip arrays 
(Illumina, San Diego, CA, USA) [39] at the Univer-
sity of Virginia Center for Public Health Genom-
ics, Genomic Sciences Laboratory using the standard 
Illumina methylation array protocol. Quality con-
trol methods were implemented in two packages in 
R (v4.1.0; R Core Team 2021), minfi v1.32.0 [40] and 
SeSAMe v1.8.10 [41]. The pipeline, including the spe-
cific functions used, is summarized in Additional 
file 1: Fig. S1. The EPIC output Intensity Data (IDAT) 
file contained raw probe intensity data, as well as the 
control probe information needed for quality control. 
Using minfi, the IDAT files were loaded and converted 
into an RGSet object and thence to a GMSet object 
based on the Illumina 1.0 B5 hg38 annotation release. 
The minfiQC function was used to check for outlier 
samples of potentially poorer quality based on: (1) 
median intensity of methylated (M) versus unmethyl-
ated (U) probes (minfiQC() function, outlier cut-off = 3 
stdev); (2) median X, Y chromosome probe signals for 
karyotype prediction (getSex() function cut-off = − 2); 
(3) sample probe detection rate (detectionP() func-
tion, p value < 0.01). The third step was repeated after 
dropping 72,868 low quality probes (probe detection 
rate < 95% as described below) and a previously pub-
lished curated list of 95,923 probes recommended for 
exclusion as detailed by Zhou et  al. [42]. Specifically, 
the list curated by Zhou et  al. excludes probes with: 
inconsistent mapping; SNPs in the extension base 
that cause a color channel switch from the official 
annotation; non-unique 30bp3’ subsequence; 5bp3’ 
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subsequence overlap with any of the SNPs with global 
minor allele frequency > 1%; and extension base incon-
sistent with the specified color channel or CpG.

To confirm and expand the minfi QC, a second pipe-
line of QC checks used functions in the SeSAMe pack-
age [41]. First, the RGset object was converted to a 
SigSet object using the RGSetChannelSetToSigSet() 
function. Then, the pipeline checked: (1) mean sample 
probe intensity distribution by sample, mean(M + U) 
(sesameQC() function); (2) sample bisulfite GCT score 
for completeness of bisulfite conversion (sesameQC() 
function); (3) inferred sex karyotype based on chromo-
some X and Y probes (inferredSexKaryotypes() func-
tion); (4) detection of duplicate samples using SNP 
genotype data extracted from a subset of the probes. 
Finally, probe quality checks were performed based on 
individual probe detection p values. In this check, any 
probe that was not detected in at least 95% of samples 
was dropped (72,868 unique probes excluded). Cryp-
tic sample duplicates were inferred using KING [43] 
applied to the SNP genotype data extracted from the 
Illumina ‘spiked-in’ SNP probes (n = 44) and additional 
probes that manifest a reproducible pattern of geno-
type-stratified methylation signals driven by a flanking 
SNP (n = 865 SNPs in total). After the QC described 
above and further restricting analysis to probes mapped 
to autosomal chromosomes, 683,597 of the original 
865,918 probes on the EPIC array were analyzed.

The final methylation fraction β values for analy-
sis were generated using the following pipeline steps 
in SeSAMe [41]: (1) background subtraction based on 
normal-exponential deconvolution using out-of-band 
probes (noob); (2) dye bias correction in the two-color 
channels through nonlinear scaling (dyeBiasCorrTypeI-
Norm); (3) probe quality masking based on the curated 
exclusion list (qualityMask); (4) detection masking at 
individual probe/sample level using pooBAH p value 
out-of-band array hybridization (detectionMask); (5) 
beta calculation, M/M + U (getBetas); (6) drop sam-
ples and probes identified during quality control 
pre-processing. Finally, for each probe we excluded 
β values >  ± 3 standard deviations from the mean to 
remove extreme outliers for the primary analysis. As 
DNA was isolated from whole blood-derived leuko-
cytes, variable cell type composition and differential 
methylation states in a sample could confound associa-
tion tests. Thus, cell type compositions variables were 
estimated using the estimateCellCounts2 function from 
the R package FlowSorted.Blood.EPIC [44], using an 
IDOL-optimized probe set [45] derived from the origi-
nal Houseman method [46] which has been shown to 
be an optimal algorithm for cell-type deconvolution in 
EWAS using whole blood specimens [47].

