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Abstract 

Background Individuals who are socioeconomically disadvantaged are at increased risk for aging‑related diseases 
and perform less well on tests of cognitive function. The weathering hypothesis proposes that these disparities in 
physical and cognitive health arise from an acceleration of biological processes of aging. Theories of how life adver‑
sity is biologically embedded identify epigenetic alterations, including DNA methylation (DNAm), as a mechanistic 
interface between the environment and health. Consistent with the weathering hypothesis and theories of biologi‑
cal embedding, recently developed DNAm algorithms have revealed profiles reflective of more advanced aging and 
lower cognitive function among socioeconomically‑at‑risk groups. These DNAm algorithms were developed using 
blood‑DNA, but social and behavioral science research commonly collect saliva or cheek‑swab DNA. This discrepancy 
is a potential barrier to research to elucidate mechanisms through which socioeconomic disadvantage affects aging 
and cognition. We therefore tested if social gradients observed in blood DNAm measures could be reproduced using 
buccal‑cell DNA obtained from cheek swabs.

Results We analyzed three DNAm measures of biological aging and one DNAm measure of cognitive perfor‑
mance, all of which showed socioeconomic gradients in previous studies: the PhenoAge and GrimAge DNAm 
clocks, DunedinPACE, and Epigenetic‑g. We first computed blood‑buccal cross‑tissue correlations in n = 21 adults 
(GEO111165). Cross‑tissue correlations were low‑to‑moderate (r = .25 to r = .48). We next conducted analyses of socio‑
economic gradients using buccal DNAm data from SOEP‑G (n = 1128, 57% female; age mean = 42 yrs, SD = 21.56, 
range 0–72). Associations of socioeconomic status with DNAm measures of aging were in the expected direction, but 
were smaller as compared to reports from blood DNAm datasets (r = − .08 to r = − .13).

Conclusions Our findings are consistent with the hypothesis that socioeconomic disadvantage is associated with 
DNAm indicators of worse physical health. However, relatively low cross‑tissue correlations and attenuated effect sizes 
for socioeconomic gradients in buccal DNAm compared with reports from analysis of blood DNAm suggest that in 
order to take full advantage of buccal DNA samples, DNAm algorithms customized to buccal DNAm are needed.
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Background
Individuals who are socioeconomically disadvantaged are 
at increased risk for aging-related diseases and exhibit 
lower average levels of cognitive function across the life 
course [1–3]. Studies of humans and other animals iden-
tify several biological pathways through which social fac-
tors drive disease, including dysregulation of immune 
and metabolic systems in response to chronic stress [4]. 
These pathways overlap substantially with the biology 
that mediates aging-related health declines [5]. This over-
lap is consistent with the weathering hypothesis, which 
proposes that social adversity accelerates biological pro-
cesses of aging [6].

Biological aging can be conceptualized as the progres-
sive loss of system integrity that occurs with advancing 
chronological age [7]. The current state-of-the-art for 
quantification of biological aging in epidemiological stud-
ies of humans is a family of DNA-methylation (DNAm) 
measurements. Epigenetic changes, including DNAm, 
are among the hallmarks of aging and are theorized to be 
key transducers of biological embedding of social adver-
sity [5, 8]. Consistent with the hypothesis that DNAm 
measures of biological aging capture both of these epi-
genetic mechanisms, the DNAm measures of biological 
aging that show the most consistent and strongest predic-
tion of aging-related disease, disability, and mortality also 
show consistent associations with social determinants of 
health (i.e., the GrimAge, PhenoAge, and DunedinPACE 
epigenetic clocks; [9, 10]. The current study, therefore, 
focuses on these DNAm measures. Consistent with the 
hypothesis that DNAm measures of biological aging cap-
ture both of these epigenetic mechanisms, the DNAm 
measures of biological aging that show the most consist-
ent and strongest prediction of aging-related disease, dis-
ability, and mortality also show consistent associations 
with social determinants of health (i.e., the GrimAge, 
PhenoAge, and DunedinPACE epigenetic clocks) [9, 10]. 
In addition, there is evidence for social patterning of a 
DNAm measurement quantifying cognitive performance 
(i.e., Epigenetic-g) [11], which parallels well-documented 
socioeconomic disparities in cognitive function across 
the life course [2]. These DNAm measures open opportu-
nities to study mechanisms of social disparities in physi-
cal and cognitive health and to guide the development 
and evaluation of interventions to address them.

