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Abstract 

Background Abnormal DNA methylation is thought to contribute to the onset and progression of systemic sclero-
sis. Currently, the most comprehensive assay for profiling DNA methylation is whole-genome bisulfite sequencing 
(WGBS), but its precision depends on read depth and it may be subject to sequencing errors. SOMNiBUS, a method for 
regional analysis, attempts to overcome some of these limitations. Using SOMNiBUS, we re-analyzed WGBS data previ-
ously analyzed using bumphunter, an approach that initially fits single CpG associations, to contrast DNA methylation 
estimates by both methods.

Methods Purified CD4+ T lymphocytes of 9 SSc and 4 control females were sequenced using WGBS. We separated 
the resulting sequencing data into regions with dense CpG data, and differentially methylated regions (DMRs) were 
inferred with the SOMNiBUS region-level test, adjusted for age. Pathway enrichment analysis was performed with 
ingenuity pathway analysis (IPA). We compared the results obtained by SOMNiBUS and bumphunter.

Results Of 8268 CpG regions of ≥ 60 CpGs eligible for analysis with SOMNiBUS, we identified 131 DMRs and 125 dif-
ferentially methylated genes (DMGs; p-values less than Bonferroni-corrected threshold of 6.05–06 controlling family-
wise error rate at 0.05; 1.6% of the regions). In comparison, bumphunter identified 821,929 CpG regions, 599 DMRs (of 
which none had ≥ 60 CpGs) and 340 DMGs (q-value of 0.05; 0.04% of all regions). The top ranked gene identified by 
SOMNiBUS was FLT4, a lymphangiogenic orchestrator, and the top ranked gene on chromosome X was CHST7, known 
to catalyze the sulfation of glycosaminoglycans in the extracellular matrix. The top networks identified by IPA included 
connective tissue disorders.

Conclusions SOMNiBUS is a complementary method of analyzing WGBS data that enhances biological insights into 
SSc and provides novel avenues of investigation into its pathogenesis.
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Background
Systemic sclerosis (SSc) is a rare autoimmune con-
nective tissue disorder characterized by immune dys-
regulation, vasculopathy and fibrosis. It is associated 
with the highest mortality among rheumatic diseases 
[2, 39]. As with other autoimmune disorders, SSc dis-
ease pathogenesis and progression are poorly under-
stood due to the complex contributions of genetic and 
environmental factors. Consequently, identification of 
effective therapeutic targets for SSc is limited by both 
understanding of altered cell and tissue functions, 
as well as how these depend on interactions with the 
genome and epigenome. Genetic and epigenetic stud-
ies of SSc can provide important insights into disease 
pathogenesis.

Epigenetic modifications including DNA meth-
ylation play a pivotal role in gene expression and are 
thus plausible factors in the onset and progression 
of SSc. Most DNA methylation studies to date have 
been restricted to a limited subset of cytosines in the 
genome, such as those on the Illumina EPIC array 
[35]. These approaches provide incomplete informa-
tion about methylation profiles of the genome [12]. 
Whole-genome bisulfite sequencing (WGBS) is a more 
comprehensive assay for profiling DNA methylation, 
providing data at the single nucleotide level [19]. How-
ever, precision of WGBS depends on read depth and 
it may be subject to sequencing errors. SOMNiBUS, a 
method that we developed for regional analysis of DNA 
methylation across the genome [44], attempts to over-
come some of these limitations. By combining infor-
mation across nearby cytosines with a smooth spline 
model built onto a quasi-binomial distribution of meth-
ylated counts, SOMNiBUS uses all available reads and 
ignores those that are missing. Furthermore, additional 
parameters allow for potential sequencing errors and 
adjustments of confounding variables. This platform 
has the potential to identify previously unobserved 
regions of differential methylation and lead to greater 
understanding of biological pathways of disease.

Here, we compare methylation patterns between 
CD4+ T-cells from 9 women with SSc and 4 healthy 
female controls previously analyzed [27] using bum-
phunter [1, 17], a two-stage analysis approach that fits 
single CpG associations first, followed by smoothing the 
association coefficient estimates for nearby cytosines. 
In contrast, our analysis performed using SOMNiBUS 
[44] consists of a single-stage regional analysis method 
that infers smooth covariate effects across regions while 
accounting for variable read depth, sequencing errors, 
missing data patterns and confounders such as age. Our 
analysis uncovers new loci of differential methylation 
associated with SSc.

Results
Differential methylation of CpG regions using SOMNiBUS
After WGBS, data processing and filtering, we were able 
to estimate methylation levels for two or more individu-
als at 6,849,298 CpG dinucleotides. The median read 
depths of CpGs retained for analysis ranged from 34 to 39 
across the autosomal chromosomes, and 35 for chromo-
some X. No data were available for chromosome Y since 
this study was comprised of only female subjects. After 
partitioning the CpG sites into disjoint regions based 
on CpG site spacing, we obtained 8268 CpG regions of 
60 CpGs or more eligible for analysis with SOMNiBUS. 
SOMNiBUS identified 131 of these CpG regions as dif-
ferentially methylated between SSc patients and controls 
at a significance level below the Bonferroni-corrected 
p-value threshold (Fig. 1A), adjusting for the number of 
regions analyzed. Quantile–quantile plots of CpG region 
p-values are shown in Fig. 1B, clearly demonstrating that 
many regions show differential methylation between SSc 
and controls.

Genes and networks impacted by differential methylation
By overlaying our results against gene positions from 
the UCSC genome browser (see Methods), we identi-
fied 125 genes associated with our 131 DMRs, which 
we refer to as differentially methylated genes (DMGs; 
Table 1 and Additional file 1). Figure 1C displays the loca-
tions of the analyzed regions by chromosome. Then, we 
examined differentially methylated CpG regions (DMRs) 
at the single-nucleotide level. The estimated smoothed 
regional coefficients, also known as β(t), for the asso-
ciation between SSc and methylation (provided on the 
logit scale) are shown in Additional file 2 for each of the 
DMGs; these plots also show the corresponding gene 
region annotations [18]. There is one image per DMR/
DMG pair. There were also 24 DMRs which did not 
overlap with any gene region annotations; no figures 
are shown in Additional file 2 for these 24 DMRs. Some 
DMRs may be annotated to more than one gene in the 
case of a sense/antisense gene-pair, and likewise, one 
DMG may be associated with multiple DMRs. For our 
125 DMGs, 116 DMGs were mapped to a single DMR, 
7 DMGs mapped to 2 DMRs, and the sense/antisense 
gene-pair GNAS and GNAS-AS1 (a lncRNA) mapped to 
3 and 4 DMRs, respectively.

Comparison to bumphunter
For the analysis using bumphunter in [27], the genome 
was partitioned into 821,929 CpG regions. Bum-
phunter first identified regions where the regional meth-
ylation difference was 0.2 or greater; this quantity is 
defined by the average of the individual CpG |β values| 
across all CpG sites in a CpG region. Bumphunter then 
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retained CpG sites with a false discovery rate-adjusted 
q-value ≤ 0.05; the analysis pipeline retained 8425 CpG 
regions (7831 CpG regions on autosomal chromosomes 
and 437 CpG regions on chromosome X). The retained 
regions had a mean of 1.1 CpG sites per region. Among 
these 8425 regions, 599 were found to be differentially 
methylated (584 DMRs on autosomal chromosomes and 
15 DMRs on chromosome X), containing an average of 
2.5 CpG sites per DMR; with DMRs being defined as a 
CpG region with q-value below 0.05.

