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Epigenome-wide methylation analysis 
of colorectal carcinoma, adenoma and normal 
tissue reveals novel biomarkers addressing 
unmet clinical needs
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Abstract 

Background Biomarker discovery in colorectal cancer has mostly focused on methylation patterns in normal 
and colorectal tumor tissue, but adenomas remain understudied. Therefore, we performed the first epigenome-wide 
study to profile methylation of all three tissue types combined and to identify discriminatory biomarkers.

Results Public methylation array data (Illumina EPIC and 450K) were collected from a total of 1 892 colorectal sam-
ples. Pairwise differential methylation analyses between tissue types were performed for both array types to “double 
evidence” differentially methylated probes (DE DMPs). Subsequently, the identified DMPs were filtered on methylation 
level and used to build a binary logistic regression prediction model. Focusing on the clinically most interesting group 
(adenoma vs carcinoma), we identified 13 DE DMPs that could effectively discriminate between them (AUC = 0.996). 
We validated this model in an in-house experimental methylation dataset of 13 adenomas and 9 carcinomas. It 
reached a sensitivity and specificity of 96% and 95%, respectively, with an overall accuracy of 96%. Our findings raise 
the possibility that the 13 DE DMPs identified in this study can be used as molecular biomarkers in the clinic.

Conclusions Our analyses show that methylation biomarkers have the potential to discriminate between normal, 
precursor and carcinoma tissues of the colorectum. More importantly, we highlight the power of the methylome 
as a source of markers for discriminating between colorectal adenomas and carcinomas, which currently remains 
an unmet clinical need.
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Introduction
Colorectal cancer (CRC) is one of the leading causes of 
cancer-related deaths worldwide. More than 1.9 million 
incidence cases and over 935 000 deaths were observed 
worldwide in 2020 [1]. In early stages (I and II), 5-year 
overall survival chances are at least 90%. Detection of 
CRC in an advanced stage (IV) reduces survival chances 
to only 15% [2, 3]. Unfortunately, 75% of all CRC tumors 
are discovered in advanced stages. Therefore, early 
detection of colorectal tumors must clearly improve.

CRC is a very heterogeneous disease that typically 
develops from pre-cancerous lesions, so-called 
adenomas. In 80% of cases, CRC develops through the 
adenoma-carcinoma sequence, a process that can take 
up to 10  years since adenomas tend to progress slowly, 
with increasing size and dysplasia over time [4, 5]. It 
has already been demonstrated that both genetic and 
epigenetic alterations are acquired in the tumor genome 
during carcinogenesis [5]. Epigenetic alterations have 
been studied over the past years and have revealed the 
relation between specific gene expression patterns apart 
from genetic mutations [5, 6].

One of the most studied epigenetic modifications is 
DNA methylation. In CRC, widespread hypomethylation 
blocks have been observed, as well as hypermethylation 
of specific CpG islands in gene-specific promotors [5, 
7]. Despite many efforts, there is still a lot to discover 
at a molecular level for methylation in colorectal tissue. 
Particularly, methylation patterns in precancerous 
colorectal lesions, notably adenomas, are understudied. 
Online available datasets such as The Cancer Genome 
Atlas (TCGA) or Gene Expression Omnibus (GEO) 
mostly include methylation data of invasive tumor 
tissue. As methylation occurs in very early stages of 
carcinogenesis, DNA methylation biomarkers are the 
most compelling candidates for early detection of cancer 
[5]. Therefore, the DNA methylation data of adenomas 
are of extreme importance.

In previous research [7], it was already demonstrated 
that normal tissue and colorectal cancer tissue can 
be discriminated based on differentially methylated 
CpG sites. The study was based on publicly available 
data, which lacks the information on methylation 
of precancerous lesions as described earlier. Other 
researchers [5] have investigated differential methylation 
in normal and low-grade versus high-grade adenomas. 
Although this study shows very promising results for 
early biomarker candidates, it lacks a comparison with 
colorectal cancer tissue. Up until this moment, there is 
no possibility to discriminate colorectal adenomas from 
adenocarcinomas with molecular biomarkers in the 
clinic. However, such biomarkers would be an interesting 
and important tool for earlier described reasons.

To our knowledge, epigenome-wide analysis of normal, 
adenoma and colorectal tumor tissue has never been 
performed simultaneously. Therefore, the goals of this 
study were: to 1) explore and compare the epigenome of 
normal colorectal tissue, adenomas and colorectal tumor 
tissue in one experiment and 2) to identify molecular 
biomarkers that can discriminate especially between 
colorectal carcinoma and adenoma. Based on currently 
available data, we hypothesized that each of the three 
tissue types would have a different methylation pattern.