A barrier to achieving this potential is that DNAm is spe-
cific to types of tissues and cells; it is a critical mechanism 
of cellular differentiation and determinant of cellular phe-
notype [12]. Most DNAm algorithms used to study social 
gradients in health were developed from analysis of DNA 
derived from blood samples. Therefore, the ideal setting for 
their application is blood-derived DNA methylation. How-
ever, collection of blood samples is not feasible in some 

studies. For these studies, alternative sources of DNA, such 
as saliva and buccal tissue (i.e., inner cheek), may be easier 
to obtain. The extent to which algorithms developed from 
blood-derived DNA can provide reliable and valid meas-
urements in alternative tissues remains uncertain.

In two prior projects, we followed up algorithms devel-
oped to measure biological aging and cognitive function-
ing from blood DNAm in saliva samples collected from a 
pediatric cohort [13, 14]. In those studies, we were able to 
replicate several observations made from blood samples. 
First, the DNAm measure of the pace of biological aging 
(i.e., a previous iteration of DunedinPACE) exhibited a par-
allel socioeconomic gradient in the pediatric saliva samples 
as had been observed previously in blood DNAm data-
sets from adults. Second, the DNAm measure of cogni-
tive functioning Epigenetic-g exhibited parallel association 
with children’s performance on cognitive tests as had been 
observed previously in a blood DNAm dataset from adults. 
In contrast, the PhenoAge and GrimAge DNAm measures 
of biological age showed no social gradient in the pediatric 
saliva samples, in contrast to results from studies of blood 
samples [15].

Saliva is composed of a mix of leukocytes (which are 
also the source of blood-derived DNA samples) and epi-
thelial cells. Buccal sample-derived DNA comes predomi-
nantly from epithelial cells. It is unclear whether DNAm 
measures computed in buccal DNAm will show similar 
evidence of trans-tissue validation. Here, we examined 
whether the same socioeconomic gradients in biologi-
cal aging and DNAm-predicted cognitive performance 
apparent in blood DNAm analyses could be reproduced in 
analysis of buccal DNAm. The analysis we report is based 
on a pre-registration plan filed with OSF (https:// osf. io/ 
msjgc). Where our work has developed beyond this origi-
nal pre-registration, we note it in the text. We first tested 
cross-tissue correlations of DNAm measures of biological 
aging (i.e., PhenoAge Accel., GrimAge Accel., Dunedin-
PACE) and DNAm-predicted cognitive performance (i.e., 
Epigenetic-g) in buccal and blood DNAm datasets gener-
ated from the same individuals using the public dataset 
GEO111165 (n = 21). Next, we examined association of 
chronological age with buccal DNAm measures in n = 1128 
participants from SOEP-G (57% female; age  mean = 42 
yrs, SD = 21.56, range 0–72). Finally, we tested associations 
of socioeconomic status with DNAm algorithms computed 
from buccal-cell DNAm in the same SOEP-G sample.

Results
Cross‑tissue correlations between blood and buccal 
samples were low‑to‑moderate
We evaluated the correspondence between buccal and 
blood DNAm measures in an auxiliary dataset that col-
lected both buccal and blood samples from the same 

https://osf.io/msjgc
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n = 21 people [16], Illumina EPIC array dataset in Gene 
Expression Omnibus accession GSE11116, https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE11 1165).