It is not straightforward to compare the results 
obtained here with SOMNiBUS to those we obtained 
with bumphunter [27] since the regions are constructed 
differently, and the statistical significance is not esti-
mated in the same way. As stated above, bumphunter 
uses a genome-wide false discovery rate for significance, 

combined with a minimum regional methylation dif-
ference (analysis details are described in Methods). In 
contrast, SOMNiBUS estimates p-values for each ana-
lyzed region. We then applied a threshold (6.05e−06) 
to control the family-wise error rate (FWER) at 0.05 by 
using a Bonferroni correction for the number of regions 
analyzed. Nevertheless, with these two very different 
definitions of significance, SOMNiBUS identified a com-
parable number of DMRs and DMGs when compared 
to bumphunter (Table 2), while starting from 8268 CpG 
regions—all with ≥ 60 CpG sites per region by defini-
tion—with a mean of 108.3 CpG sites per region. Of 
these 8268 regions, there were 131 DMRs with a mean 
of 113.2 CpG sites per DMR. In some additional analy-
ses, we also examined the number of DMGs identified by 
SOMNiBUS when a liberal significance of p-value < 0.05 

Fig. 1 SOMNiBUS region-level results. A Manhattan plot SOMNiBUS p-values in CpG regions with ≥ 60 CpGs; the x-axis indicates the starting 
positions of CpG regions; p-values are plotted on the − log10 scale. Blue and red dashed lines indicate the significance thresholds used in our study 
(red: Bonferroni corrected threshold of 6.05e−06; blue: 0.05). B Quantile–quantile (QQ) plot of SOMNiBUS region-wide p-values for 8268 CpG regions 
containing ≥ 60 CpG sites. The confidence interval under the null hypothesis is shown as a gray shaded area. C CpG regions within 1 Mbp density 
plot, stratified by chromosome
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was applied; SOMNiBUS then identified 1228 DMRs 
which annotated to 1183 DMGs.

Hence, to examine the agreement, we compared the 
set of annotated DMGs identified by both methods. 
There were 125 DMGs for SOMNiBUS (FWER < 0.05; 
1.6% of the regions) compared to 340 DMGs for bum-
phunter (q-value of 0.05; 0.04% of all regions); no DMRs 
overlapped between SOMNiBUS and bumphunter with 
FWER < 0.05 for SOMNiBUS. Therefore, to examine the 
agreement between SOMNiBUS and bumphunter, we 
relaxed the threshold for SOMNiBUS to p < 0.05, and 
using this relaxed criterion, we find that 69 genes were 
identified by both methods. Of these 69 common genes, 
30 contained CpG sites in common that were identified 
as differentially methylated by both methods—overlap 
of at least 1 CpG site; in this situation, the smoothed β 
values for the 30 SOMNiBUS DMRs that overlapped 

with bumphunter DMRs are displayed graphically in 
Additional file 3. Evidently, no regions with less than 60 
CpG sites will be identified by SOMNiBUS due to our 
definition of a CpG region; SOMNiBUS requires fairly 
large regions to estimate all parameters and achieve 
convergence.

For a complementary way to look at the agreement 
between the two methods, we selected the subset of 
1249 CpG regions that overlapped by at least one CpG 
site. Then, in this subset of regions, the significance of 
each region was ranked by SOMNiBUS and bumphunter. 
Overlapping pairs of CpG regions ranked by significance 
were plotted separately for each chromosome (Additional 
file 4). The overlap of results for the 127 overlapping CpG 
regions on chromosome X is shown in Fig. 2A, where the 
size of the points indicates the number of overlapping 
CpG sites. The number of overlapping CpG sites was 
higher (larger points) for the subset of CpG regions that 
were identified as highly significant in both methods (top 
right quadrant of the plots).

Next, we examined agreement in p-value rankings. We 
focused on the 1228 SOMNiBUS regions with a more 
relaxed significance threshold of p < 0.05 (see Table  2) 
which corresponds to 1183 genes. Bumphunter’s 340 
significant DMGs included 69 genes overlapping with 
the 1183 identified by SOMNiBUS. In Fig.  2B, we show 
the cumulative average rank of these overlapping bum-
phunter results. High proportions of overlap were 
observed among the genes with ranks between 150 and 
300 for SOMNiBUS, reaching a maximum when we 
added SMAD3 to the cumulative average ranks. Pre-
viously in [27], we identified SMAD3 as a DMG in our 
bumphunter analysis; 1–5 kb upstream of the transcrip-
tion start site, the average methylation proportion was 
lower in SSc by 23.4% compared to controls.

SMAD3 is a signal transducer involved in TGF-β sign-
aling [32, 40, 41], a signaling pathway which drives the 
progression of SSc, [21, 24]. Here, SMAD3 was identi-
fied as a CpG region with a p-value of 4.6e−04 which, 
although small, did not meet our threshold of significance 
controlling the family-wise error rate (6.05e−06). Nev-
ertheless, both bumphunter and SOMNiBUS identified 

Table 1 DMGs identified by SOMNiBUS 

Range Genes Count

Chromosome (Ordered by significance)

1–22 (Autosomal) FLT4, TMEM204, IFT140, WDR97, SHARPIN, 
SDHAP3, SH3BP2, VPS26C, ARL4C, GALNT18, 
GFRA1, PARD6G-AS1, KLHL17, NOC2L, ZMIZ1, 
ZNF232, USP6, MPL, PAX8-AS1, PAX8, MOBP, 
GNAS-AS1, GNAS, URAD, MEST, MESTIT1, 
MIR335, ADCY10P1, NFYA, PRR25, DUSP22, 
ZNF808, FGFR2, ABHD12B, EPS8L1, HOXB3, 
ANKRD23, LINC01252, KLF2, NAV1, PARP11, 
LINC00865, H19, DHRS4L1, DHRS4L2, 
TMEM14C, OTUD7A, RB1, KCNQ1OT1, KCNQ1, 
TMEM121, SSBP4, IAH1, TRAPPC9, LSP1P3, 
PARD6G, FIGNL2, GRB10, RGPD8, PSD4, CADM2, 
DCBLD1, GOPC, SLC7A5, TFAP2E, PSMB2, SIX5, 
MAGI1, ACTL10, NECAB3, ANKRD27, RGS9BP, 
ERICH1, FAM83H, ADAP1, UNC93B1, GLI4, 
ZFP41

78

X CHST7, ZXDA, EMD, FLNA, PDK3, HMGB3, 
TMEM187, HCFC1, PLXNA3, BCOR, RAB33A, 
AIFM1, EFNB1, EIF2S3, NEXMIF, CASK, IKBKG, 
G6PD, DUSP9, DCAF12L2, SLC6A8, PNCK, RPGR, 
BRCC3, CMC4, MTCP1, BEX2, DKC1, SNORA36A, 
PGK1, PORCN, DOCK11, MSN, CCNQ, OTUD5, 
AMMECR1, SMIM10L2B, PRPS2, CDK16, 
RPS6KA6, DLG3, MAGIX, ZMAT1, MBTPS2, FGD1, 
CCDC120, C1GALT1C1

47

Table 2 Comparison of numbers of regions identified by the two methods used for DMR and DMG detection

For SOMNiBUS, the FWER of 0.05 was estimated by a Bonferroni correction for the number of regions analyzed: 0.05/8268 = 6.05e−06. For bumphunter, the software 
uses permutations to estimate genome-wide false discovery rates, and [27] reported results for q-values < 0.05

Method used # of CpG Regions # of CpG 
regions 
with ≥ 60 CpGs

# of DMRs # of DMRs 
with ≥ 60 
CpGs

# of DMGs Mean # of CpG 
sites per CpG 
Region

Mean # of 
CpG sites per 
DMR

SOMNiBUS (p < 6.05e−06; 
FWER < 0.05)

8268 8268 131 131 125 108.3 124.5

SOMNiBUS (p < 0.05) 8268 8268 1228 1228 1183 108.3 113.2

Bumphunter (q-value < 0.05) 821,929 0 599 0 340 1.1 2.5
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hypomethylation 1–5  kbp upstream of the transcrip-
tion start site in SSc. Smoothed β values reported by 
both methods for the overlapping DMRs are shown in 
Fig.  2C; the larger region analyzed by SOMNiBUS pro-
vides greater power to detect the differential methylation. 
The model-derived methylation proportions estimated by 
SOMNiBUS, averaged over the 10 CpG sites identified by 
both methods, are 0.427 for SSc individuals and 0.639 for 
controls (lower by 21.2% in SSc; similar to bumphunter’s 
estimate of 23.4%). Differential methylation at SMAD3 
was also detected by Li et  al. [24] in CD4+ T lympho-
cytes, although their hypomethylated CpG is down-
stream of our region.