Methods
Study population, sample collection and pathologist 
review
A total of 55 samples were requested at the Biobank and 
the pathology department of the Antwerp University 
Hospital. Three different types of samples were used: 19 
normal adjacent, 17 adenoma and 19 colorectal tumor 
tissue samples. This included 10 pairs of colorectal 
cancer and normal samples and 1 pair of adenoma-
normal samples of the same patient. Tissue specimens 
were formalin-fixed paraffin-embedded (FFPE). For 
each specimen, 10 sections of 6 µm were made of which 
one slide was stained with hematoxylin and eosin for 
histologic review. A pathologist verified the tissue type 
and estimated the percentage of tumor cells. To limit the 
contamination by non-tumor cells, macrodissection was 
performed where possible. All samples had at least 50% 
tumor cells.

DNA extraction and processing
DNA was isolated using the QIAamp FFPE Tissue kit 
(Qiagen, Hilden, DE) according to the manufacturer’s 
instructions. It is known that FFPE samples generally 
perform poorly on array-based applications due to 
the highly degenerated DNA. Therefore, the quality 
of the DNA was verified using the Infinium FFPE QC 
kit (Illumina Inc., San Diego, CA, USA) according to 
the manufacturer’s protocol. Only samples with good 
amplification for all replicates and a maximal ΔCq 
(difference in quantification cycles compared to the 
standard) below 5 were selected for use in the bisulfite 
conversion and restoration step. Bisulfite conversion 
was performed using the EZ DNA Methylation kit 
(Zymo Research, Freiburg im Breisgau, DE), according 
to the manufacturer’s instructions. The array-specific 
incubation program was used for all samples. After 
bisulfite conversion, DNA samples were restored using 
the Infinium HD FFPE Restoration kit (Illumina Inc.).

In‑house experimental methylation dataset
In total, 55 clinical samples were obtained and processed, 
the details of which are available in Additional file  1: 
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Tables 1 and 2. The Illumina Human MethylEPIC® v1.0 
BeadChip (Illumina Inc.) [8] was used to interrogate 
more than 850 000 CpG sites (probes) genome-wide at 
single-nucleotide resolution. Raw intensity array data 
were processed using the minfi (v 1.42.0) R package [9]. 
Methylation levels were reported as β-values ranging 
from 0 for unmethylated probes to 1 for fully methylated 
probes. For quality control, the ratio of log2 median 
intensities (methylated and unmethylated) along with 
β-value densities was calculated. β-values were then 
further preprocessed using ChAMP (v 2.21.1) [10] 
where probes with a detection p-value > 0.01 in more 
than 50% of the samples were removed. Control probes, 
X-/Y chromosome probes, multihit probes, and probes 
with known single nucleotide polymorphisms (SNPs) 
were filtered out of the analyses. BMIQ normalization 
was used to reduce the technical variation of Type-I 
and Type-II Illumina probes [11]. Out of 55 samples, 
28 samples failed quality check and were removed from 
downstream analyses. The final analyses included 27 
samples with 740 330 autosomal probes each (Additional 
file 1: Table 2).

Public methylation datasets
Array data from both Illumina Infinium 
HumanMethylation450 (more than 450 000 CpG sites) 
and Human MethylEPIC® BeadChips were downloaded 
from several public data repositories including GEO, 
TCGA and the Array Express databases. A total of 1 
116 450K and 786 EPIC samples were acquired, the 
accession numbers and full details of which can be found 
in Additional file  1: Table  3. To ensure consistent data 
processing, we opted to use signal intensity or raw idat 
files. The datasets were then processed using the same 
steps described above for the in-house experimental 
methylation data. Out of the total 1 879 samples, 14 
failed quality check and were removed from downstream 
analyses.

Ethical approval
The study was conducted under Good Clinical Practice 
guidelines and the Declaration of Helsinki. Samples used 
in this study were previously collected in the Biobank 
of the Antwerp University Hospital and retrospectively 
used in this study. Patients give consent for the use of 
their bodily material in research when consenting to an 
invasive procedure (according to article 20 of the Belgian 
Law on the procurement and use of human corporal 
material intended for human application or scientific 
research of 19 December 2008). Approval for the study 
protocol (and any modifications thereof ) was obtained 
from the ethical committee of the Antwerp University 
Hospital (Ref. N°20/02/010). Other data used in this 

study are publicly available. As such, neither patient 
consent nor institutional review board approval was 
required.

Definitions of genomic regions and differential 
methylation
Genomic region annotations were based on Illumina 
450K and EPIC array manifest files and were divided into 
two main groups. The first consists of genomic locations 
concerning genes. These included: 1st exon; 3′ UTR (3′ 
untranslated region), 5′ UTR (5′ untranslated region), 
Body (gene body), IGR (intergenic regions), TSS1500 
(200 to 1500 nucleotides, upstream of the transcription 
start site, TSS), TSS200 (up to 200 nucleotides upstream 
of TSS), and ExonBnd (exon boundaries). The second 
describes annotations of probe location relative to CpG 
islands. These included: Islands, North shelf (2–4  kb 
upstream of CpG island), North shore (0–2 kb upstream 
of CpG island), Open Sea (non-CpG island-related sites), 
South shelf (2–4  kb downstream of CpG island), and 
South shore (0–2 kb downstream of CpG island).