Cross-tissue correlations between blood and buccal 
samples of the DNAm measures were low-to-moderate 
across measures (r = 0.25 to r = 0.48). Means of DNAm 
measures were higher in buccal compared to blood sam-
ples, with the exception of Epigenetic-g, for which mean 
comparisons are not possible because beta-methyla-
tion values are standardized prior to computation (see 
Table 1).

Chronological age gradients in biological aging are 
reproduced in buccal DNAm
We examined associations of chronological age with buc-
cal DNAm algorithms. For PhenoAge, strong association 
with chronological age is expected. In SOEP-G, partici-
pants’ buccal DNAm PhenoAge values were highly cor-
related with their chronological ages (PhenoAge r = 0.89, 
95% CI = 0.88, 0.90, p < 0.001). GrimAge calculations 
include information about participant chronological age 
and, as a result, show very strong correlations (r = 0.99, 
95% CI = 0.99, 0.99, p < 0.001). In contrast to Pheno-
Age and GrimAge, which estimate biological age values, 
DunedinPACE estimates the pace of aging. Consist-
ent with prior reports from blood DNAm datasets and 
with biodemography theory, which proposes that the 

pace of aging accelerates as we grow older [17, 18], par-
ticipants’ DunedinPACE values were modestly correlated 
with their chronological ages (r = 0.24, 95% CI = 0.18, 
0.29, p < 0.001). We also observed positive age trends 
for Epigenetic-g, mirroring known patterns of cognitive 
development; values increased across the first half of the 
lifespan and then stabilized in late middle age (r = 0.45, 
95% CI = 0.40, 0.49, p < 0.001; age in years unstandard-
ized b = 0.008, 95% CI = 0.006–0.011, p < 0.001; and age 
squared unstandardized b = − 0.001, 95% CI = − 0.001–
0.000, p = 0.001). Age patterning of DNAm measures is 
shown in Fig. 1.

Socioeconomic disadvantage is associated 
with accelerated biological aging in Germany
We tested associations of socioeconomic status (SES) 
with DNAm measures of biological aging computed 
from buccal-cell DNAm in SOEP-G. SES was measured 
as a composite of household income and educational 
levels (highest in household). Consistent with reports 

Table 1 Blood‑buccal cross‑tissue correlations of blood‑based 
DNA‑methylation measures (n = 21)

Means, standard deviations (SD), and blood-buccal cross-tissue correlations 
of DNA-methylation measures of accelerated biological aging (i.e., PhenoAge 
Acceleration, GrimAge Acceleration), pace of aging (i.e., DunedinPACE), and 
DNAm-predicted cognitive performance (i.e., Epigenetic-g). Mean comparisons 
for Epigenetic-g are not possible because beta-methylation values are 
standardized prior to computation. Based on n = 21 people from Gene 
Expression Omnibus accession GSE11116 (chronological age mean = 32.24, 
SD = 16.05)

Mean differences Cross‑tissue 
correlation

Mean SD 95% CI p r

PhenoAge Accel  45.03, 56.23 < 0.001 0.25

  Blood 7.25 8.35

  Buccal 57.88 9.56

GrimAge Accel 12.02, 18.08 < 0.001 0.48

  Blood 19.04 4.93

  Buccal 34.09 4.78

DunedinPACE 0.39, 0.50 < 0.001 0.31

  Blood 1.07 0.11

  Buccal 1.52 0.06

Epigenetic‑g – – 0.46

  Blood 0 0.33

  Buccal 0 0.23
Fig. 1 Chronological age and buccal DNAm algorithms. Panel A–B 
plot associations of chronological age with buccal DNAm algorithms 
of biological aging, for which strong associations are expected: A 
PhenoAge and B GrimAge. Panel C plots association of chronological 
age with the pace of aging, DunedinPACE. Panel D plots association 
of chronological age with a DNAm algorithm of cognitive 
performance, Epigenetic‑g 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111165
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111165
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from blood DNAm datasets, participants with higher 
SES had younger biological ages and slower pace of aging 
(r’s = − 0.08 to − 0.13, p’s < 0.011, Table 2).