Further comparison of DMRs between bumphunter 
and SOMNiBUS is difficult due to the differing sizes of 
their partitioned CpG regions (see Discussion, Methods). 
Frequency distributions of the number of CpG sites per 

CpG region, partitioned by method, are shown in Addi-
tional file 5.

Gene annotations for SOMNiBUS results
Of the DMGs we identified with SOMNiBUS, the top-
ranked gene was FLT4. Differential methylation of FLT4 
primarily occurred in the gene body, with hypermethyla-
tion of a coding exon (Fig. 3A). FLT4 encodes for vascular 
endothelial growth factor receptor 3 (VEGFR-3), which 
regulates the development and maintenance of the lym-
phatic system. Abnormal levels of VEGFR-3 and lym-
phangiogenesis have been reported in SSc [6, 7, 15, 29], 
and we previously reported its phenotypic presentation 
on the fingers of an SSc patient [14]. Two differentially 
methylated CpG sites annotated to FLT4, located down-
stream of SOMNiBUS’ DMR, were also detected in an 
epigenetic study of SSc CD4+ T lymphocytes [24].

Fig. 2 Comparisons of bumphunter and SOMNiBUS results. A Rankings by significance for SOMNiBUS and bumphunter are shown for 127 CpG 
regions on chromosome X containing at least one overlapping CpG. The size of a point represents the number of overlapping CpG sites. B Average 
rank score curve of overlapping DMGs on any chromosome identified by both methods. The horizontal axis is the minimum p-value for regions 
assigned to each of 1183 genes with p < 0.05 by SOMNiBUS. For the 69 genes that were also identified by bumphunter, the vertical axis shows the 
cumulative average ranks of the bumphunter p-values among their 340 DMGs. When a gene does not match, there is no point shown. The highest 
average rank was achieved when adding SMAD3, which is colored in red. C Estimated SSc disease effect on CpG methylation (on the logit scale) 
for the overlapping DMRs identified by both methods at SMAD3. Points (left y-axis) indicate the estimated smoothed coefficient at each individual 
CpG with intersected positions in red. Pointwise confidence intervals are shown in light gray. Structural gene annotations (right y-axis) are shown in 
shaded boxes: green (promoters and first exons; both of which are linked to transcriptional silencing), and yellow (1–5 kb upstream of promoters). 
The width of bumphunter’s DMR is displayed with a red horizontal line, with the average methylation difference in that region indicated just above 
the line



Page 6 of 13Yu et al. Clinical Epigenetics           (2023) 15:96 

The top ranked gene on chromosome X—the chromo-
some with the most DMRs—was CHST7, which catalyzes 
the sulfation of glycosaminoglycans (GAGs) in the extra-
cellular matrix (ECM). CHST7 was previously character-
ized as being differentially expressed at a rate of 3.56-fold 
in SSc dermal fibroblasts of 15 twin pairs discordant 
for SSc compared to dermal fibroblasts of 5 controls in 
a study to discriminate between genetic and nongenetic 
molecular pathways implicated in SSc pathogenesis [45]. 
Here, hypomethylation was observed on the first exon 
of CHST7 (Fig.  3B). Since methylation in this region is 
hypothesized to block transcription initiation, our hypo-
methylation results suggest CHST7 is being transcribed 
at higher rates in SSc patients. Thus, the hypo-methyla-
tion we observe in the first exon region of CHST7 could 
potentially highlight an epigenetic response to SSc-asso-
ciated fibrosis.

We also annotated DMRs using the hg19 database to 
long-non-coding functional RNAs (lncRNA), which play 
an important role in the regulation of many epigenetic 
processes. LncRNAs are a broad class of RNA genes that 
act as gene regulators through their involvement in vari-
ous epigenetic processes such as DNA methylation [31]. 
RNA sequencing studies have previously revealed dif-
ferentially expressed lncRNAs in the skin tissue of SSc 
patients [33, 42]. However, the role lncRNAs in SSc—
and in general—is still poorly understood. Of our 125 
observed DMGs, the sense-antisense gene pair GNAS 
and GNAS-AS1 (the corresponding antisense lncRNA) 
shared 4 distinct DMRs, more than any other DMG iden-
tified. Moreover, mutations in the GNAS gene have been 
previously associated with calcinosis cutis, a debilitating 
feature that can be present in SSc [37].

For functional analysis and detection of networks, 
we analyzed the 125 identified DMGs with ingenuity 

pathway analysis (IPA). From these genes, IPA identi-
fied possibly implicated gene networks, with cancer and 
endocrine system disorders identified as the top-ranked 
network and connective tissue disorders identified as the 
third-ranked network. The top 5 networks are shown in 
Table 3; all enriched networks can be seen in Additional 
file 6. Enriched networks from analyses only using DMGs 
on autosomal chromosomes are shown in Additional 
file  7, and only on chromosome X are shown in Addi-
tional file  8. Results of our network analysis were com-
pared with a 2019 WGBS study conducted on twin pairs 
discordant for SSc; we found evidence of agreement for 
the following pathways: cancer, gastrointestinal disease, 
and organismal injury and abnormalities [36].

Our functional analysis with IPA was able to detect 
immune-cell specific pathways in these extracted 
CD4+ T lymphocytes. Several canonical pathways iden-
tified by IPA demonstrate strong biological plausibil-
ity (Fig.  4A and B), including among others, pathways 
involved in skin fibrosis, such as PTEN [26, 34] and 
Ephrin [22, 23, 43], which are particularly interesting 
pathways to observe in our analyses of immune cells. IPA 
also identified SSc-associated abnormal methylation of 
genes implicated in the signaling of hypoxia-inducible 
factors, which lead to hypoxia, a cellular environment 
with known involvement in the pathogenesis of SSc-asso-
ciated fibrosis [16], along with other biologically plausible 
toxicities (Fig. 4C).