Ascertainment of cardiovascular outcomes
Follow-up time for each participant was calculated from 
the study visit during which their DNA was isolated 
(baseline) until CVD incidence or censoring (31 Decem-
ber 2018 or last follow-up). CVD was defined as the first 
instance of CVD death, nonfatal myocardial infarction 
(MI, including clinical events and subclinical myocardial 
infarction on ECG, i.e., Minnesota code 1.1 or 1.2), non-
fatal stroke, coronary revascularization procedure, block-
age ≥ 50%, ischemic EGC at EDC study visit (Minnesota 
codes 1.3, 4.1–4.3, 5.1–5.3, 7.1), or EDC physician-diag-
nosed angina. Two secondary outcomes were also exam-
ined: major adverse cardiovascular events (MACE, first 
instance of CVD death, nonfatal MI or nonfatal stroke) 
and major coronary artery disease (CAD, first instance 
of CAD death or nonfatal MI). Fatal events were ascer-
tained using medical records, death certificates, autopsy 
reports, and/or interview with next of kin and classified 
according to the Diabetes Epidemiology Research Inter-
national (DERI) system [48]. Nonfatal events were con-
firmed with medical records.

CVD EWAS
Participants with prevalent total CVD (n = 43), MACE 
(n = 14), or major CAD (n = 11) at the time of DNA col-
lection were excluded from each respective analysis. 
We performed a time-to-event EWAS for total CVD 
incidence with CpGs on chromosomes 1–22 using Cox 
regression. Each CpG probe β-value was modeled as 
the main independent variable and adjusted for type 
1 diabetes duration, sex, pack-years of smoking, cell 
type composition variables, plate/run number, GCT 
bisulfite score, DNA extraction method, and well posi-
tion. As one of our aims was to identify genetic variants 
associated with DNAm, we also included the first two 
ancestry principal components based on GWAS data 
[49] as covariates in the EWAS. EDC is an exclusively 
childhood-onset (< 17 years) type 1 diabetes cohort; 
thus, age and diabetes duration are highly correlated 
(r = 0.86, p < 0.0001). As type 1 diabetes duration is the 
exposure of greater interest in the current analysis, the 
results we present were adjusted for diabetes duration 
only. However, results remained the same in alternative 
models adjusting for age instead of diabetes duration. 
Separate EWAS of the secondary outcomes MACE and 
major CAD were also performed using the same meth-
ods described above. As DNAm outliers could be asso-
ciated with extreme phenotypes, we also performed 
alternative exploratory analyses including extreme 
probe β values (> ± 3 standard deviations from the 
mean). Given the sample size of the cohort, potentially 
important associations with small effect sizes would be 
disregarded if we only applied a conservative statistical 
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significance cut-off. Thus, a Benjamini–Hochberg false 
discovery rate (FDR) ≤ 0.05 was considered significant 
and FDR ≤ 0.10 was considered nominally significant. 
Additionally, to avoid overlooking potentially impor-
tant functional relationships, a more liberal FDR ≤ 0.20 
was considered suggestive and warranting inclusion in 
the secondary post hoc functional analyses. As the tra-
ditional genomic inflation factor λ has been shown to 
overestimate test statistic inflation in EWAS [50], we 
used the bacon method (λ.bacon), a Bayesian method 
developed by Iterson et  al. specifically for EWAS [50], 
to estimate inflation if traditional λ > 1.10.