Next, according to our pre-registered analysis plan, 
we tested whether the association of SES with DNAm 
measures of aging differed by chronological age. This 
interaction was statistically significant for PhenoAge and 
GrimAge Acceleration (SES by continuous age inter-
action on PhenoAge std b = −  0.11, 95% CI = −  0.17, 
−  0.05, p < 0.001; GrimAge std b = −  0.07, 95% 
CI = − 0.13, − 0.02, p = 0.011). There were no age differ-
ences in the SES association with DunedinPACE (p-value 
for continuous age interaction = 0.916). To further illus-
trate the interaction, we stratified the sample into older 
and younger participants (mean split). Among the older 
participants (aged > 42  years, n = 576), the SES associa-
tion with PhenoAge Acceleration was r = −  0.14, 95% 
CI = −  0.22, −  0.06, p < 0.001 and with GrimAge Accel-
eration was r = − 0.18, 95% CI = − 0.26, − 0.10, p < 0.001. 
In contrast, among younger participants (aged < 42 years, 
n = 482), the SES association with PhenoAge Accel-
eration was r = 0.03, 95% CI = −  0.06, 0.12, p = 0.494 
and with GrimAge Acceleration was r = −  0.04, 95% 
CI = − 0.13, 0.05, p = 0.352. In sum, SES was associated 
with PhenoAge and GrimAge Acceleration only for older 
participants, whereas low SES was associated with Dun-
edinPACE across age groups. Figure 2 shows the associa-
tion of socioeconomic status with DNAm by age.

Association of socioeconomic status with Epigenetic-g 
was in the expected direction, but was small and not sta-
tistically different from zero at the alpha = 0.05 level (see 
Table S4 and Fig. 2D). Excluding smokers and accounting 
for body mass index did not substantially affect associa-
tions with SES (see Additional file 1: Figure S1).

Discussion
We tested if socioeconomic gradients in DNAm meas-
urements of biological aging and cognitive performance, 
which are apparent in blood DNAm analyses, could be 

reproduced in analysis of buccal DNAm. Our findings are 
consistent with the weathering hypothesis that socioeco-
nomic disadvantage is associated with accelerated biolog-
ical aging. However, effect sizes were approximately 50% 
lower than those reported in previously published analy-
ses of blood DNAm datasets. Such studies have reported 
associations of magnitude of approximately r = .20, rang-
ing from r = .10 to r = .37 [10], whereas here we report 
associations of magnitude of approximately r = .10, 
ranging from r = .079 to r = .13. Similarly, associations 
of socioeconomic status with buccal DNAm-predicted 
cognitive performance were attenuated by approxi-
mately 50% and not statistically different from zero, in 
contrast to studies of blood and saliva DNAm datasets, 
which have reported associations with socioeconomic 

Table 2 Associations of socioeconomic status with buccal DNA‑
methylation measures

Associations of socioeconomic status (average z-scored household income and 
education) with buccal DNA-methylation measures of accelerated biological 
aging (i.e., PhenoAge Acceleration, GrimAge Acceleration), pace of biological 
aging (i.e., DunedinPACE) and DNAm-predicted cognitive performance (i.e., 
Epigenetic-g)

r 95% CI p

PhenoAge Accel. − 0.08 − 0.139, − 0.018 0.011

GrimAge Accel. − 0.13 − 0.190, − 0.071 < 0.001

DunedinPACE − 0.10 − 0.154, − 0.034 0.002

Epigenetic‑g 0.06 − 0.003, 0.117 0.064

Fig. 2 Socioeconomic status and buccal DNAm algorithms. 
Panel A–B plot associations of socioeconomic status with buccal 
DNAm algorithms of accelerated biological aging: A PhenoAge 
Acceleration and B GrimAge Acceleration. Panel C plots association of 
socioeconomic status with the pace of aging, DunedinPACE. Panel D 
plots association of socioeconomic status with a DNAm algorithm of 
cognitive performance, Epigenetic‑g 
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measures of magnitude r = .11 and r = .14 [11, 19] (note 
larger effect sizes for neighborhood-level socioeconomic 
contexts  in 19). Moreover, cross-tissue correspondence 
of DNAm indices was low-to-moderate. Collectively, 
these findings suggest that in order to take full advantage 
of buccal DNA samples, it will be important to develop 
DNAm indices that are customized to buccal DNAm.