Discussion
Strengths of SOMNiBUS
The way we defined a DMR with SOMNiBUS allows 
our regions to span all parts of the genome contain-
ing concentrated and closely positioned CpG sites that 
were captured by the sequencing library. This includes 

Fig. 3 SOMNiBUS-estimated smooth association parameters associated with methylation differences between SSc disease and controls. Parameters 
are shown on the logit scale for DMRs annotated to A FLT4, the top ranked autosomal DMG, located on chromosome 5; and B CHST7, the top 
ranked DMG located on chromosome X. Points (left y-axis) indicate the estimated smoothed coefficient value (vertical axis) at each individual CpG 
in the region (x-axis), and pointwise confidence intervals are shown in light gray. Structural gene annotations (right y-axis) are shown in shaded 
boxes: light blue (introns), lilac (exons), green (promoters and first exons; both of which are linked to transcriptional silencing)



Page 7 of 13Yu et al. Clinical Epigenetics           (2023) 15:96  

Table 3 Top 5 networks impacted by SSc-associated CpG differential methylation

DMGs identified by SOMNiBUS are bold

Top diseases and functions Molecules in network (alphabetical) Score Focus 
molecules

Cancer, endocrine system disorders, organismal injury and 
abnormalities

Akt, ARL4C, BEX2, C1GALT1C1, CASK, CCDC120, CDK16, CG, 
Cyclin A, DLG3, estrogen receptor, FGFR2, FLT4, FSH, GALNT18, 
GFRA1, GRB10, Growth hormone, H19, HMGB3, Lh, MAGI1, 
MEST, mir-335, MPL, NAV1, NFYA, PARD6G, PAX8, PORCN, 
Proinsulin, Rb, TMEM204, YAP/TAZ, ZNF232

55 25

Developmental disorder, gastrointestinal disease, organismal 
injury and abnormalities

ADAP1, Alp, BCR (complex), Creb, DOCK11, DUSP9, EPS8L1, 
ERK1/2, FGD1, FLNA, G6PD, GTPase, KCNQ1, KCNQ1OT1, 
MAP2K1/2, MBTPS2, MSN, OTUD5, OTUD7A, p70 S6k, Pdgf (com-
plex), PDGF BB, phosphatase, PI3K (family), Pka, PP2A, PSMB2, 
RB1, RPS6KA6, Rsk, SH3BP2, SHARPIN, Shc, Srebp, transcription 
factor

36 18

Connective tissue disorders, hereditary disorder, organismal 
injury and abnormalities

26 s Proteasome, Actin, caspase, CD3, CHST7, DKC1, EGLN, 
EIF2S3, F Actin, FAM83H, GLI4, HCFC1, HISTONE, Histone h2a, 
Histone h3, Histone h4, Hsp70, Hsp90, IKBKG, Immunoglobulin, 
KLF2, NECAB3, NFkB (complex), NOC2L, Notch, PARP11, PI3K 
(complex), Rnr, TCR, TMEM121, TMEM14C, TRAPPC9, Ubiquitin, 
USP6, Vegf

28 15

Cancer, cell death and survival, organismal injury and abnor-
malities

ADRB2, BARX2, CADM2, CAMK1G, CIITA, CREB1, CREBBP, DDX39A, 
FAS, GNAS-AS1, HEIH, HOXB3, IFNG, IL32, iodine, NEXMIF, NR4A1, 
PAX8-AS1, Pde4d, PDHA2, PDK3, PRPS2, PSD4, RGS9BP, SETD7, 
SMARCA4, SMIM10L2B, TFAP2E, TMEM187, TP53, TRPM1, TULP4, 
ZFP41, ZMIZ1, ZXDA

28 15

Cardiac dilation, hereditary disorder, organismal injury and 
abnormalities

AIFM1, AMPK, BCOR, BRCC3, Calmodulin, calpain, CMC4, 
cytokine, DUSP22, EFNB1, EMD, ERK, GNAS, GOPC, IFN Beta, IgG, 
Igm, Insulin, Interferon alpha, Jnk, Mapk, Mek, Nfat (family), P38 
MAPK, PGK1, Pkc(s), PTK, Ras homolog, Sapk, SLC6A8, SLC7A5, 
SRC (family), SSBP4, STAT5a/b, UNC93B1

26 14

Fig. 4 Results of pathway analyses of DMGs identified by SOMNiBUS. A Top 25 canonical pathways impacted by SSc-associated CpG differential 
methylation, identified by IPA; bars indicate p-values on the − log10 scale. B Network graph of the top 10 overlapping canonical pathways from 
panel 3a. C Toxicities known to originate from genes identified as SSc-associated DMGs by SOMNiBUS; bars indicate p-values on the − log10 scale
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the detection of differential methylation in CpG islands, 
common genomic features with a high density of CpG 
dinucleotides which often occur in promoter regions in 
mammalian genomes [9]. Previous platforms for meas-
uring methylation such as the Illumina 450 K [3, 30] or 
EPIC arrays [35] contained a preponderance of CpG 
islands. SOMNiBUS broadens regions beyond islands 
and includes many other genic or intergenic sections.

Since our analysis was performed using SOMNiBUS, 
a single-stage regional detection method, the number 
of tests performed corresponded to the number of par-
titioned CpG regions containing ≥ 60 CpG sites, namely 
8268. This enabled us to use a Bonferroni adjusted sig-
nificance threshold of 6.05e−6 to control family-wise 
error rate. This is a more lenient threshold than would be 
required if we tested each CpG separately, and therefore, 
results in a more sensitive analytic approach. Further-
more, the SOMNiBUS algorithm borrows information 
across nearby CpG sites within a region, which also 
improves power for detection of differential methyla-
tion. For comparison to our earlier work [27], we set a 
very lenient regional significance threshold of p < 0.05 
for SOMNiBUS, and a permutation-based false discov-
ery rate (FDR) or q-value threshold < 0.05—that is, a 
p-value in the 95th percentile of all CpG region p-values 
across 40 genome-wide permutation tests—for our previ-
ous analysis using bumphunter. The altered SOMNiBUS 
threshold included more regions, thereby making our 
analysis of overlap more interesting.

Comparison with bumphunter
One of SOMNiBUS’s defining features is its ability to 
detect long-range differential methylation patterns, 
allowing for nucleotide-level inspection of epigenetic 
fluctuations across genic regions. This is in contrast to 
other methods of differential methylation detection, 
which tend to detect smaller regions, thus, allowing for 
more regions to be tested but consequently, limiting the 
amount of information that can be gained from each 
test. For that reason, we decide to compare SOMNiBUS 
to bumphunter, the method that provided the smallest 
median DMR size of 6 CpG sites per DMR in a com-
parison between four other supervised DMR detection 
methods [28]; this comparison consisted of searching for 
overlapping DMRs and comparing the overlaps in terms 
of detected effect sizes and peak positions. Together, this 
study in conjunction with [27]—our two current WGBS 
studies on SSc—provides a multifaceted view of epige-
netic contributions to SSc pathogenesis by focusing on 
both short-range and long-range differential methylation 
patterns.

A direct-comparison of the analyses performed using 
both methods is hindered by fundamental differences 

in their partitioning of CpG regions, with SOMNiBUS 
requiring pre-specified CpG regions of 60 CpG sites or 
more, and bumphunter automatically partitioning CpG 
regions of any size based on spacing for analysis and com-
paring mean estimated disease effect values reported to 
those obtained through replicate analyses from genome-
wide permutations where disease status was randomly 
reassigned. Our bumphunter analysis had also filtered 
CpG regions by requiring that the mean magnitude of 
all smoothing coefficients within their bumps be greater 
than 0.2. We did not apply a similar mean difference filter 
to our SOMNiBUS analyses since SOMNiBUS requires 
larger CpG regions for analysis (Additional file 5) and is 
thus, representative of long-range methylation patterns 
which are expected to smoothly fluctuate throughout 
various genic regions, and potentially consists of both 
hypo- and hyper-methylated areas. Thus, filtering based 
on a region-wide average of all CpG site β values would 
not be appropriate.

Annotation and pathway analysis
We performed pathway analysis on the DMGs linked 
to our CpG regions with evidence for differential meth-
ylation at FWER < 0.05. DMGs identified by SOMNiBUS 
may be associated with multiple DMRs, each of which 
may contain both hyper- and hypo-methylated subre-
gions (Additional file 2).

