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Abstract 

Chronic lymphocytic leukemia (CLL) is a mature B cell neoplasm with a predilection for older individuals. While 
previous studies have identified epigenetic signatures associated with CLL, whether age-related DNA methylation 
changes modulate CLL relapse remains elusive. In this study, we examined the association between epigenetic age 
acceleration and time to CLL relapse in a publicly available dataset. DNA methylation profiling of 35 CLL patients 
prior to initiating chemoimmunotherapy was performed using the Infinium HumanMethylation450 BeadChip. Four 
epigenetic age acceleration metrics (intrinsic epigenetic age acceleration [IEAA], extrinsic epigenetic age accelera-
tion [EEAA], PhenoAge acceleration [PhenoAA], and GrimAge acceleration [GrimAA]) were estimated from blood DNA 
methylation levels. Linear, quantile, and logistic regression and receiver operating characteristic curve analyses were 
conducted to assess the association between each epigenetic age metric and time to CLL relapse. EEAA (p = 0.011) 
and PhenoAA (p = 0.046) were negatively and GrimAA (p = 0.040) was positively associated with time to CLL relapse. 
Simultaneous assessment of EEAA and GrimAA in male patients distinguished patients who relapsed early from 
patients who relapsed later (p = 0.039). No associations were observed with IEAA. These findings suggest epigenetic 
age acceleration prior to chemoimmunotherapy initiation is associated with time to CLL relapse. Our results provide 
novel insight into the association between age-related DNA methylation changes and CLL relapse and may serve has 
biomarkers for treatment relapse, and potentially, treatment selection.
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Introduction
Chronic lymphocytic leukemia (CLL) is a mature B cell 
neoplasm characterized by monoclonal proliferation and 
accumulation of B lymphocytes in the blood, bone mar-
row, and lymphoid tissues [1]. Globally, the incidence of 
CLL has increased over the past several decades and is 
the most common leukemia in Western countries, with 
an incidence of 4.2 per 100,000 individuals per year [2, 
3]. CLL affects men approximately 2 times more than 
women, is more common among White individuals, and 
is most frequently diagnosed in individuals 65–74 years 
of age with an median age of 70 [4, 5]. As such, given the 
increasing incidence of CLL, the growing global aging 
population, and the age-related nature of CLL, examining 
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the underlying determinants and biological processes 
of CLL may aid in the development of biomarkers for 
risk stratification, survival, and potentially, response to 
treatment.

Numerous factors have been associated with CLL, 
including immunologic, infectious, and anthropomet-
ric factors [6]. Molecular and sequencing studies have 
further identified genomic prognostic factors, including 
mutations in TP53 and IGHV. [7–9] Moreover, advance-
ments in our understanding of the pathogenesis and 
prognostic factors have led to improvements in therapies, 
and subsequent improvement in CLL survival. Fludara-
bine, cyclophosphamide, and rituximab (FCR) was the 
first chemoimmunotherapy regimen to induce complete 
remission and improve overall survival, with bendamus-
tine and rituximab (BR) exhibiting less effectiveness [10]. 
Recent regimens, including kinase inhibitors targeting 
Bruton tyrosine kinase (BTK) and phosphatidylinositol 
3-kinase, as well as B cell lymphoma 2 (BCL2) antago-
nists, have transitioned treatments from chemotherapy-
based to molecular-targeting due to improved survival 
and better side effect profiles [10]. Despite the develop-
ment of efficacious therapies, these targeted agents are 
expensive, which may be cost-prohibitive, limit access, 
and reduce adherence to these regimens [11, 12]. As 
such, identifying additional prognostic markers of CLL 
treatment response, including CLL relapse, may have 
implications for prognosis, and potentially, treatment 
selection.