One observation from our buccal DNAm data is that 
SES was associated with more PhenoAge Acceleration 
and GrimAge Acceleration only for older participants, 
whereas in the case of DunedinPACE, the socioeconomic 
gradient was evident for both young and old partici-
pants. This pattern of results is consistent with findings 
from saliva DNAm in children and adolescents, which 
showed no association of PhenoAge and GrimAge with 
household SES, but did identify an association with Dun-
edinPACE [13]. One possible explanation for this result 
is that measures of biological age, such as PhenoAge and 
GrimAge, which were designed to quantify differences 
in mortality risk among midlife and older adults, may be 
less sensitive to early stages in the biological embedding 
of social disadvantage. Replication of this result in other 
datasets and across tissues is needed.

Conclusion
Our findings are consistent with the hypothesis that 
socioeconomic disadvantage is associated with acceler-
ated biological aging in Germany. However, cross-tissue 
correspondence of DNAm indices was low-to-moderate, 
and effect sizes for SES associations estimated from buc-
cal DNAm were attenuated by roughly 50% compared 
with reports from blood DNAm datasets. Development 
of DNAm measures of biological aging and cognitive per-
formance that are customized to buccal DNAm should 
be a research priority.

Methods
Participants
SOEP-G participants were from the SOEP-IS cohort, 
which is based on a random sample of German house-
holds and contains a rich array of information on socio-
economic context, household dynamics, personality, and 
health [20]. Six thousand five hundred seventy-six people 
were originally invited to participate in the 2019 wave of 
the SOEP-IS with the aim to collect saliva for genotyp-
ing, 2598 of whom provided a valid genetic sample. ~ 98% 
of the genotyped SOEP-IS sample is of high genetic simi-
larity to European reference groups. See Koellinger et al. 
[20] for more information on the genotyped SOEP-IS 
cohort called SOEP-G.

Residual frozen DNA samples from n = 1128 individu-
als from the n = 2598 genotyped SOEP-G cohort were 
selected for DNAm extraction based on the availability 

of funds (see Table 3 for descriptive statistics). Exclusion 
and inclusion criteria were: (1) exclusion of five samples 
due to sex mismatch between self-reported and genetic 
sex, (2) inclusion of all samples from children and adoles-
cents (i.e., under or equal to 18 yrs) whose residual DNA 
samples contained at least 50 ng of DNA, (3) inclusion of 
adults that had (a) at least 250  ng of DNA left, (b) had 
a DNA call rate of at least 0.975, (c) were not parents of 
selected children and adolescents so that the maximum 
number of different households were included, and (d) 
extended the age distribution continuously past 18 years 
so that all younger adults were included. The ID list was 
randomized so that plate effects were not confounded 
with chronological age. In addition, 24 samples were ran-
domly selected as technical duplicates. The final sample 
of n = 1128 unrelated participants (490 male, 638 female) 
consisted of 872 adults and 256 children and adolescents 
(age mean = 41.88 yrs, SD = 21.56, range 0–72, see Addi-
tional file 1: Figure S1 for density plot of age distribution). 
95% of participants were born in Germany.