Although we contrast the pathways that have been 
highlighted by the two analyses and we did see overlap, 
the two analytic strategies are complementary. Bum-
phunter finds small DMRs, whereas SOMNiBUS targets 
much larger DMRs by definition and may capture com-
plex patterns of epigenetic regulation around relevant 
genes.

Covariates, sex, and chromosome X
We acknowledge the small sample size of this study 
and the possible presence of confounding due to demo-
graphic differences between cases and controls. Ethnicity 
and smoking status were not included as covariates due 
to the small sample size; future validation of findings in 
patients and controls separately by ancestral origin would 
be warranted. Hence, our model consisted of SSc disease 
status as a main effect, with an adjustment for the contin-
uous covariate of age; age adjustments for both SOMNi-
BUS and bumphunter were performed within the DMR 
detection step.

Since we had no male SSc patients with WGBS data, we 
limited this analysis to only the female participants. On 
the other hand, the inclusion of women only in our analy-
sis substantially simplified the interpretability of our anal-
ysis of chromosome X. In addition to men having only 
one X chromosome, the expression levels of genes on 
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chromosome X are known to be different in XX cells and 
XY cells depending on the X-inactivation status. Many 
immune-related genes are known to reside on chromo-
some X and its role in the sex-bias of immune-related 
diseases has been well established [25, 38]. Differing lev-
els of gene expression caused by increased methylation in 
the paternal X chromosome compared to the maternal X 
chromosome has been shown to contribute to the vary-
ing levels of immune response between men and women 
[10] and would make interpretation of results more chal-
lenging, particularly for studies on immunological dis-
eases such as SSc.

Runtime
SOMNiBUS for 8268 regions in parallel for all chromo-
somes took a total of 137.3 min to run on a single Xeon 
E5-2660 v2 processor with ten 3.0 GHz CPU cores.

Conclusions
Using SOMNiBUS, a recently developed computational 
method, we characterized DNA cytosine methylation 
patterns across the genome in females with and without 
SSc. Our method was comprehensive, highlighting path-
ways and genes known to be of interest in SSc disease 
pathogenesis, thereby providing biological plausibility 
for our data, as well as novel pathways and genes pro-
viding potential new insights into disease pathogenesis. 
Our method also generated nucleotide-level information 
on SSc-associated methylation of genes. The findings of 
this study can serve as the base for future investigation 
into genetic and epigenetic targets of interest in SSc 
pathogenesis.

Methods
Study subjects
From an ongoing SSc research cohort based at McGill 
University, Montreal, Canada, we recruited 9 SSc female 
patients and 4 female control subjects who provided 
informed consent. At the time of sampling, none of 
the 9 SSc patients were on immunosuppressive drugs. 
Three patients had previously taken methotrexate and 
mycophenolate, but these medications had been discon-
tinued for over a year prior to enrollment in this study. 
Disease duration was 10.4 ± 7.0 years for the 9 SSc cases, 
of which 6 had diffuse and 3 had limited cutaneous skin 
involvement. Detailed characteristics of study subjects 
are shown in (Table 4).

Purification and sequencing of cells
As described in [27], each study subject had 40  ml of 
blood drawn and processed within 4  h. CD4+ T cells 
[anti-CD4 microbeads (Miltenyi Biotec and auto-MACS] 
were positively selected, and samples with purity > 95% 

purity were retained for genomic DNA extraction and 
sequencing. Samples were subsequently processed with 
in-house DNA isolation and Illumina HiSeq 4000 PE 100 
WGBS workflows at McGill University and the Genome 
Quebec Innovation Centre. Quality control steps 
assessed quantity, quality, and purity of genetic material 
using fluorescence assay quantification, agarose gel elec-
trophoresis and NanoDrop nucleic acid quantification.

Data processing and filtering
WGBS data were aligned to the human genome GRCh37 
(hg19) with annotatr version 1.22.0. Coverage by both 
strands in the paired-end sequencing library was 
required for each of the cytosine nucleotides retained 
after alignment. Estimated methylation levels were deter-
mined by merging methylated and unmethylated counts 
from both the forward and reverse cytosines, while 
requiring at least a read depth of 3 for each, and a dif-
ference in the estimated methylation proportions of less 
than 0.2 between directions.

Algorithms
The motivation surrounding the construction of both 
DMR detection algorithms is the assumption that meth-
ylation patterns across the genome are smoothly vary-
ing in nature, and therefore, that estimates of differential 
methylation for a given CpG site can benefit from bor-
rowing information provided by neighboring CpG sites.

Previous work investigating short-range methyla-
tion correlations showed significant correlation of DNA 
methylation levels for CpG sites spaced less than 1000 bp 
apart [8]. Within the context of differential methylation, 
this amounts to modeling smooth regional coefficients 
for the SSc effect on methylation (on the logit scale, 
termed “β values”; not to be confused with the com-
monly used methylation level measure, "Beta values”, 
which ranges from 0 to 1 and was used to filter CpG sites 
in Data Processing and Filtering). We partitioned CpG 
regions prior to analysis with SOMNiBUS, and prior to 
the smoothing of effect sizes in bumphunter’s analysis. 
Bumphunter required CpG sites within a CpG region 
to be spaced a maximum of 200  bp apart, allowing for 
continuous smoothing across all positions within a CpG 
region. For SOMNiBUS, regions were also defined gaps 
of 200  bp or more, with the additional restriction that 
they had to contain at least 60 CpGs (details below under 
DMR detection). Smoothing of the effect sizes was per-
formed independently for all CpG regions partitioned 
in both analyses. Both methods provide estimates for 
the smoothed regional coefficients for the SSc effect on 
methylation (logit scale) for all CpG sites retained after 
data filtering.
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Bumphunter
Bumphunter [17] is a two-stage differential methylation 
detection algorithm which first estimates single CpG site 
slope estimates using ordinary linear regression mod-
els, then smooths the site-specific slope estimates (for a 
covariate of interest such as the comparison of SSc ver-
sus controls) across all CpG sites throughout the genome. 
The use of a linear model in bumphunter’s algorithm 
allows for adaptability to different study designs and 
covariates; however, it would require modifications to 
appropriately treat count data such as those produced 
through next-generation sequencing [11], such as the 
sequencing technology used in our study, Illumina HiSeq, 
one of the most widely used.

SOMNiBUS
SOMNiBUS [44] is a single-stage differential methyla-
tion detection algorithm that utilizes the flexibility and 
interpretability offered by a generalized additive model 
(GAM) [13] to estimate the coefficients for covariates on 
methylation levels as smoothed functions. Spline func-
tions model the relationship between a set of covariates 
and the methylation proportions within a region, adjust-
ing appropriately for the read counts. This approach 
allows for simultaneous coefficient estimation using 
regression fitting, smoothing of coefficients through 
penalization, and estimation of statistical uncertainty 
for the complete model. Penalty terms added to the log-
likelihood function control the smoothness of the curves. 