Aberrations in epigenetic signatures via DNA meth-
ylation is a major hallmark in the pathogenesis of cancer 
[13]. DNA methylation has previously been used to clas-
sify CLL patients into prognostic subgroups for overall 
survival [14–18]. Additionally, age-related DNA methyla-
tion signatures, or biological clocks, have been associated 
with risk of mature B cell neoplasms [19, 20], suggesting 
these measures of biological age may be useful to predict 
cancer risk. While these studies demonstrate the risk 
stratification and prognostic value of epigenetic markers 
in CLL, the identification of epigenetic features associ-
ated with treatment response remains understudied. 
Although age-related changes to the epigenome in other 
diseases have previously been associated with disease 
relapse, providing novel insight of the effect of biological 
aging on the clinical course of disease [21], these associa-
tions have not been well characterized in CLL. As a dis-
ease affecting primarily older individuals, these biological 
clocks may serve as prognostic features for treatment 
response, including treatment relapse, and potentially, 
may influence treatment choice. Therefore, we examined 
the association between four biological clocks as esti-
mated from blood DNA methylation and time to relapse 
among CLL patients.

Methods
Patient samples
We conducted the following analyses using a publicly 
available dataset with details of the study sample previ-
ously described elsewhere [22]. Briefly, 40 CLL patients 
provided peripheral blood samples at two time points 
(80 total samples) and guidelines from the Interna-
tional Workshop on Chronic Lymphocytic Leukemia 
were used to diagnose CLL [23]. The first sample was 
collected prior to patients’ first chemotherapy treat-
ment (i.e., pretreatment sample) and the second sample 
was collected after clinically documented relapse (i.e., 
post-lapse sample). Among the 40 patients, 36 patients 
received the FCR treatment regimen, 2 received the 
fludarabine and cyclophosphamide treatment regi-
men, 1 received the fludarabine, cyclophosphamide, 
rituximab, and mitoxantrone treatment regimen, and 
1 received the BR treatment regimen. Peripheral blood 
mononuclear cells from peripheral blood were isolated 
using density gradient separation (tumor load for sam-
ples exceeded 51% for CD19+ cells). Negative selection 
of CD19+ B cells was performed using the RosetteSep 
B cell enrichment kit (purity for samples > 95% for 
CD19+ cells). Patients with available documented age 
at diagnosis were included in downstream analyses 
(n = 38).

DNA methylation profiling
Patients underwent DNA methylation profiling using 
the Infinium HumanMethylation450 BeadChip. The 
R package ENmix was used to perform quality con-
trol and data preprocessing using default settings [24]. 
Probes with a detection p < 1 ×  10–6 and less than 3 
beads were defined as low quality. Samples with low 
quality methylation measurements > 5% or low inten-
sity bisulfite conversion probes (defined as less than 
3× standard deviation of the sample bisulfite control 
intensities below the mean intensity) were removed 
from further analysis. Samples identified as extreme 
outliers (defined as less than the 25th percentile minus 
3 × interquartile range (IQR) or greater than the 75th 
percentile plus 3 × IQR; n = 3) and based on the aver-
age total intensity value across all probes (defined as 
unmethylated intensity (U) + methylated intensity (M) 
or β-values [M/(U + M + 100)] were removed. A model-
based correction was performed using ENmix and a 
dye-bias correction was conducted using RELIC [25]. 
Quantile normalization of U or M intensities for Infin-
ium I or II probes were performed, respectively. Low 
quality probes and extreme β-values across samples 
were set to missing. After applying these quality control 
parameters, 35 samples remained for further analysis.
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Epigenetic age calculation
Four epigenetic ages were estimated using the pub-
licly available online DNA methylation age calculator 
(https:// dnama ge. genet ics. ucla. edu/ new). Intrinsic epi-
genetic age acceleration (IEAA) was estimated using 
353 CpG probes and is associated with cell-intrinsic 
aging [26]. Extrinsic epigenetic age acceleration (EEAA) 
was estimated using 71 CpG probes and is associated 
with immunological aging [27]. PhenoAge acceleration 
(PhenoAA) was estimated using 513 CpG probes and is 
associated with clinical measures of aging [28]. Grim-
Age acceleration (GrimAA) was estimated from 1030 
CpG probes and is associated with lifespan [29]. Each 
epigenetic age acceleration (EAA) metric was estimated 
as the residuals from a linear model of chronological 
age on epigenetic age.