Measures
DNA‑methylation preprocessing and exclusions
DNA was extracted from buccal swabs collected using 
Isohelix IS SK-1S Dri-Capsules [20]. DNA extraction 
and methylation profiling was conducted by the Human 
Genomics Facility (HuGe-F) at the Erasmus Medical 
Center in Rotterdam, Netherlands. The Infinium Meth-
ylEPIC v1 manifest B5 kit (Illumina, Inc., San Diego, CA) 

Table 3 Descriptive statistics of the analytic sample after DNA‑
methylation‑based exclusions (N = 1058)

a A value of 1 reflects the average Pace of Aging in the Dunedin Study birth 
cohort over the age 26–45 follow-up period. A value of 1.01 therefore reflects a 
pace of aging 1% faster than the Dunedin Study norm
b PhenoAge represents the age in years at which average mortality risk in 
NHANES III matches the mortality risk predicted by the PhenoAge algorithm
c GrimAge represents the age in years at which average mortality risk in the 
Framingham Heart Study Offspring cohort matches predicted mortality risk

Sample N M SD

Age (years) 1058 42.42 21.17

Sex, female 610 58% –

DunedinPACEa 1058 1.64 0.11

PhenoAgeb 1058 99.15 18.81

GrimAgec 1058 74.3 15.9

Epigenetic‑g 1058 0 0.21

Household income (Euro) 1044 3318.07 1859.59

Household income/persons in household 
(Euro)

1044 1497.82 827.05

Maximum household education (years) 1042 13.34 2.76

Age‑ and sex‑normed body mass index 876 22.55 5.8

PedBE 1058 30.21 10.86

Self‑reported smoking, yes 87
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was used to assess methylation levels at 865,918 CpG 
sites.

DNAm preprocessing was primarily conducted with 
Illumina’s GenomeStudio software and open-source R 
(version 4.2.0) packages ‘minfi’ [21] and ‘ewastools’ [22]. 
We generated  20  control metrics in GenomeStudio as 
described in the  BeadArray Controls Reporter Software 
Guide  from Illumina (note similar parameters can be 
computed using the ewastools ‘control_metrics()’ func-
tion). Samples falling below the Illumina-recommended 
cut-offs were flagged and further investigated. Flagged 
samples were classified as failed if 1. all types of poor 
bisulfite conversion and all types of poor bisulfite con-
version background; 2. all types of bisulfite conversion 
background falling below 0.5; 3. all types of poor hybridi-
zation; and 4. all types of poor specificity (excluded 
n = 42).

As a second step, we identified unreliable data points 
resulting from low fluorescence intensities by filter-
ing using detection p-values, calculated from compar-
ing fluorescence intensities to a noise distribution. We 
removed probes with only background signal in a high 
proportion of samples (proportion of samples with detec-
tion p-value > 0.01 is > 0.1). We also removed probes 
for which a high proportion of samples had low bead 
numbers (proportion of samples with bead number < 3 
is > 0.1). Further, we removed probes with SNPs at the CG 
or single base extension position as well as cross-reactive 
probes for EPIC arrays [23, 24].

We used minfi’s ‘preprocessNoob’ [25] to correct for 
background noise and color dye bias and ‘BMIQ’ to 
account for probe-type differences [26].

Cell composition was estimated using HEpiDISH, 
which is an iterative hierarchical version of the EpiDISH 
R package using robust partial correlations (https:// 
github. com/ sjczh eng/ EpiDI SH). Because epithelial cell 
types are the dominant cell type in buccal samples, we 
applied a threshold of 0.5 for epithelial cell proportions 
to reliably call a ‘buccal sample’ and excluded samples 
that failed this metric (n = 28). All samples were from the 
same batch. Final analytic sample size after DNAm exclu-
sions was n = 1058.

In GSE111165 blood samples, DNAm algorithms were 
residualized for reference-free cell composition and plate 
[27].

DNA‑methylation algorithms
Our pre-registered analysis focused on two DNAm 
measures developed from blood DNAm data and which 
we had previously followed up in saliva DNAm data (i.e., 
DunedinPACE and Epigenetic-g) as well as a buccal-
based algorithm of chronological age to be used as a data 
quality control measure (i.e., PedBE). For comparative 

purposes, we report additional results for two further 
DNAm measures developed from blood DNAm, the Phe-
noAge and GrimAge clocks [28, 29]. We include these 
measures, which are among the best-evidenced DNAm 
biomarkers of aging, to help contextualize findings for 
DunedinPACE and Epigenetic-g. See Table 4 for descrip-
tion of DNA-methylation algorithm computations.