Genome-wide DNA methylation was investigated 
in the context of differentially methylated probes 
(DMPs), regions (DMRs) and blocks (DMBs). DMPs 
were defined as CpG sites with statistically significant 
differences in methylation levels between groups. In 
contrast, DMRs and DMBs are larger genomic regions—
between ~ 10 bp—10 kb and 10 kb—1 Mb, respectively—
exhibiting a quantifiable difference in methylation 
between groups and containing hundreds of CpG sites.

Differential methylation analyses
Differential methylation analysis was carried out via 
ChAMP (v 2.21.1), which uses parametric linear mixed 
models to test differences in methylation between groups 
[10]. A two-level, three-way differential methylation anal-
ysis was performed in the public EPIC datasets; adenoma 
versus normal tissue, carcinoma versus normal tissue, 
and adenoma versus carcinoma (Fig.  1). DMP p-values 
were adjusted for multiple testing using the Benjamini–
Hochberg correction. DMRs and DMBs were identified 
using an implemented extension of the Bumphunter algo-
rithm in ChAMP, with minimum sizes of 50 and 500 bp, 
respectively. Gene set enrichment analysis (GSEA) was 
done using the ChAMP and methylGSA R packages [12]. 
Differential methylation analysis was carried out on the 
public methylation datasets which constituted the dis-
covery cohort (Fig. 1).

Double evidencing and biomarker selection
DMPs that were first identified through the EPIC dif-
ferential methylation analyses and that were later 
also found in the 450K analyses were termed double 
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evidenced DMPs (DE DMPs). These DE DMPs repre-
sent important methylation markers that are identified 
through the analysis of two separate, large datasets. 
The criteria for assigning DE DMPs for use in the sub-
sequent models were 1) a |Δβ|≥ 0.3 [13] and 2) a cor-
rected p-value ≤ 0.01 in both array types. After merging 
DMP lists and screening for DE DMPs, binary logistic 
regression models were fitted to predict tissue type 
(adenoma/carcinoma/normal tissue) using the specific 
DE DMPs for each of the three analyses (Fig. 1). To test 

over-fitting, all models were tenfold cross-validated. 
Prediction metrics were assessed by plotting receiver 
operating characteristic (ROC) curves, and confusion 
matrices were also generated to calculate overall sen-
sitivity, sensitivity and accuracy. The final model was 
then validated in the in-house experimental methyla-
tion datasets which constituted the validation cohort. 
Prediction metrics were also calculated for the valida-
tion model.

Table 1 Summary of DMPs, DMRs and DMBs in all three analyses

Bol value indicate p value ≤ 0.01

Comparison Adenoma versus normal Carcinoma versus normal Adenoma versus carcinoma

DMB EPIC 703 582 1552

DMR EPIC 3510 6756 5067

DMP 450K 344,165 304,548 170,300

EPIC 620,643 693,813 558,897

Common DMP (450K 
and EPIC)

257,141 258,853 124,082

DE DMP with │Δβ│ ≥ 0.3 
in EPIC AND 450K

62 56 13

Fig. 1 Study overview. DMP differentially methylated probe, DMB differentially methylated block, DMR differentially methylated region, GSEA gene 
set enrichment analysis, DE double evidenced
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Statistical analyses
The statistical software R (v 4.2.0) [14] was used for all 
analyses and visualizations. In all regression models, 
age was accounted for as a covariate, but was excluded 
from the final model if its effect on the outcome was not 

significant. Unless stated otherwise, all reported p-values 
are two-sided, and those ≤ 0.01 were considered statisti-
cally significant. All genomic annotations were based on 
the GRCh37/hg19 genome build.

Fig. 2 Landscape of DNA methylation of adenoma, carcinoma, and normal colorectal tissues in EPIC datasets. A Density plot showing 
the characteristic bimodal distribution of methylation β-values in all 3 tissues based on EPIC array data. B Violin plot of the mean methylation 
in each of the tissues, shows overall methylation decreases with increase in malignancy. C MDS plot highlighting the data structure and sample 
relationship among the tissue groups in EPIC array data. D tSNE plot showing a defined cluster for each of the different tissues, highlighting 
the ability to resolve samples based on their methylation patterns, despite overlap between adenomas and carcinomas. MDS multidimensional 
scaling, tSNE t-distributed stochastic neighbor embedding, A adenoma, C carcinoma, N normal tissue
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Results
Genome‑wide methylation profiling
To comprehensively explore the difference in methylation 
patterns between normal, adenoma and carcinoma tissue, 
DNA methylation was profiled pairwise between the three 
tissue types. This genome-wide differential methylation 
profiling was carried out on public EPIC array datasets. 
The results of these analyses are summarized in Table  1. 
Sizeable genome-wide DNA methylation differences were 
observed between the three tissue types (Fig. 2). β-values 
in all three tissues exhibited characteristic bimodal distri-
butions (Fig. 2A), while on average normal tissues had the 
highest methylation levels followed by adenomas and lastly 