Statistical analysis
Multiple linear regression analyses were conducted 
to examine the association between each EAA metric 
(independent variable) and time to relapse (dependent 
variable). Quantile regression was conducted to evalu-
ate the conditional quantiles of each EAA metric on 
time to relapse. This statistical approach provides a more 
complete picture of covariate effects on the depend-
ent variable [30]. Relapse status, i.e., early relapse vs late 
relapse, was generated using the median time to relapse 
(2.6  years). Logistic regression analyses were performed 
to examine the association between each EAA met-
ric and relapse status. Receiver operating characteristic 
(ROC) curves were generated to evaluate the discrimi-
natory ability of each EAA metric by relapse status. To 
evaluate the discriminatory ability of each EAA metric by 
sex, stratified analyses by sex were performed. In order 
to control for confounding of the association between the 
EAA metrics and time to relapse, chronological age at 
first treatment, sex, and chemoimmunotherapy regimen 
were included as covariates in all models. Associations 
were considered significant if p ≤ 0.05. All statistical anal-
yses were performed using SAS Studio (SAS Institute, 
Inc., Cary, NC, USA).

Results
Sample characteristics
Table 1 presents the descriptive characteristics for the 
35 patients by relapse status. Overall, the median age of 
diagnosis among patients was 57  years with a median 
time to first treatment and time to relapse of 1.5 years 
and 2.6  years, respectively. Additionally, patients who 
relapsed early had significantly higher EEAA (p = 0.036) 
and lower GrimAA (p = 0.002) compared to those who 
relapsed late.

Table  2 presents the analysis results for the associa-
tion between epigenetic age acceleration and time to 
relapse. After adjusting for chronological age at first 
treatment, sex, and chemoimmunotherapy regimen, 
EEAA (p = 0.011), PhenoAA (p = 0.046), and GrimAA 
(p = 0.040) were associated with time to relapse. Spe-
cifically, each additional year of EEAA and PhenoAA 
were associated with a 0.06 [95% CI − 0.11, − 0.02] year 
and a 0.05 [95% CI − 0.09, 0.00] year decrease in time to 
relapse, respectively. Moreover, each additional year of 
GrimAA was associated with a 0.15 [95% CI 0.01, 0.30] 
year increase in time to relapse. IEAA was not associ-
ated (p = 0.772) with time to relapse. Similar direction 
of effects were observed by relapse status during logis-
tic regression (Additional file  1: Table  S1). The three 
most correlated GrimAge surrogate biomarkers of 
blood plasma proteins with time to relapse were smok-
ing pack-years, plasminogen activation inhibitor 1, and 
tissue inhibitor metalloproteinase 1 (data not shown).

Figure  1 presents quantile regression plots for each 
EAA metric. Regression estimates for 10 quantiles rang-
ing from 0.05 to 0.95 are plotted. As displayed in Fig. 1A, 
the overall pattern depicts a relatively flat association 

Table 1 Descriptive statistics of the study sample

IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age 
acceleration; PhenoAA, PhenoAge acceleration; GrimAA, GrimAge acceleration

Early relapse Late relapse p

N, n (%) 17 (48.6) 18 (51.4) –

Female, n (%) 6 (35.3) 4 (22.2) 0.458

Age at diagnosis, mean (SD), 
years

55.4 (10.1) 55.8 (8.9) 0.882

Time to first treatment, mean 
(SD), years

2.1 (3.3) 2.0 (1.3) 0.875

Time to relapse, mean (SD), years 1.5 (0.5) 5.2 (2.1) < 0.001

IEAA, mean (SD), years − 1.6 (17.6) 1.5 (13.8) 0.573

EEAA, mean (SD), years 6.8 (17.8) − 6.4 (18.0) 0.036

PhenoAA, mean (SD), years 2.3 (16.7) − 2.2 (22.1) 0.507

GrimAA, mean (SD), years − 3.2 (6.0) 3.1 (5.2) 0.002

Table 2 Analysis results for the association between epigenetic 
age acceleration and time to relapse