Socioeconomic status We deviated from our pre-regis-
tered analysis plan by testing associations with socioec-
onomic status (average z-scored household income and 
education) rather than examining income and educa-
tion separately, to reduce the number of statistical com-
parisons. Monthly household net income in Euros from 
all sources (e.g., employment, pensions, unemployment 
benefits, maternity benefits, higher education grants, 
military or civil service pay, compulsory child support, 
etc.) was reported by the self-defined head of household. 
In the 2% of cases with missing income values, informa-
tion about determinants of household income and past 
data were used to impute estimated values (for more 
information see page 27 https:// www. diw. de/ docum 
ents/ publi katio nen/ 73/ diw_ 01.c. 787445. de/ diw_ ssp08 44. 
pdf )/. Household income was divided by the number of 
persons in the household and sqrt transformed to correct 
for skew (this deviated from our pre-registration plan; 
sqrt-transformation improved normality of distribution 
more than log-transformation in Shapiro–Wilk test).

Given the wide age range of participants, we indexed 
educational attainment as the highest degree obtained 
by any individual in the household. Educational attain-
ment was converted to number of educational years 
(no degree = 7  years, lower school degree = 9  years, 
intermediary school = 10  years, degree for, a profes-
sional coll. = 12  years, high school degree = 13  years, 
other = 10  years) with additional occupational training 
added (apprenticeship = + 1.5  years, technical schools 
(including health) = + 2  years, civil servants apprentice-
ship = + 1.5  years, higher technical college = + 3  years, 
university degree = + 5 years).

Covariates
Body mass index (BMI) Height (in cm) and weight (in kg) 
were measured via self-report and transformed to sex- 
and age-normed BMI z-scores.

Smoking Participant self-reported current or past 
smoking across multiple waves. Across questions and 
waves, if a participant ever responded that they smoked 
currently or in the past, they were identified as a smoker. 
If a participant ever responded that they never smoked 
and never responded that they did smoke, they were 
identified as a never-smoker.

https://github.com/sjczheng/EpiDISH
https://github.com/sjczheng/EpiDISH
https://www.diw.de/documents/publikationen/73/diw_01.c.787445.de/diw_ssp0844.pdf
https://www.diw.de/documents/publikationen/73/diw_01.c.787445.de/diw_ssp0844.pdf
https://www.diw.de/documents/publikationen/73/diw_01.c.787445.de/diw_ssp0844.pdf
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Abbreviations
DNAm  DNA methylation
SES  Socioeconomic status
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Table 4 Description of DNA‑methylation algorithm computations

DNAm algorithm Description

PhenoAge PhenoAge was first modeled from physiological markers and chronological age [28]. This first‑stage algorithm was then applied to 
a new sample in which it was modeled from DNA methylation to derive the final DNA‑methylation clock. PhenoAge represents the 
age in years at which average mortality risk in NHANES III matches the mortality risk predicted by the PhenoAge algorithm
PhenoAge was computed using DNAm principal components, which have been found to increase reliability [30], using code 
available at https:// github. com/ Morga nLevi neLab/ PC‑ Clocks. Using 24 technical replicates of samples in SOEP, we estimated the 
intraclass correlation coefficient (ICC). PhenoAge showed excellent reliability (ICC = 0.982). PhenoAge Acceleration was computed 
by residualizing PhenoAge for chronological age

GrimAge GrimAge was developed with a set of physiological indicators modeled from DNAm using machine learning analysis, and then 
these DNA‑methylation algorithms along with age, sex, and a DNAm algorithm of smoking history were applied to model mortal‑
ity [29]. GrimAge represents the age in years at which average mortality risk in the Framingham Heart Study Offspring cohort 
matches predicted mortality risk
GrimAge was computed using DNAm principal components, which have been found to increase reliability [30], using code avail‑
able at https:// github. com/ Morga nLevi neLab/ PC‑ Clocks. GrimAge showed excellent reliability (ICC = 0.999). GrimAge Acceleration 
was computed by residualizing GrimAge for chronological age