carcinomas (Fig.  2B). Based on the widespread differ-
ences in methylation, the three tissues clustered indepen-
dently using both multidimensional scaling (MDS) and 
t-distributed stochastic neighbor embedding (tSNE) 
approaches (Fig. 2C, D). MDS is used for the visualiza-
tion of outliers, while tSNE rather shows how samples 
group together. In our analyses, both methods agreed. 
The tSNE plot shows four distinct clusters for normal 
tissue (N). The tissues formed mostly discernable clus-
ters where (pre)malignant lesions (i.e., adenomas (A) 
and carcinomas (C)) could be clearly resolved from 
N. However, A and C clustered more closely together 
(Fig. 2C, D).

Fig. 3 Differential methylation in adenoma, carcinoma, and normal colorectal tissues in both EPIC and 450K datasets. A Barplot of DMP counts 
per genomic region for each of the 3 pairwise comparisons for both methylation platforms. Percentages are fractions of the total DMPs for each 
comparison and platform. B Barplot of hyper- (β ≥ 0.7) and hypomethylated (β ≤ 0.3) DMPs for each of the 3 comparisons for both methylation 
platforms. Percentages are fractions of the total DMPs for each comparison and platform. C Barplot of DMB and DMR counts for all 3 comparisons 
for both methylation platforms. Annotations in regular font are with reference to genes, those in bold are with reference to CpG islands. UTR  
untranslated region, IGR intergenic region, TSS transcription start site, N north, i.e., upstream (5’) of CpG island, S south, i.e., downstream (3’) of CpG 
island, ExonBnd exon boundaries, DMB differentially methylated block, DMR differentially methylated region
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DMPs
When studying differences in DNA methylation at a 
single-base resolution, we identified 620 643 DMPs in A 
vs C. When C vs N was compared, 693 813 DMPs were 
observed while comparing A vs N resulted in 558 897 
DMPs (see EPIC data in Table  1). The distribution and 
location of these DMPs in relation to genomic features 
and CpG islands are shown in Fig.  3A. In each com-
parison, most DMPs were in the gene body (36.84% on 
average), which is expected based on the distribution of 
probes on the EPIC array [15]. This was followed by the 
intergenomic regions (28.16% on average) and TSS1500 
(12.66% on average). We also found DMPs located in the 
5’UTR (8.53% on average), in the TSS200 (7.64% on aver-
age), the 1st exon (3.04% on average) and 3’UTR (2.44% 
on average). Lastly, the exon boundaries were studied, 
but they only represented 0.68% of DMPs (Fig. 3A). Con-
cerning DMP location in relation to CpG islands, the 
largest proportion of DMPs mapped to open-sea regions 
(55.66% on average) followed by CpG islands (19.13% on 
average). North shores contained ± 9.92% of DMPs, while 
south shores contained on average 8.47% of DMPs. North 
and south shelves contained the lowest average propor-
tion of DMPs at 3.53% and 3.28%, respectively (Fig. 3A). 
Definitions of DMP locations can be found in the materi-
als and methods section.

The majority of DMPs were hypomethylated compared 
to hypermethylated (80.67% in A vs N, 94.21% in C vs N 
and 91.08% in A vs C, in Fig. 3B). When evaluating the 
tissue types, most DMPs were hypomethylated in tissue 
types with a higher degree of malignancy (given that the 
malignant potential increases from normal, to adenoma 
and eventually carcinoma) (Fig. 3B). To allow for a com-
parison between the three tissue types, the DMP counts 
are normalized by dividing them through the total num-
ber of analyzed CpG sites in each category.

DMRs and DMBs
To study small regions with differential methylation 
that might be functionally involved in transcriptional 
regulation, DMRs between the three tissue types were 

studied. Most DMRs were identified when C vs N were 
compared, followed by the comparison of A vs C and 
the smallest number of DMRs were identified when 
A vs N were compared (6 756, 5 076 and 3 510 DMRs, 
respectively) (Fig.  3C). Since it has been reported that 
large hypomethylated blocks are a universal feature of 
cancer tissue, methylation data was analyzed to identify 
DMBs for the comparison of the three tissue types. We 
identified 1 552 DMBs when comparing A vs C, 703 
DMBs when comparing A vs N and lastly 582 DMBs for 
C vs N (Fig. 3C). Definitions of DMRs and DMBs can be 
found in the materials and methods section “Definitions 
of genomic regions and differential methylation”.