Results are adjusted for chronological age at first treatment, sex, and 
chemoimmunotherapy regimen

Beta coefficients represent the gain in time to relapse for each additional year of 
epigenetic age acceleration

β [95% CI] p

IEAA − 0.01 [− 0.07, 0.05] 0.772

EEAA − 0.06 [− 0.11, − 0.02] 0.011

PhenoAA − 0.05 [− 0.09, 0.00] 0.046

GrimAA 0.15 [0.01, 0.30] 0.040

https://dnamage.genetics.ucla.edu/new
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between IEAA and time to relapse. The effect estimate of 
IEAA appears to be consistent, with an approximate 0.01-
year lower IEAA for nearly all quantiles. In Fig.  1B and 
C, the effect of EEAA and PhenoAA gradually decreased 
across the EAA-time to relapse distribution. For example, 
the effect of EEAA can be four times lower in the upper 
tail compared to the lower tail of the distribution (i.e., 
− 0.12-year vs. − 0.03-year, respectively). Similarly, the 
effect of PhenoAA can be five times lower in the upper 
tail compared to the lower tail (i.e., − 0.05-year vs. − 0.01-
year, respectively). In comparison, the effect of GrimAA 
gradually increased across the EAA-time to relapse dis-
tribution, as displayed in Fig. 1D. The effect of GrimAA 
can be twelve times greater in the upper tail compared 
to the lower tail (i.e., 0.36-year vs. 0.03-year, respectively).

ROC curves were generated to compare the discrimi-
natory ability of each EAA estimate by relapse status. 

Compared to chronological age at first treatment, sex, 
and chemoimmunotherapy regimen (area under the 
curve [AUC] = 0.650), the addition of each EAA did not 
statistically improve the discriminatory ability between 
patients who relapsed early from those who relapsed 
late (Additional file 1: Table S2; Fig. S1). The addition of 
EEAA (AUC = 0.788) and GrimAA (AUC = 0.820) mod-
erately increased the discriminatory ability, while IEAA 
(AUC = 0.631) and PhenoAA (AUC = 0.644) exhibited 
mild changes in discriminatory ability. The inclusion of 
EEAA and GrimAA simultaneously further improved 
classification (AUC = 0.827) between early and late 
relapse patients (Additional file  1: Table  S2; Fig. S2). 
During sex stratified analyses, IEAA (AUC = 0.917) 
and EEAA (AUC = 0.917) moderately improved the 
discriminatory ability between early and late relapse 
among female patients, while PhenoAA (AUC = 0.750) 

Fig. 1 Estimated parameters by quantile with 95% confidence limits for the effect of epigenetic age acceleration on time to relapse. Quantile 
regression plots for IEAA (A), EEAA (B), PhenoAA (C), and GrimAA (D). The x-axis represents the quantile scale, and the y-axis represents the effect 
of epigenetic age acceleration on time to relapse. Results are adjusted for chronological age at first treatment, sex, and chemoimmunotherapy 
regimen
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and GrimAA (AUC = 0.833) mildly improved classifi-
cation (Additional file  1: Table  S3, Fig. S3). In compari-
son, EEAA (AUC = 0.831) and GrimAA (AUC = 0.883) 
improved the discriminatory ability between early and 
late response, while marginal improvement was observed 
with IEAA (AUC = 0.786) and PhenoAA (AUC = 0.779) 
among male patients. The inclusion of EEAA and Gri-
mAA simultaneously significantly (p = 0.039) improved 
the discriminatory ability between early and late relapse 
among male patients and marginally (p = 0.361) improved 
classification among female patients (Additional file  1: 
Table S3, Fig. 2).

Discussion
In this study, we observed significant associations 
between EAA and time to relapse among CLL patients 
using a publicly available dataset. We observed EEAA 
and PhenoAA were negatively and GrimAA was posi-
tively associated with time to CLL relapse. Furthermore, 
EEAA and GrimAA improved the discriminatory ability 
between male patients who relapsed early and patients 
who relapsed late. These findings suggest age-related 
changes to the epigenome are associated with response 
to CLL chemoimmunotherapy and may have implica-
tions for selection of therapeutics to minimize relapse, 
and potentially, improve overall survival.