HbA1c‑stratified EWAS and cardiometabolic risk factor 
analyses
We repeated the EWAS for total CVD stratified by 
HbA1c to determine whether CVD-associated DNAm 
differed by level of glycemic control. Because there is 
no known optimal HbA1c cut point at which the CVD-
DNAm association is modified, median baseline HbA1c 
(8.9% [74 mmol/mol]) was used as the cut point for 
stratification, ensuring approximately equal sample 
size in each stratum. We then assessed associations 
between DNAm at CpGs considered at least nominally 
suggestive (FDR ≤ 0.10) and levels of baseline cardio-
metabolic risk factors using linear regression separately 
by median HbA1c (8.9%). Cardiometabolic risk factors 
analyzed were HbA1c, body mass index (BMI), esti-
mated glucose disposal rate (eGDR), HDL cholesterol, 
non-HDL cholesterol, triglycerides, systolic and dias-
tolic blood pressures (SBP and DBP), pulse rate, albu-
min excretion rate (AER), and estimated glomerular 
filtration rate (eGFR). Details regarding ascertainment 
of cardiometabolic risk factors have been published 
previously [51] and are described in the Additional 
file  1. In separate minimally adjusted linear models, 
each cardiometabolic risk factor was the dependent 
variable and the methylation β value at each CVD-
associated CpG was the independent variable, adjusting 
for type 1 diabetes duration, sex, pack-years of smok-
ing, and cell type composition variables. An adjusted p 
value ≤ 0.0005 (0.05/99 comparisons, i.e., 9 CpGs × 11 
risk factors) was considered conservatively statistically 
significant, while p ≤ 0.05 was nominally significant. 
Finally, for each CpG assessed, we re-fit Cox models for 
time-to-CVD, adjusting for cardiometabolic risk fac-
tors, selected using backward selection, to obtain car-
diometabolic risk factor-independent estimates of the 

DNAm-CVD associations. Risk factors were entered 
into the models if they were univariately associated 
with the CpG at p ≤ 0.10 and were retained in the Cox 
model if p ≤ 0.05.

Post hoc functional analyses
For CpG associated with CVD at FDR ≤ 0.20 in EWAS, 
we identified methylation quantitative trait loci 
(meQTLs) via GWAS using existing imputed genotyp-
ing array data in the EDC cohort [49]. Genotyping was 
performed in n = 453 EDC participants using the Infin-
ium HumanCore Exome-24 BeadChip (Illumina, San 
Diego, CA, USA), following the manufacturer’s proto-
col. After quality control and exclusions, quality geno-
typing data were available for n = 422. Determination of 
the analytic sample has been described previously [52]. 
Minimac3/ Minimac3-omp version 1.0.14 was used for 
imputation with the 1000 Genomes (1KG) Phase 3 ver-
sion 5 reference panel (updated Oct 20, 2015). In the 
n = 411 EDC participants included in the DNAm analy-
sis, we performed GWAS of the CVD-associated CpGs 
with FDR ≤ 0.20. DNAm probe β-values were mod-
eled as the dependent variable and SNP dosage (addi-
tive coding) as independent variables in separate linear 
models, adjusting for sex, T1D duration, pack-years 
of smoking, estimated cell type composition, and the 
first three ancestry principal components. Genome-
wide significant SNPs at p ≤ 5 ×  10–8 were identified 
as meQTLs for the corresponding CpG. Results were 
compared to the Genetics of DNA Methylation Con-
sortium (GoDMC) database of meQTLs [53] for exter-
nal validation. Finally, we looked for evidence of the 
meQTLs’ effects on gene expression by determining 
whether the meQTLs were annotated as whole blood 
eQTLs in the Genotype-Tissue Expression (GTEx) Pro-
ject database using a significant threshold of p < 0.0005 
(p = 0.05/93 meQTLs assessed). The data used for the 
analyses described here were obtained from the GTEx 
Portal on 6 September 2022.

Gene information was obtained from Illumina anno-
tation (March 2020, reference genome GRCh38/hg38). 
We performed gene set enrichment analysis (GSEA) 
using the GOmeth function in the missMethyl package 
for R with the GO.db and KEGG.db annotation pack-
ages [54] to identify enrichment of terms associated 
with ≥ 2 loci with CVD-associated DNAm. For all loci 
associated with CpGs with FDR ≤ 0.20, we identified 
a Reactome Functional Interaction (FI) network [16] 
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using Cytoscape [55]. Modules within the network 
were identified using a spectral algorithm for clustering 
[56]; we performed Reactome pathway analysis on the 
resulting modules with ≥ 3 total nodes including ≥ 2 
candidate loci.
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