Double evidenced differential methylation (DE DMPs)
To double evidence the DMPs identified through the 
public MethylEPIC® dataset, analysis of additional 
Illumina 450K data of 385 normal, 121 adenoma and 600 
carcinoma samples from public datasets was performed 
(1 106 450K samples mentioned in Fig. 1). The common 
DMPs that were detected in the datasets of both the 
EPIC and 450K methylation arrays and had an absolute 
delta beta value of > 0.3, were termed double evidenced 
DMPs (DE DMPs). Additional file  1: Fig.  1 represents 
an overview of the unique and common DMPs in the 
three different tissue groups. Sixty-two DE DMPs were 
identified when comparing adenoma and normal tissue, 
56 DE DMPs for carcinoma and normal tissue and 13 DE 
DMPs for adenoma and carcinoma tissue (shaded row in 
Table 1). More information regarding the location of the 
DE DMPs within the genome can be found in Additional 
file 2: Table 4.

Methylation as a biomarker for adenomas and carcinomas
To test the discriminatory power of methylation mark-
ers in classifying adenomas versus carcinomas, which 
are the most difficult to resolve clinically, a binary logis-
tic regression model was built using the 13 DE DMPs 
reported above as predictors. Clustering both the pub-
lic data (Fig.  4A–C) and the in-house data (Fig.  4D) 
using the 13 DE DMPs resulted in distinct clusters 

(See figure on next page.)
Fig. 4 The selected 13 DE DMP markers were effective at classifying adenomas and carcinomas. A Heat map and hierarchical clustering analysis 
of the discovery EPIC dataset based on the 13 identified DE DMP markers shows a block like structure with almost half of the markers being 
hypermethylated in carcinoma and hypomethylated in adenomas and vice versa for the other half. B MDS clustering of the discovery dataset 
using the 13 markers shows 2 distinct clusters. C tSNE clustering of the discovery dataset using the 13 markers could also resolve the two tumor 
types. D tSNE clustering of the validation dataset using the 13 markers shows a clear separation between adenomas and carcinomas, only 2 
carcinomas are falsely classified. E ROC curves for the final 13 DE DMP classifier model for both discovery and validation datasets from EPIC arrays. 
Sensitivity and specificity, for distinguishing between adenomas and carcinomas, at various cut-off values for the datasets are plotted. The model 
yielded an AUC of 0.99 and reached a sensitivity and specificity of 96.33% and 95.28%, respectively, while overall model accuracy was 95.81% 
in the discovery dataset. In the validation dataset it had an AUC of 0.85, and reached a sensitivity and specificity of 89.36% and 69.78%, respectively. 
The diagonal dotted line represents the line of no discrimination between the two tumor types. DE DMP double evidenced differentially methylated 
probes, ROC receiver operating characteristic, MDS multidimensional scaling, tSNE t-distributed stochastic neighbor embedding, TPR true positive 
rate, FPR false positive rate, A adenoma, C carcinoma
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between adenomas and carcinomas and more unified 
groupings than using the array data as a whole. Hierar-
chical clustering revealed that these DMPs were more 
hypermethylated in adenomas and hypomethylated in 

carcinomas (Fig. 4A). Clustering the public data could 
clearly resolve the 2 tissue types, albeit some samples 
remained doubtful (Fig. 4B, C). Clustering the in-house 
data fared better, resulting in 2 separate clusters with 

Fig. 4 (See legend on previous page.)
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only 2 of the carcinomas localizing in the adenoma 
cluster (Fig.  4D). The final model was trained on the 
public EPIC array data and validated in the in-house 
experimental methylation datasets (Fig.  1, methods). 
Importantly, the classifier model reached a cross-vali-
dated area under the curve (AUC) of 0.996 and 0.855 in 
the discovery and validation datasets, respectively. Sen-
sitivities and specificities at different cut-off values for 
the predicted probabilities are shown through a ROC 
plot (Fig. 4E). At optimal cut-off, a sensitivity of 96.33% 

and a specificity of 95.28% for the detection of carci-
nomas versus adenomas were reached, with an overall 
accuracy of 95.81% and a misclassification error rate 
of 4.19%. In the in-house data, the model successfully 
classified 13 out of 13 adenomas and 7 out of 9 carcino-
mas. In all, the model exhibited high predictive power 
and good generalizability across different datasets. The 
results of the validation of the DE DMPs for compari-
son of adenoma vs normal and carcinoma vs normal 
are reported in Additional file  1: Fig.  2 and Fig.  3. In 