Epigenetic clocks have been associated with numerous 
biomarkers, disease risk factors, and health outcomes, 
with each clock capturing a unique aspect of the aging 
process. These clocks can be divided into two categories: 

intrinsic and extrinsic. Intrinsic aging is independent of 
cell type and partly driven by cellular division, whereas 
extrinsic aging is influenced by cell type proportion and 
environmental factors [31]. In our study, we observed 
associations with extrinsic aging (i.e., EEAA, PhenoAge, 
and GrimAA) and not intrinsic aging (i.e., IEAA). Specifi-
cally, EEAA and PhenoAA were negatively and GrimAA 
was positively associated with time to CLL relapse. EEAA 
captures immune system aging weighted by three blood 
cell types known to vary with chronological age: plasma-
blasts, native cytotoxic T cells, and exhausted cytotoxic 
T cells. Moreover, EEAA is positively correlated with 
estimated abundance of plasmablasts and exhausted 
cytotoxic T cells, and negatively correlated with native 
cytotoxic T cells [32]. The increased abundance of CLL 
cells, derived from naïve B cells, may partially explain the 
negative association between EEAA and time to relapse, 
i.e., those with a higher abundance of CLL cells may have 
greater EEAA and subsequently, a shorter time to relapse. 
PhenoAA was developed as an estimate for mortality and 
was generated using nine multisystem clinical chemis-
try biomarkers, including several hematological features 
(e.g., lymphocyte percent and white blood cell count) 
[28]. Similar to EEAA, the association between PhenoAA 
and time to relapse maybe modulated by these hema-
tological biomarkers, where a higher white blood cell 
count accelerates aging via PhenoAA and subsequently, 
a shorter time to relapse. In contrast to EEAA and Phe-
noAA, GrimAA does not directly include hematologi-
cal biomarkers, rather eight DNA methylation-based 

Fig. 2 Receiver operating curve comparisons for the discriminatory ability of EEAA and GrimAA between early relapse and late relapse status 
stratified by sex. Receiver operating curves for female (A) and male (B) patients. Model 1 evaluates the discriminatory ability of chronological 
age at first treatment and chemoimmunotherapy regimen. Model 2 evaluates the discriminatory ability of chronological age at first treatment, 
chemoimmunotherapy regimen, EEAA, and GrimAA. Area under the curve estimates for each model are provided in the figure legend
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surrogate biomarkers of plasma proteins. Among these 
surrogate biomarkers, plasminogen activation inhibitor 
1 and tissue inhibitor metalloproteinase 1 were moder-
ately, positively associated with time to relapse and these 
proteins have been proposed as therapeutic targets for 
myeloid leukemia [33, 34]. The observed positive rela-
tionships between these proteins and time to relapse 
may partially explain the observed positive association 
between GrimAA and time to relapse, i.e., individuals 
with higher plasminogen activation inhibitor 1 and tis-
sue inhibitor metalloproteinase 1 activity may be more 
receptive to treatment and thus have a longer time to 
relapse, although additional studies are needed to evalu-
ate these associations. In sum, our findings demonstrate 
several DNA methylation-based biological age estimates 
are associated with CLL relapse and may serve as poten-
tial prognostic biomarkers of treatment response.

To further investigate the association between each 
EAA metric and time to relapse, we performed quantile 
regression. Compared to ordinary least squares regres-
sion, which models the conditional mean of time to 
relapse, quantile regression is a statistical approach that 
enables for a more comprehensive analysis of the condi-
tional distribution of time to relapse for each EAA met-
ric and is beneficial when the change in effect varies by 
quantile. We observed overall negative associations of 
EEAA and PhenoAA, and a positive association of Gri-
mAA, on time to relapse during linear regression. During 
quantile regression, however, the effect of each of these 
EAA measures varied across the time to relapse-EAA 
distribution. Specifically, EEAA, PhenoAA, and GrimAA 
exhibited larger effects at the upper tail of the distribu-
tions compared to the lower tail, suggesting patients with 
more advanced epigenetic aging as captured by these 
EAA metrics have a larger impact on time to relapse 
compared to those with less accelerated aging. As such, 
patients with accelerated extrinsic epigenetic age and 
PhenoAge and decelerated GrimAge may benefit the 
most from exploring additional or different therapeutic 
regimens to obtain a greater time to relapse.