Table 4 Clinical characteristics of study individuals

¶ Over-dispersion due to extreme values
§ Methotrexate or Mycophenolate Mofetil in the past

SSc (N = 9) Controls (N = 4)

Mean or % SD or N Mean or % SD or N

Age, years 52.8 16.2 37.2 19.8

Female, % 100 9 100 4

Ethnicity, %

Caucasian 77.8 7 50 2

Asian 22.2 2 25 1

Other – 0 25 1

Smoking, %

Current 11.1 1 – 0

Past 22.2 2 25 1

Never 55.6 5 75 3

Unknown 11.1 1 – 0

Disease duration, years 10.4 7.0

Interstitial lung disease, % 11.1 1

Arthritis, % 11.1 1

Myositis, % 22.2 2

Raynaud’s, % 100 9

Anti-nuclear antibodies

Titer ≥ 1:80, % 100 9

Titer ≥ 1:160, % 66.7 6

Titer ≥ 1:640, % 55.6 5

Blood biochemical indices

C-reactive protein (CRP), mg/L 29.5 65.3¶

Erythrocyte sedimentation rate, mm/hr 23.7 14.1

Abs. whole blood cell (WBC), K/μL 8.2 4.6

Abs. lymphocytes, K/μL 1.6 0.7

Abs. monocytes, K/μL 0.7 0.7¶

Disease-specific variables

Limited skin disease, % 33.3 3

Diffuse skin disease, % 66.7 6

Immunosuppressive  medication§, % 33.3 3
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In addition, the SOMNiBUS algorithm assumes true 
methylated counts follow an over-dispersed binomial 
distribution, respecting the count data produced by next-
generation-sequencing (NGS).

SOMNiBUS’s model in this study, therefore, estimates 
the smooth relationship between disease status and 
methylation levels within each region, while simultane-
ously adjusting for a smooth relationship with age across 
the region.

DMR detection
SOMNiBUS version 1.0.0 [<https:// www. bioco nduct or. 
org/ packa ges/ relea se/ bioc/ html/ SOMNi BUS. html>] 
was used to identify differentially methylated regions 
(DMRs) for the comparison between female SSc cases 
(N = 9) versus female controls (N = 4) adjusted for age in 
years. Since read depth is quite variable across genomic 
positions, to ensure sufficient sample size for analyses, 
we required coverage of at least 3 by both strands in the 
paired-end sequencing library and retained for analysis 
only cytosines with coverage for at least 6 of 9 SSc cases 
and at least 3 of 4 controls and a difference in the esti-
mated methylation proportions of less than 0.2 between 
directions. This criterion matches what was applied in 
our previous study [27] using bumphunter version 3.3 
[<https:// www. bioco nduct or. org/ packa ges/ relea se/ bioc/ 
html/ bumph unter. html>]. We then clustered the retained 
CpG sites into non-overlapping CpG regions along the 
genome, by dividing the genome into disjoint regions 
when CpG sites were spaced 200 bp or more apart. For 
regional analysis with SOMNiBUS, only regions with at 
least 60 CpG sites were retained, leaving 8268 regions 
across the genome for analysis. After analysis with SOM-
NiBUS, a region was called differentially methylated if the 
SOMNiBUS region-wide summary p-value was smaller 
than the Bonferroni corrected p-value threshold of 
6.05e−06 (0.05/8268 tests). Density plots of the locations 
of DMR start sites, stratified by chromosome, are shown 
in (Fig. 3C).

Annotation and functional analysis
DMRs identified were linked to genes using annotatr ver-
sion 1.16.0 [<https:// bioco nduct or. org/ packa ges/ relea se/ 
bioc/ html/ annot atr. html>] [5] based on human genome 
annotations from the UCSC genome browser hg19 data-
base [<http:// hgdow nload. soe. ucsc. edu/ golde nPath/ 
hg19/ datab ase/> Accessed 02 October 2022]. DMRs were 
also linked to long-non-coding RNAs (lncRNAs), based 
on annotations from the GENCODE lncRNA refer-
ence database [<https:// www. genco degen es. org/ human/ 
relea se_ 38lif t37. html> Accessed 02 October 2022]. 
Since methylation counts were merged from forward 
and reverse sequencing during data processing, DMRs 

annotated to antisense lncRNAs, which function as co-
regulators in conjunction with their sense genes, were 
reported alongside their sense counterparts and regarded 
as distinct DMGs. We annotated DMRs to a gene if the 
differentially methylated region’s start and end sites 
overlapped any position of one of 9 gene-related struc-
tural annotations: 1–5  kb upstream of the transcription 
start site, promoter, gene coding region, 5′ untranslated 
region, exon, first exon, intron, 3’ untranslated region, 
or intergenic region. Our choices for gene regions allow 
for capture of epigenetic dysregulation in both the gene 
body and the promoter, as well as a larger 4 kb window 
upstream of the transcription start site. In addition, we 
separately annotated first exons, as identified in the hg19 
database, since methylation levels in first exons have 
been hypothesized to affect gene transcription in a man-
ner similar to promoter methylation, resulting in gene 
silencing [4]. Any gene that was linked, through one of 
these structural annotations, to at least one DMR was 
termed a differentially methylated gene (DMG). We did 
not distinguish between hyper- and hypo-methylated 
DMRs in annotation; as such, DMGs that are associated 
with multiple DMRs in different genic subregions may 
not necessarily show a consistent direction for methyla-
tion differences across the gene. For each DMG linked to 
a significant DMR, the patterns of differential methyla-
tion are illustrated by graphing the smoothed coefficient 
estimates (β(t) for SSc versus controls) from SOMNiBUS 
against chromosomal position, while overlaying the posi-
tions of functional regions on the graphic.

Functional analysis was performed using Ingenuity 
Pathway Analysis [IPA, QIAGEN Inc.; <https:// www. 
qiage nbioi nform atics. com/ produ cts/ ingen uityp athway- 
analy sis> ; [20] on the genome-wide set of DMGs and 
separately for DMGs of autosomal chromosomes and of 
chromosome X. This functional analysis was performed 
for DMGs identified by bumphunter or by SOMNi-
BUS. DMRs that were not linked to any genes were not 
included in the functional analysis.

We note that CpG region density plots (Fig. 1C) indi-
cated that many of the CpG regions are contained at the 
start and ends of chromosomes. Alignment is known to 
be more challenging in telomeric regions, so any DMRs 
located near them should be interpreted cautiously.

Comparison of results between bumphunter 
and SOMNiBUS
Comparisons between identified regions and genes are 
difficult due to the differing sizes of CpG regions ana-
lyzed. Therefore, we chose to examine a general overlap 
definition for all CpG regions retained by both methods 
after data processing and filtering. CpG regions were 
considered overlapping if they shared any CpG sites. 

https://www.bioconductor.org/packages/release/bioc/html/SOMNiBUS.html
https://www.bioconductor.org/packages/release/bioc/html/SOMNiBUS.html
https://www.bioconductor.org/packages/release/bioc/html/bumphunter.html
https://www.bioconductor.org/packages/release/bioc/html/bumphunter.html
https://bioconductor.org/packages/release/bioc/html/annotatr.html
https://bioconductor.org/packages/release/bioc/html/annotatr.html
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
https://www.gencodegenes.org/human/release_38lift37.html
https://www.gencodegenes.org/human/release_38lift37.html
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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We plotted effect sizes for all overlapping CpG regions 
between SOMNiBUS and bumphunter in Additional 
file 3. The number of overlapping CpG sites for the over-
lapping regions, stratified by chromosome, is shown in 
Additional file 4.

Significance thresholds are also difficult to standardize 
between the two methods as bumphunter reports q-val-
ues and SOMNiBUS reports p-values. We chose to use 
the published significance threshold from Lu et  al. [27] 
which corresponds to a q-value of 0.05 for bumphunter. 
For SOMNiBUS, our primary analysis is based on a fam-
ily-wise error rate threshold of 6.05e−06 (Bonferroni-
corrected for 8268 CpG regions). Characterizations of 
overlap used a more lenient threshold of p < 0.05, simply 
to be able to identify more overlapping regions.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 023- 01513-w.