Fig. 5 Circular genome plot summarizing genome-wide differential methylation between colorectal adenoma and carcinoma tissue. The 
outermost track displays DMBs, while the middle track displays DMRs. The innermost track shows DMPs overlapping the displayed DMBs and DMRs, 
and having a |Δβ|≥ 0.3. CRC-related genes in the COSMIC database and those found in literature, that overlap the mentioned DMBs and DMRs are 
annotated on the periphery. The height of the bars for DMBs and DMRs represents the number of CpGs in those regions and the vertical position 
of DMPs represents their |Δβ| in carcinomas. DMBs differentially methylated block, DMRs differentially methylated regions, DMPs differentially 
methylated probes, hyper hypermethylated, hypo hypomethylated
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addition, a circos plot representing the genome-wide 
differential methylation between adenoma and carci-
noma tissue is provided in Fig. 5. This plot depicts the 
DMPs, DMRs and DMBs of A vs C in view of the epig-
enome and compared to known CRC biomarkers.

Gene set enrichment analysis
Reactome, gene ontology (GO) and KEGG functional 
enrichment analysis were performed to better 
understand the functional implication of differential 
methylation patterns in adenoma vs carcinoma samples. 
Pathways were selected based on p-values, with a cut-
off at < 0.01. We identified 1375, 111 and 32 pathways for 
GO, Reactome and KEGG analyses in A vs C, respectively 
(Additional file 3: Table 5). The top 10 most significantly 
enriched gene sets in each category are represented 
in Additional file  1: Fig.  4. Functional terms that were 
highly enriched included terms related to developmental 
pathways, cell organelles, metabolism, signaling and 
response mechanisms. Searching for overlapping 
pathways within the three analyses, the MAPK signaling, 
cell cycle, ubiquitin-mediated proteolysis, endocytosis 
and Wnt signaling pathway were found to be significantly 
enriched. Furthermore, genes within the enriched 
pathways were investigated in more detail. The NEU1 
gene, which contained 3 DE DMPs for A vs C, was 
found in all three GSEAs. Pathways including the NEU1 
gene are mentioned in Additional file  1: Table  6. All 
frequently mutated genes in cancer are registered in the 
Catalogue of Somatic Mutations in Cancer (COSMIC) 
database. This list of genes provides valuable insights 
into the genetic mechanisms underlying cancer. Within 
the COSMIC genes, 173 genes were found that were 
present in all three GSEAs (Additional file 4: Table 7). For 
example, BRAF, HRAS, MLH1 and EGFR were found to 
be enriched in the GSEA.

Discussion and conclusions
Previous research has demonstrated the methylome’s 
potential for the discovery of biomarkers. In CRC, it has 
been shown that normal and colorectal cancer tissue, 
as well as low-grade and high-grade adenomas, can 
be discriminated based on methylation pattern [5–7]. 
Therefore, we performed the first study to explore and 
compare the epigenome of normal colorectal tissue, 
precancerous lesions (adenomas) and colorectal cancer 
tissue together and to identify biomarkers that can 
discriminate between these three tissue types. Based on 
the current available literature, we hypothesized that 
each of the three tissue types would be differentially 
methylated.

Our results are consistent with this hypothesis. We 
identified numerous DMPs, DMBs and DMRs between 