DunedinPACE DunedinPACE was developed as a DNA‑methylation measure of the pace of aging in the Dunedin Study birth cohort [17]. The 
Dunedin Study Pace of Aging is a composite phenotype derived from analysis of longitudinal change in biomarkers of organ‑
system integrity. Initially developed from analysis of three waves of biomarker data accumulated over a 12‑year period [31]. Pace 
of Aging has recently been extended to a fourth measurement occasion spanning 20 years of follow‑up [32]. DunedinPACE was 
developed from this second iteration of the Pace of Aging
Briefly, DNAm algorithm development was conducted using a subset of EPIC array probes that were also included on Illumina’s ear‑
lier 450 k array and that were identified as having relatively higher test–retest reliability [33]. Elastic net regression machine learning 
analysis was used to fit Pace of Aging to DNAm data generated from blood samples collected when participants were aged 
45 years. The elastic net regression produced a 173‑CpG algorithm. Increments in DunedinPACE correspond to “years” of physiologi‑
cal change occurring per 12‑months of chronological time. A value of 1 reflects the average Pace of Aging in the Dunedin Study 
birth cohort over the age 26–45 follow‑up period. A value of 1.01 therefore reflects a pace of aging 1% faster than the Dunedin 
Study norm. DunedinPACE was be calculated based on the published algorithm using code available at https:// github. com/ danbe 
lsky/ Duned inPACE/. Fourteen of the 173 CpG probes that are part of DunedinPACE were not present in our dataset. Buccal Duned‑
inPACE showed good reliability (ICC = 0.74)

Epigenetic‑g Epigenetic‑g was computed using a blood‑based algorithm from an epigenome‑wide association study (EWAS) in BayesR + of 
general cognitive function (g) in 9162 adults (59% females; mean age 49.8 years, SD 13.6, range 18–93) in the Generation Scotland 
Study [11]. Briefly, general cognitive function was derived from the first unrotated principal component of logical memory, verbal 
fluency and digit symbol tests, and vocabulary. Cognitive phenotypes were corrected for age, sex, BMI and an epigenetic smok‑
ing score. Epigenetic‑g includes all CpG sites in the EWAS. The weights for each CpG are the mean posterior effect sizes from the 
EWAS model of g. Prior to computation of Epigenetic‑g in the present study, methylation values were scaled within each CpG site 
(mean = 0, SD = 1) and calculated based on the published algorithm using code available at https:// gitlab. com/ danie lmcca rtney/ 
ewas_ of_ cogni tive_ funct. Epigenetic‑g showed good reliability (ICC = 0.84)

PedBE As a data quality control, we examined associations of chronological age with the Pediatric‑Buccal‑Epigenetic (PedBE) clock, which 
was developed to predict chronological age in individuals aged < 20 years from buccal‑cell DNAm, i.e., the same tissue type exam‑
ined here [34]. While the pediatric sample used to develop the PedBE clock is considerably younger than our lifespan sample, it is 
one of the few aging‑related DNAm indicators developed using buccal cells. Correspondence between PedBE and chronological 
age in our sample increases confidence in the quality of our buccal‑cell DNAm data
Elastic net penalized regression was used to select 94 CpGs from a training dataset of 1032 subjects. PedBE was calculated based 
on the published algorithm using code available at https:// github. com/ kobor‑ lab/ Public‑ Scrip ts/ blob/ master/ PedBE. Md. All 94 
CpG probes were present in our dataset. PedBE showed excellent reliability (ICC = 0.967). PedBE was strongly associated with 
chronological age, indicating good data quality (r = 0.91, 95% CI = 0.90, 0.92, p < 0.001)
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