Additional file 1: Annotated differentially methylated regions detected 
by SOMNiBUS 

Additional file 2: Nucleotide-level smoothed regional disease effect coef-
ficients for all DMGs identified by SOMNiBUS 

Additional file 3: Nucleotide-level smoothed regional disease effect coef-
ficients for all CpG regions identified by SOMNiBUS with p-value < 0.05 and 
identified by bumphunter with q-value < 0.05

Additional file 4: Overlapping CpG regions partitioned by SOMNiBUS and 
bumphunter ranked by significance, stratified by chromosome

Additional file 5: Histogram of number of CpG sites per CpG region 
partitioned by bumphunter and SOMNiBUS 

Additional file 6: Networks impacted by SSc-associated CpG differential 
methylation identified by IPA for all 125 DMGs in the genome

Additional file 7: Networks impacted by SSc-associated CpG differential 
methylation identified by IPA for the 78 DMGs located on an autosomal 
chromosome

Additional file 8: Networks impacted by SSc-associated CpG differential 
methylation identified by IPA for the 47 DMGs located on chromosome X

Author contributions
JCYY – conceived the analyses, conducted the analyses, interpreted the data, 
drafted the manuscript, prepared Figures and tables; YZ – assisted with data 
analysis and interpretation, reviewed the manuscript; KZ – developed the 
methods and software used in the analysis, assisted with running the software; 
TL – interpreted the data, reviewed the manuscript KOK – performed initial 
cleaning and quality assessment of the data, interpreted the results, reviewed 
the manuscript; IC – collected the data, interpreted the data, reviewed the 
manuscript; ML – collected the data, reviewed the manuscript; SRB – assisted 
with data analysis and interpretation; AL – interpreted the data, reviewed the 
manuscript; CMTG – managed the study, developed the methods, conceived 
the analyses, interpreted the data, reviewed the manuscript; MH – conceived 
the study, managed the study, conceived the analyses, collected the data, 
interpreted the data, reviewed the manuscript. All authors read and approved 
the final manuscript.

Funding
Funding was partially provided by the Institutes of Health Research grant 
number 130344, the B/CB 2017 competition from Genome Canada, Scléroder-
mie Québec, and the Lady Davis Institute for Medical Research. TL has been 
supported by a Vanier Canada Graduate Scholarship and an FRQS doctoral 

fellowship. We thank the Digital Research Alliance Canada for computing 
resources.

Availability of data and materials
All code used to generate the analyses and figures for this article are depos-
ited in https:// github. com/ jeffr eycyyu/ ssc_ methy lation_ hudson.

Declarations

Competing interests
No authors declare any conflicts of interest.

Received: 25 November 2022   Accepted: 28 May 2023

References
 1. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, 

Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive bioconduc-
tor package for the analysis of infinium DNA methylation microarrays. 
Bioinformatics. 2014;30:1363–9.

 2. Barnes J, Mayes MD. Epidemiology of systemic sclerosis: incidence, 
prevalence, survival, risk factors, malignancy, and environmental trig-
gers. Curr Opin Rheumatol. 2012;24:165–70.

 3. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, 
Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methyla-
tion array with single CpG site resolution. Genomics. 2011;98:288–95.

 4. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. 
DNA methylation of the first exon is tightly linked to transcriptional 
silencing. PLoS ONE. 2011;6: e14524.

 5. Cavalcante RG, Sartor MA. annotatr: genomic regions in context. Bioin-
formatics. 2017;33:2381–3.

 6. Chitale S, Al-Mowallad AF, Wang Q, Kumar S, Herrick A. High circulating 
levels of VEGF-C suggest abnormal lymphangiogenesis in systemic 
sclerosis. Rheumatology (Oxford). 2008;47:1727–8.

 7. Didriksen H, Molberg O, Fretheim H, Gude E, Jordan S, Brunborg C, 
Palchevskiy V, Garen T, Midtvedt O, Andreassen AK, Distler O, Belperio J, 
Hoffmann-Vold AM. Association of lymphangiogenic factors with pul-
monary arterial hypertension in systemic sclerosis. Arthritis Rheumatol. 
2021;73:1277–87.

 8. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton 
J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson 
DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, 
Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA meth-
ylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 
2006;38:1378–85.

 9. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, 
Jones PA. Footprinting of mammalian promoters: use of a CpG DNA 
methyltransferase revealing nucleosome positions at a single molecule 
level. Nucleic Acids Res. 2005;33: e176.

 10. Golden LC, Itoh Y, Itoh N, Iyengar S, Coit P, Salama Y, Arnold AP, Sawalha 
AH, Voskuhl RR. Parent-of-origin differences in DNA methylation of 
X chromosome genes in T lymphocytes. Proc Natl Acad Sci U S A. 
2019;116:26779.

 11. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten 
years of next-generation sequencing technologies. Nat Rev Genet. 
2016;17:333–51.

 12. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of 
reduced representation bisulfite sequencing libraries for genome-scale 
DNA methylation profiling. Nat Protoc. 2011;6:468–81.

 13. Hastie TJ, Tibshirani RJ. Generalized additive models. London: Chapman 
and Hall; 1991.

 14. Hoa S, Leclair V, Hudson M. Cutaneous lymphangiectasia in systemic 
sclerosis. Arthritis Rheumatol. 2017;69:446.

 15. Honda N, Jinnin M, Kajihara I, Makino T, Fukushima S, Ihn H. Impaired 
lymphangiogenesis due to excess vascular endothelial growth factor-
D/Flt-4 signalling in the skin of patients with systemic sclerosis. Br J 
Dermatol. 2010;163:776–80.

https://doi.org/10.1186/s13148-023-01513-w
https://doi.org/10.1186/s13148-023-01513-w
https://github.com/jeffreycyyu/ssc_methylation_hudson


Page 13 of 13Yu et al. Clinical Epigenetics           (2023) 15:96  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 16. Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS. Hypoxia induces 
expression of connective tissue growth factor in scleroderma skin fibro-
blasts. Clin Exp Immunol. 2006;146:362–70.

 17. Jaffe AE, Feinberg AP, Irizarry RA, Leek JT. Significance analysis and 
statistical dissection of variably methylated regions. Biostatistics. 
2012;13:166–78.

 18. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies 
and beyond. Nat Rev Genet. 2012;13:484–92.

 19. Kernaleguen M, Daviaud C, Shen Y, Bonnet E, Renault V, Deleuze JF, 
Mauger F, Tost J. Whole-genome bisulfite sequencing for the analysis of 
genome-wide DNA methylation and hydroxymethylation patterns at 
single-nucleotide resolution. Methods Mol Biol. 2018;1767:311–49.

 20. Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches 
in ingenuity pathway analysis. Bioinformatics. 2014;30:523–30.

 21. Krasimirova E, Velikova T, Ivanova-Todorova E, Tumangelova-Yuzeir K, 
Kalinova D, Boyadzhieva V, Stoilov N, Yoneva T, Rashkov R, Kyurkchiev D. 
Treg/Th17 cell balance and phytohaemagglutinin activation of T lympho-
cytes in peripheral blood of systemic sclerosis patients. World J Exp Med. 
2017;7:84–96.

 22. Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin 
A, Santos DM, Grasberger P, Ahluwalia N, Montesi SB, Shea BS, Black KE, 
Knipe R, Blati M, Baron M, Wu B, Fahmi H, Gandhi R, Pardo A, Selman M, 
Wu J, Pelletier JP, Martel-Pelletier J, Tager AM, Kapoor M. ADAM10-medi-
ated ephrin-B2 shedding promotes myofibroblast activation and organ 
fibrosis. Nat Med. 2017;23:1405–15.