the three tissue types (Table  1). The most interesting 
aspect is that when normal colorectal tissue is compared 
to adenoma or carcinoma tissue, most of the DMPs 
were hypomethylated in the tissue type with increasing 
malignant potential (Fig.  3A, B), which indicates an 
important role for hypomethylation in carcinogenesis. 
This is in accordance with previous studies that indicated 
widespread hypomethylation in cancer tissue compared 
to healthy tissue, which is observed across cancer types 
[16, 17]. It also corresponds to the findings of Fan et al., 
who observed increasing DNA hypomethylation starting 
from low-grade adenoma stage, leading to further 
hypomethylation at high-grade adenoma and CRC 
stage [5]. Likewise, Liu et  al. found significantly more 
hypomethylated DMPs than hypermethylated DMPs 
in adenoma tissue compared to adjacent normal tissue. 
For DMRs, the same pattern was observed [18]. When 
focusing on the difference in methylation between the 
three tissue types, it is interesting to note that not all 
normal samples were alike. In the MDS and tSNE plots 
(Fig.  2C, D), two and four distinct subclusters for the 
normal samples can be observed, respectively. This 
indicates the possibility of several subtypes of normal 
colon tissue with different methylation patterns. We 
observed different clusters based on sample location (left 
vs right, data not shown), which has also been described 
in literature before [19–22]. However, healthy colon 
tissue adjacent to the tumor tissue was used instead of 
normal colon samples of healthy patients. In literature, 
the phenomenon of field cancerization has been 
described, where amongst others epigenetic changes have 
been reported in normal colon mucosa adjacent to the 
tumor [23–27]. Hawthorn et al. described chromosomal 
instability in regions surrounding the tumor as far as 
10  cm distal [23]. Park et  al. described the aberrant 
methylation of non-adjacent normal-appearing tissue 
[25]. Unfortunately, for most of the datasets, there is no 
information on the distance at which the normal-looking 
tissue was taken, making it difficult to estimate the field 
effect. However, this clinical information is also lacking in 
public data. Lastly, two distinct morphological pathways 
of CRC carcinogenesis exist, potentially explaining the 
two clusters found in the MDS plot (Fig.  2C). Both the 
conventional and the alternative/serrated pathways are 
characterized by specific epigenetic alterations. Different 
mechanisms lay behind these pathways, which are 
associated with MSI status and CpG island methylator 
phenotype (CIMP). A specific CRC classification of five 
molecular subtypes based on MSI and CIMP status has 
been described previously. The four distinct clusters 
found in the tSNE plot (Fig.  2D) could potentially be 
explained by these molecular subtypes, but this cannot 
be verified due to the lack of clinical data [28].
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When comparing our DMPs to those found in 
literature, we find many similarities. For example, CpGs 
in the ADHFE1 [5], SND1, OPLAH, TMEM240, NR5A2, 
TLX2, COL4A1, ZFP64 [13], MYO1G [29], CREB1 
[18], NPY and PENK [30] genes were also identified 
in other studies comparing the methylation pattern of 
healthy colorectal tissue to adenoma and/or carcinoma 
tissue. Several of these methylation markers can also be 
appreciated from the circos plot (Fig. 5).

From a clinical perspective, the difference between 
colorectal adenoma and carcinoma is the most relevant. 
Therefore, a more in-depth analysis was performed on 
the difference in methylation between those 2 tissues 
(Fig.  4). When comparing their methylation patterns, 
surprisingly 3 out of 13 DE DMPs were located on 
chromosome six. Chromosome six is a well-known 
chromosome in oncology. It contains several clinically 
important proto-oncogenes as well as the major 
histocompatibility complex. Several genes linked to 
CRC are located on this chromosome, including ROS1, 
VEGFA, CDKN1A and VIP. A total of 37 797 DMPs 
was found in the EPIC analysis. 7 810 thereof were 
in the major histocompatibility complex (MHC). The 
MHC contains more than 100 genes implicated in the 
immune response, including HLA-A, HLA-B and HLA-
C. These genes and the MHC class I molecules play an 
important role in the anti-cancer immune response [31]. 
Downregulation of MHC class I has been observed in 
40–90% of cancer types and was often correlated with a 
worse prognosis [32].

The three DE DMPs on chromosome 6 were located 
in the TSS1500 (shore) region of the neuraminidase 1 
(NEU1) gene. This gene encodes a protein that functions 
as a lysosomal enzyme. It cleaves terminal sialic acid 
residues from its substrates including glycoproteins/gly-
colipids. It has no clear cancer-related function, but it is 
described to play a role in amongst others pathways for 
the innate immune system, glycosphingolipid metabo-
lism, diseases of glycosylation and synthesis of substrates 
in N-glycan biosynthesis [33], which were also found to 
be enriched in the GSEAs (see Additional file 1: Table 6). 
Furthermore, three publications have already described 
a link between NEU1 and CRC. In 2009, Uemura 
et  al. reported the regulatory role of NEU1 in integrin 
β4-mediated signaling, which led to the suppression 
of metastasis [34]. Almost a decade later, Forcella et  al. 
found that human sialidases are severely dysregulated 
in several tumors and described their potential applica-
tion in cancer diagnosis [35]. Jiao et al. further underlines 
the role of NEU1 in tumorigenesis regulation through 
several pathways, including immune-mediated tumo-
rigenesis and regulation of vascularization [36]. In addi-
tion, two other DE DMPs reported in this study (Fig. 4), 

are reported in previous methylation studies in CRC. 
First, EREG methylation and subsequent low EREG gene 
expression were correlated with poor response to anti-
EGFR therapy in colorectal cancer [19, 37, 38]. Further-
more, SND1 methylation was identified as one of the top 
14 methylation markers for discriminating between CRC 
and normal tissue in a study by Naumov et al. [13].

Later, the 13 DE DMPs detected through the 
comparison of the methylation pattern of colorectal 
adenoma and carcinoma were used to build a model that 
can discriminate between these two lesions (Fig.  4E). 
These 13 DE DMPs represent the most significant 
differences between these two tissue types. During 
the validation of the prediction model in the in-house 
experimental methylation dataset, an increased error rate 
was noted (from 4.19% to 11.62%). This might be due to 
the smaller group of samples in the validation group and/
or due to a lower quality of methylation arrays run on 
FFPE tissue instead of fresh frozen tissue.