Epigenetics have provided novel insights into CLL clas-
sification and prognostic features. While these findings 
integrate DNA methylation with clinicobiological disease 
[14–18], the identification of additional biomarkers may 
aid to further improve predictive abilities for treatment 
response. In our study, although no single EAA met-
ric was associated with improved discriminatory ability 
for relapse status, we observed significant improvement 
among male patients when EEAA and GrimAA were 
simultaneously included. These results suggest DNA 
methylation predictors of treatment relapse may differ 
by patient demographics; a finding not observed in pre-
vious studies. Sex differences in response to treatment, 

treatment side effects, and overall survival have previ-
ously been identified, suggesting potential pharmacoki-
netic differences between females and males [35, 36]. For 
example, CYP2B6, a hepatic enzyme which metabolizes 
numerous medications including cyclophosphamide, 
activity was higher in females compared to males and 
subsequently, may partially explain differences in treat-
ment outcomes [37, 38]. As such, identifying factors 
associated with treatment response particularly among 
patients with earlier treatment relapse and overall sur-
vival may have implications for patient management and 
treatment, such as surveillance and choice of treatment. 
Furthermore, studies investigating epigenetic factors 
associated with risk of CLL relapse, compared to time to 
relapse, may provide additional novel insights and clini-
cal utility of DNA-based biological age metrics. Together, 
the findings presented here are consistent with previous 
studies which demonstrated prognostic value of epige-
netic signatures for CLL patients and further reveals dif-
ferences in these features by patient demographics.

This longitudinal study enabled for the examination 
of pretreatment DNA methylation signatures with CLL 
relapse. This study, however, is not without limitations. 
The number of patients included in this study may have 
resulted in unstable estimates, e.g., confidence inter-
vals and AUC, and may limit the power to detect addi-
tional associations between the EAA metrics and time 
to relapse and as such, additional studies with larger 
sample sizes are needed to verify the findings presented 
here. Furthermore, we restricted the analysis to chemo-
immunotherapy regimens. These chemoimmunotherapy 
regimens have been largely replaced by novel targeted 
therapies, e.g., BTK inhibitors, BCL2 antagonists, and 
newer generation B cell directed monoclonal antibod-
ies. Therefore, further studies are warranted to investi-
gate whether the observed associations presented here 
are consistent with more contemporary therapies. Addi-
tional patient characteristics were not available and thus, 
the observed associations may be subject to residual con-
founding. And lastly, due to the number of EAA metrics 
and analytic approaches, this study inherently exhibited 
multiple analyses. Multiple testing correction was not 
performed due to the analyses being primarily non-
independent and to avoid hindering future investigations 
[39]. Despite these limitations, we observed associations 
between several EAA metrics and time to CLL relapse, 
which may have implications for patient stratification and 
treatment selection.

In conclusion, we observed significant associations 
between EEAA, PhenoAA, and GrimAA with time to 
relapse among patients with CLL. We also observed sig-
nificant improvement in the discriminatory ability by 
relapse status with the addition of EEAA and GrimAA 
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among male patients. These findings provide novel 
insights into the association between age-related DNA 
methylation changes and CLL relapse and highlights the 
potential role of the aging process in cancer treatment 
relapse. With the growing aging population and the pro-
pensity of CLL to primarily occur in older individuals, 
identifying biomarkers, including epigenomic markers 
associated with specific pathologic processes, may fur-
ther our understanding of therapy resistant cancer and 
potentially, aid hematological precision medicine efforts 
to select personalized treatment regimens to improve 
patient survival.
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