 23. Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin 
A, Santos DM, Grasberger P, Ahluwalia N, Montesi SB, Shea BS, Black KE, 
Knipe R, Blati M, Baron M, Wu B, Fahmi H, Gandhi R, Pardo A, Selman M, 
Wu J, Pelletier JP, Martel-Pelletier J, Tager AM, Kapoor M. Corrigendum: 
ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activa-
tion and organ fibrosis. Nat Med. 2017;23:1499.

 24. Li T, Ortiz-Fernandez L, Andres-Leon E, Ciudad L, Javierre BM, Lopez-Isac E, 
Guillen-Del-Castillo A, Simeon-Aznar CP, Ballestar E, Martin J. Epigenomics 
and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range 
dysregulation of key inflammatory pathways mediated by disease-associ-
ated susceptibility loci. Genome Med. 2020;12:81.

 25. Libert C, Dejager L, Pinheiro I. The X chromosome in immune func-
tions: when a chromosome makes the difference. Nat Rev Immunol. 
2010;10:594–604.

 26. Liu S, Parapuram SK, Leask A. Brief report: Fibrosis caused by loss of PTEN 
expression in mouse fibroblasts is crucially dependent on CCN2. Arthritis 
Rheum. 2013;65:2940–4.

 27. Lu T, Klein KO, Colmegna I, Lora M, Greenwood CMT, Hudson M. Whole-
genome bisulfite sequencing in systemic sclerosis provides novel targets 
to understand disease pathogenesis. BMC Med Genomics. 2019;12:144.

 28. Mallik S, Odom GJ, Gao Z, Gomez L, Chen X, Wang L. An evaluation of 
supervised methods for identifying differentially methylated regions in 
Illumina methylation arrays. Brief Bioinform. 2019;20:2224–35.

 29. Manetti M, Romano E, Rosa I, Fioretto BS, Guiducci S, Bellando-Randone S, 
Pigatto E, Cozzi F, Ibba-Manneschi L, Matucci-Cerinic M. Systemic sclerosis 
serum significantly impairs the multi-step lymphangiogenic process: 
in vitro evidence. Int J Mol Sci. 2019;20:6189.

 30. Mansell G, Gorrie-Stone TJ, Bao Y, Kumari M, Schalkwyk LS, Mill J, Hannon 
E. Guidance for DNA methylation studies: statistical insights from the 
Illumina EPIC array. BMC Genomics. 2019;20:366.

 31. Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A, Mai A. The 
emerging role of epigenetics in human autoimmune disorders. Clin 
Epigenetics. 2019;11:34.

 32. McKarns SC, Schwartz RH. Distinct effects of TGF-beta 1 on CD4+ and 
CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic 
Smad3. J Immunol. 2005;174:2071–83.

 33. Messemaker TC, Chadli L, Cai G, Goelela VS, Boonstra M, Dorjee AL, 
Andersen SN, Mikkers HMM, van’t Hof P, Mei H, Distler O, Draisma HHM, 
Johnson ME, Orzechowski NM, Simms RW, Toes REM, Aarbiou J, Huizinga 
TW, Whitfield ML, DeGroot J, de Vries-Bouwstra J, Kurreeman F. Antisense 
long non-coding RNAs are deregulated in skin tissue of patients with 
systemic sclerosis. J Invest Dermatol. 2018;138:826–35.

 34. Parapuram SK, Thompson K, Tsang M, Hutchenreuther J, Bekking C, 
Liu S, Leask A. Loss of PTEN expression by mouse fibroblasts results 
in lung fibrosis through a CCN2-dependent mechanism. Matrix Biol. 
2015;43:35–41.

 35. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, 
Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ. Critical evaluation of the 
Illumina MethylationEPIC BeadChip microarray for whole-genome DNA 
methylation profiling. Genome Biol. 2016;17:208.

 36. Ramos PS, Zimmerman KD, Haddad S, Langefeld CD, Medsger TA Jr, 
Feghali-Bostwick CA. Integrative analysis of DNA methylation in discord-
ant twins unveils distinct architectures of systemic sclerosis subsets. Clin 
Epigenet. 2019;11:58.

 37. Riepe FG, Ahrens W, Krone N, Folster-Holst R, Brasch J, Sippell WG, Hiort O, 
Partsch CJ. Early manifestation of calcinosis cutis in pseudohypoparathy-
roidism type Ia associated with a novel mutation in the GNAS gene. Eur J 
Endocrinol. 2005;152:515–9.

 38. Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, 
King JK, Arnold AP, Singh RR, Voskuhl RR. A role for sex chromosome 
complement in the female bias in autoimmune disease. J Exp Med. 
2008;205:1099–108.

 39. Tyndall AJ, Bannert B, Vonk M, Airo P, Cozzi F, Carreira PE, Bancel DF, 
Allanore Y, Muller-Ladner U, Distler O, Iannone F, Pellerito R, Pileckyte M, 
Miniati I, Ananieva L, Gurman AB, Damjanov N, Mueller A, Valentini G, 
Riemekasten G, Tikly M, Hummers L, Henriques MJ, Caramaschi P, Scheja 
A, Rozman B, Ton E, Kumanovics G, Coleiro B, Feierl E, Szucs G, Von Muh-
len CA, Riccieri V, Novak S, Chizzolini C, Kotulska A, Denton C, Coelho PC, 
Kotter I, Simsek I, de la Pena Lefebvre PG, Hachulla E, Seibold JR, Rednic 
S, Stork J, Morovic-Vergles J, Walker UA. Causes and risk factors for death 
in systemic sclerosis: a study from the EULAR scleroderma trials and 
research (EUSTAR) database. Ann Rheum Dis. 2010;69:1809–15.

 40. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target 
in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6.

 41. Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclero-
sis (scleroderma). Front Biosci (Schol Ed). 2009;1:226–35.

 42. Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, Inoue K, 
Nakashima T, Honda N, Fukushima S, Ihn H. Long non-coding RNA TSIX 
is upregulated in scleroderma dermal fibroblasts and controls collagen 
mRNA stabilization. Exp Dermatol. 2016;25:131–6.

 43. Wu B, Rockel JS, Lagares D, Kapoor M. Ephrins and Eph receptor signaling 
in tissue repair and fibrosis. Curr Rheumatol Rep. 2019;21:23.

 44. Zhao K, Oualkacha K, Lakhal-Chaieb L, Labbe A, Klein K, Ciampi A, Hudson 
M, Colmegna I, Pastinen T, Zhang T, Daley D, Greenwood CMT. A novel 
statistical method for modeling covariate effects in bisulfite sequencing 
derived measures of DNA methylation. Biometrics. 2021;77:424–38.

 45. Zhou X, Tan FK, Xiong M, Arnett FC, Feghali-Bostwick CA. Monozygotic 
twins clinically discordant for scleroderma show concordance for fibro-
blast gene expression profiles. Arthritis Rheum. 2005;52:3305–14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Novel insights into systemic sclerosis using a sensitive computational method to analyze whole-genome bisulfite sequencing data
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Results
	Differential methylation of CpG regions using SOMNiBUS
	Genes and networks impacted by differential methylation
	Comparison to bumphunter
	Gene annotations for SOMNiBUS results

	Discussion
	Strengths of SOMNiBUS
	Comparison with bumphunter
	Annotation and pathway analysis
	Covariates, sex, and chromosome X
	Runtime

	Conclusions
	Methods
	Study subjects
	Purification and sequencing of cells
	Data processing and filtering
	Algorithms
	Bumphunter
	SOMNiBUS
	DMR detection
	Annotation and functional analysis
	Comparison of results between bumphunter and SOMNiBUS

	Anchor 30
	References