When comparing the performance of our model 
to other methylation models, it is interesting to 
compare to SEPT9. This is the best-known example 
of DNA methylation as a biomarker in CRC and was 
commercialized as the EpiProColon® assay. Although 
the use of this assay has proven effective for CRC 
detection, it lacks sensitivity for the detection of 
adenomas. Sensitivities ranging from 11.2% to 31.8% 
for methylated SEPT9 in adenomas have been reported 
[39]. Combinations with other markers, for example 
ALX4, increased the sensitivity to 37%, which shows 
there is plenty of room for improvement [40]. Our 
model, combining 13 DE DMPs, yielded a sensitivity of 
96% for discriminating adenomas and carcinomas. All 
13 adenomas were correctly classified. This is already 
a major improvement compared to methylated SEPT9, 
although more research and external validation will be 
needed to prove the superiority of the 13 DE DMPs.

An aspect of working with public data is the lack of 
quality control. When the data of publicly available 
methylation array data were analyzed for this study, 
certain samples included in these datasets were not able 
to pass quality control and had to be excluded. Therefore, 
it is advised to download the signal intensity or raw idat 
files and not β-values, to perform the quality control 
yourself to ensure adequate quality.

One of the limitations of this study is the use of FFPE 
material for methylation arrays. A known problem when 
FFPE samples are used for methylation arrays is the fact 
that this often results in lower quality data. Previous 
studies showed that a restore method can result in relia-
ble and high-quality epigenomic data, concordant to that 
of fresh frozen tissue [41–43]. Therefore, the Infinium 
HD FFPE Restoration kit was used in this study. However, 
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in our analyses it was noticed that the results of the vali-
dation of the 13 DE DMPs were sample dependent. The 
sample age did not affect the quality of FFPE-derived 
DNA, which is in concordance with the study of Kling 
et al. [44]. When the model was tested with lower-qual-
ity samples (without the expected bimodal distribution 
of beta values and more beta values around 0.5), it per-
formed worse (data not shown) [44]. High-quality data 
are thus needed for reliable analyses. Even though dif-
ferent pretreatment processes were developed to reduce 
formalin artifacts [41], restoring FFPE samples was not 
found to be effective in our study. This resulted in a lim-
ited number of samples used in this study.

Another restriction of this study is that only one 
out of 13 adenomas from the in-house experimental 
methylation dataset was high-grade, while all others 
were low-grade. It would be of interest to identify 
methylation markers to make a distinction between 
low-grade and high-grade adenomas, since this might 
allow for minimally invasive identification of high-grade 
adenomas, which are known to have a higher risk of 
developing into carcinoma. However, since only one of 
our adenoma samples was high-grade and that dysplasia 
grade was not reported for most adenomas in the public 
datasets, this analysis was not possible. However, this 
comparison has been reported by Fan et al. [5].

Due to the stability of DNA methylation and 
the fact that aberrant methylation occurs early in 
carcinogenesis, the methylome has been considered 
an ideal source for potential biomarkers. The findings 
of this study raise the possibility that the 13 DE DMPs 
identified in this study can be used as targets for a liquid 
biopsy assay to distinguish adenoma from carcinoma in 
a minimally invasive way. The non-invasive detection 
of colorectal adenoma and carcinoma and the 
distinction between these lesions is highly clinically 
relevant. Early detection and removal of these lesions 
in the colorectum can prevent the development and 
locoregional or metastatic spread of colorectal cancer. 
Most adenomas and carcinomas are detected through 
colorectal cancer screening with fecal occult blood 
tests and subsequent colonoscopy. However, for certain 
patient groups these tests are not ideal, and a minimally 
invasive test is preferred. For example, in patients 
with congestive heart disease the fluid load of bowel 
preparation should be avoided and in patients who are 
treated with anticoagulants an invasive colonoscopy 
with biopsy for histopathological analysis can cause 
bleeding. Since only a small proportion (± 5%) of 
adenomas will eventually progress to carcinoma 
and this process takes up to 5–10  years, the removal 

of an adenoma is less urgent than the removal of a 
carcinoma. Therefore, it is of clinical importance to not 
only detect these lesions minimally invasively, but also 
to discriminate between these two tissue types, since 
treatment and follow-up will be different. In addition, 
a minimally invasive method to do this (e.g., liquid 
biopsy or stool samples with the 13 DE DMP markers), 
would be an important added value. With this study, we 
demonstrate the strength of differentially methylated 
CpG sites to be used in the clinic as biomarkers. In 
conclusion, our analyses highlight the power of the 
methylome, showing that methylation biomarkers can 
be used to identify colorectal adenoma and carcinoma, 
but also have the potential to discriminate between 
these two tissue types.
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